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ON THE METRIC THEORY OF THE OPTIMAL
CONTINUED FRACTION EXPANSION

R. NAIR

Suppose kn denotes either <p(n) or 4>(rn) (n = 1, 2, • • •) where the polynomial 4>
maps the natural numbers to themselves and r^ denotes the fcth rational prime.
Let (pn/qn)^-! denote the sequence of convergents to a real numbers x for the
optimal continued fraction expansion. Define the sequence of approximation con-
stants (0n(x)C=1

 by

On{x) = x — ( n = l , 2 , • • • ) •

In this paper we study the behaviour of the sequence (#*„ (x))™=1 for almost all x
with respect to Lebesgue measure. In the special case where kn = n (n = 1, 2, • • •)
these results are due to Bosma and Kraaikamp.

1. INTRODUCTION

In this paper we refine some results on the optimal continued fraction expansion of
a real number proved in [1]. We first introduce the notion of a semi-regular continued
fraction expansion, which both the regular continued fraction expansion and the optimal
continued fraction expansion (our primary object of study) are examples of. For a real
number x we write

x =

c 4 - - -

also sometimes written more succinctly as [CQ\ £ICI, • • • , ] where (ci)™^ is a sequence
of integers and £j € { —1, 1}. The numbers Ci (i = 1, 2, • • •) are called the partial
quotients of the expansion and for each natural number n the truncates

— — [c0; £ ic i , • • • , e n c n j ,
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70 R. Nair [2]

are called the convergents of the expansion. The expansion is called semi-regular if: (i)
cn is a natural number, for positive n; (ii) £n+i + cn+i ^ 1 for all natural numbers
n and (iii) en+i + Cn+i ^ 2 for infinitely many n if the expansion is itself infinite.
Central to the class of semi-regular continued fraction expansions is the regular con-
tinued fraction expansion which is also the most familiar and is obtained when cn is
a natural number and en takes the value one for all n. Notice that for the regular
continued fraction expansion CQ = \x\, that is, the greatest integer not less than x.
Each regular convergent is always a best approximation to x in the sense that there do
not exist better approximations with smaller denominators. That is, for all integers r
and s such that 0 < s ^ Qn, if for some rational r/s we have

x —
r
—s x —

Pn
Qn

then r/s = Pn/Qn- The converse does not hold [13, Section 16]. It is none the less
possible to improve the approximation properties of x by convergents in other regards
by looking at other continued fraction expansions in the semi-regular class. We consider
two senses in which this can be done below. Firstly, as a form of Dirchlet's theorem on
diophantine approximation [6] recall the inequality

x — Qn Ql2 '

satisfied by the convergents of the regular continued fraction expansion. Clearly if for
each natural number n we set

(1.1) x — Qn

then for each x the sequence (0n(^))'n°=1 lies in the interval [0, 1]. It turns out that
because the convergents of any semi-regular continued fraction expansion are a sub-
sequence of the sequence of convergents of the regular continued fraction expansion,
the sequence (0n(x))'n

a
=1 may also be defined similarly for any semi-regular continued

fraction expansion. In particular it was observed by Minkowski that the regular conver-
gents for which 6n(x) < 1/2 are the convergents of a semi-regular continued fraction
expansion [13]. In addition a theorem of Legendre tells us that if Q \Qx — P\ < 1/2
then P/Q is a regular convergent [6]. We shall therefore confine attention henceforth
to expansions for which 6n{x) < 1/2 holds for all natural numbers n. Secondly we
are interested in semi-regular continued fractions with convergents, henceforth denoted
{Pk/Qk)<

n°=i > which are as sparse as possible as a subsequence of the sequence of regular
convergents (-Pn/Qn)^Li • There is a restriction on how sparse the sequence (pk/Qk)™-i

https://doi.org/10.1017/S0004972700030744 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030744
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can be in that to remain a semi-regular expansion one of any two consecutive terms of
(Pk/Qk)^Li m u s t remain in {Pn/Q^^Li • A semi-regular continued fraction expansion
is called closest if the first requirement, namely that 0n(x) < 1/2 is true for all natural
numbers n and called fastest if (Pfc/<7fc)̂ Lj is as sparse as a subset of (Pn/Qn)^Li •
A number of semi-regular continued fraction expansions satisfy one or other of these
properties. See [7], [14], [9] or [10] for details. The optimal continued fraction expan-
sion introduced in [3] satisfies both. In Section 4 we shall introduce and describe in
detail this expansion which is our primary object of study. In Section 2 we introduce
certain general results from ergodic theory necessary for our investigation. In Section 3
we present certain information about the regular continued fraction expansion we also
need for our investigation. Finally in Section 5 the results of Section 2 are applied to
obtain new results on the distribution of the sequence {@n(x))™=i for almost all x with
respect to Lebesgue measure in the case of the optimal continued fraction expansion.
These results extend earlier work contained in [2].

2. B A S I C E R G O D I C THEORY

Here and throughout the rest of the paper by a dynamical system (X, P, fi, T) we
mean a set X, together with a cr-algebra j3 of subsets of X, a probability measure ft on
the measurable space (X, 0) and a measurable self map T of X that is also measure
preserving. By this we mean that if given an element A of /? if we set T~XA =
{x € X: Tx € A} then fi(A) = (i,(T~1A). We say a dynamical system is ergodic if
T~XA = A for some A in /3 means that (i(A) is either zero or one in value. We say the
dynamical system (X, ft, fi, T) is weak mixing (among other equivalent formulations
[17]) if for each pair of sets A and B in /? we have

jf E W~nA n B) - KA)n(B)\ = 0.
n = l

Weak mixing is a strictly stronger condition than ergodicity. A piece of terminology
that is becoming increasingly standard is to call a sequence k = (&n)^Li of non-negative
integers V good universal if given any dynamical system (X, (3, fi, T) and any function
/ in U(X, P, n) it is true that

n = l

exist almost everywhere with respect to the measure /x. Here and henceforth for each
real number y, let (y) denote its fractional part, that is y - [y\. The following theorem
is proved in [12].
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THEOREM 2 . 1 . Suppose the sequence k = (kn)^=1 of non-negative integers is
such that for each irrational number a the sequence ((fcna))"=1 is uniformly distributed
modulo one and for a particular p greater or equal to one that k = (fcn)^L1 is Lp

good universal. Then if the dynamical system (X, /?, n, T) is weak mixing, l/(x) —
Ix f($) ^MO almost everywhere with respect to fi.

If kn denotes either <fi(n) or <f>(pn) where cj> denotes any non-constant polynomial
mapping the natural numbers to themselves and pn denotes the nth rational prime
then k is Lp good universal for any p greater than one. See [4] and [11] respectively
for proofs. The fact that for each irrational number a the sequence {{kna))'^'_1 is
uniformly distributed modulo one in both instances are well known classical results.
See [16] and [18] respectively. Other sequences are known by the author to satisfy
both hypotheses but these results have yet to appear in print. Henceforth for reasons
of brevity, we shall call a sequence k = (fcn)^°=1 p-good if it satisfies the hypothesis of
Theorem 2.1 and we call it good in the special case when it is p-good for p = oo.

3. REGULAR CONTINUED FRACTIONS

Suppose for a real number x that it has regular continued fraction expansion

1
x — c0

C 3

Let g: [0, 1] -> [0, 1] be the map denned by

C 4

also known as the Gauss map. Notice that cn(x) — cn_i(gx) (n — 1, 2, • • •) and recall

that

-=- = [co;cu ••• ) C n ] (n = l, 2, •••)•

We have the following classical recurrence relations [6]

P_! = 1; Po = 0; Pn = CnPn-! + P n _ a (n = 1, 2, • • •)

and
Q_! = 1; Qo = 0; Qn - cnQn^ + Q n _ 2 (n = 1, 2, • • •).

Set
Tn = gn~\x - co) (n = l, 2, •••)
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and

Vn = Vn(x) = % ± ( s ) (n = l , 2 , - . - ) .

Then it is straightforward to check that

Tn = [0; c n + i , cn+2, •••],

and

Vn = [0; Cn, c n _ i , ••• , ci] .

From p we build a two dimensional map T defined on Q, = ([0, 1) \ Q) x [0, 1] by

Then for each natural number n

Tix, y) = (gnx, [0; cn, c_i, • • • , c2,

and in particular for non-negative n

(x, 0) = (Tn(x), Vn(x)).

Let (3 denote the cr-algebra of Borel sets in fi and n the measure on fl defined for A

in (3 by
dxy

(1+xyf

We have the following theorem [7].

THEOREM 3 . 1 . The dynamical system (Q, (3, r), T) is weak mixing.

4. BASIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION

Let x be an irrational real number and suppose it lies in the interval (co — 1/2,

Co — 1/2) for some integer Co and put to = x — Co, £\(x) = sgn (to) and

(4.1) P\ = 1, Po = Co, <Zi = 0, qo = 1,

and VQ = 0. Suppose £j, pi, qi, Cj, Vi and £i+i have been defined for i ^ k and some
positive integer k. Then define tk+i, Pk+i, qk+i, Ck+i, Vk+i and £>+2 inductively as
follows. Let

Cfc+i
I k . - I , LikrVi+gfc+ittfc i

= |lfc| + -7 r
L 2(|Jt*| J+efc+i«fc+i)+lJ

|
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(4-2) pfc+i = Cfc+ipfc + £k+\Pk-i; qk+i = Cfc+igjt + ek+iqk-i

and Vk+i = qk/ik+i • Now the optimal continued fraction expansion of x is

One straight forwardly verifies that

tk = [0; £fc+lCf c +i , £fc+2Cfc+2, • • •]>

a n d

Vk = [0; Cfc, £fcCfc_!, • • • , £ 2 Cl ] .

The sequence ipk/qkj'kL-i are the convergents and as we said in the introduction
are a subsequence of the sequence of regular convergents {Pn/Qn)™=-\ and if we define
the function n: N -> N by Pk/qk = Pn(k)/Qn(k) then n(k + 1) = n(k) + 1 if and only
if £k+2 = 1 and n(k + 1) = n(fc) + 2 otherwise, once we have set n(0) = 0 for x > 0
and n(0) = 1 otherwise. Define F C fi by

= {(r, v) G n : v < min (r, ? ^

and put if = fi \ F. We have the following lemma [2].

LEMMA 4 . 1 . Suppose x is irrational and n a naturaJ number. The following are
equivalent:

(i) the regular continued fraction convergent Pn/Qn is not an optimal con-
tinued fraction convergent;

(ii) Cn+i = 1, 0n_i < 9n and 9n > 0n+1; and
(iii) (Tn, Vn) is in V.

We now define the map U: H —• if, by

mr y) = J T(T>

It is convenient to write g = (l - \/5)/2 and G = (l + v/5)/2 henceforth. Let
/3ff denote the <T-algebra of Borel subsets of H and fijj the probability measure on
H with density (logG)~ (1 + xy)~ . In [8] it is shown that the dynamical system
(if, (3H, HH, U), which is in fact the system induced on if by T, is exact and hence
weak mixing. It is possible to describe a dynamical system explicitly which is isomor-
phic to (H, PH, HH, U) and which is not described indirectly as an induced system.
We do this as follows. Let A C (—1, 1) x (—1, 1) be denned by

A = |(y, v) G ( -1 , 1) x ( -1 , 1): t, < min (j^l, J^)'v > m a x
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Define a map W from A to itself by

where
11, i—i

t, v) = \t
- l , utfcl J+sgnfo)t;

2(Ll^r1J+sgn(t)t;)+l

Also define a measure /ZA on A by setting its Radon Nikodym derivative relative to
two dimensional Lebesgue measure to be ( logG)- 1 ( l + xy)~2. Finally note that if x
is in ( -1/2 , 1/2) then Wk(x, 0) = (tk, Vk) for all positive integers k. The dynamical
system (A, /?A, A*A> W), where /?A is the a-algebra of Borel sets on A, is Bernoulli [8]
and hence weak mixing.

5. STATISTICAL PROPERTIES OF THE SEQUENCE (0n(x))™=1

We have the following theorem from which all the other results of this paper may
be derived.

THEOREM 5 . 1 . Suppose (tk, ffc)fcli JS as defined in Section 4. Then if k =
(fen)^Li is good for each element A of /3H we have

l f dtdv

almost everywhere with respect to Lebesgue measure.

PROOF: Note that for all y such that (x, y) is in A we have

lim (Wn(x,y))-(Wn(x,0))=0,
n—• oo

and that VFn(a;, 0) = (tn, vn). Then Theorem 5.1 is an immediate consequence of
Theorem 2.1. D

We now consider applications of this theorem. Let

II = {{w, z) e R x R : w > 0, z > 0, 4w2 + z2 < 1, w2 + 4z2 < 1}.

THEOREM 5 . 2 . Suppose A is a Borel subset of the set U. If k = (kn)™=1 is
good we have

N

lim 1
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almost everywhere with respect to Lebesgue measure.

PROOF: Let ip denote the two to one map from A to II denned by

l + tv' 1+tv) '

where e(t) denotes the sign of t. We note that ip(tk, vk) = (0jt_i, 6k) for each natural
number k. To see this note that from a standard fact from the elementary theory of
continued fractions we have

(5.1)
Qk

and so

(5.2) 9k =
1

Set
A_1 = {(«, v) e A: e(t) =-1}

and
A1 = {(t, v)eA:e(t) = l}.

Also let rp-i = ip\A_i a nd fpi = V'lAx • These maps are then continuously differentiable
bijective maps from A_i (respestively Ai) to II. Using the coordinate change formula
for measures, the image measure for

dtdw

under both maps V-i and ipi is given by

i / / f]1^) dxdy.logG JJBnn \l-xy

Since by (5.1) and (5.2) if e(tk) = efc+i = 1 then

and if e(tfc) = ek+i = - 1 then
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and hence the image of fi under ip is given by

(ipn)(A)= f | . 1

VyinnVvl-

The result now follows from Theorem 5.1.

)dwdt.
7 I

D
In [2] it is shown that for each irrational x we have 0 < Ok-i + Ok < 2/y/E. Let

(log y/1 + z - log y/1 — z + arctan z) / log G

if ZG [0,1/2];

h(z) =
log + 2 arctan '2\ogG

ifzG[l/2,2/>/5].

THEOREM 5 . 3 . Let h be as just above. J f k = (kn)™=1 is good

lim ^- a}|= f h(t)dt, '

almost everywhere with respect to Lebesgue measure.

PROOF: The result follows immediately by applying Theorem 5.2 to the function
w + t = const. D

In [2] it is shown that for each irrational x we have 0 ^ |#n-i — 6n\ ^ 1/2 for each
natural number k. Let

/ /' \ { - 4z2 - 3z\\
j(z) =

' 5V5-4z2-5Zilog I — | — arctan z + arcsin
logG y - ^ l + z / N 7 /

We have the following theorem.

THEOREM 5 . 4 . Let j be as defined just above. If k = (kn)^^ is good and a is

in [0, 1/2), we have

lim 1
JV-»OO iV

n < TV: a}| = / j(t)dt,

almost everywhere with respect to Lebesgue measure.

PROOF: The proof of this result is an immediate consequence of Theorem 5.2 and
the appropriate choice of A. U

In [2] it is shown that for irrational x, 6k{x) is in (0, 1/2). Let
1

k(z) =
logG

l\ - Az2

logG

ifzG (0, l/>/5);

ifze [ I /A 1/2).

We have the following result:
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THEOREM 5 . 5 . Suppose k is defined as just above. If k = (kn)™=1 is good and

a is in [0, 1/2), we have

i N r
lim -^^2xA(ekn(x))= / d(z)dz,

N^°° N t^ J ° < V2)
almost everywhere with respect to Lebesgue measure.

PROOF: Apply Theorem 5.2 with w < z. D

Also calculating the first moment of k we have:

THEOREM 5 . 6 . If k = (A:n)~=1 is good then

A!TooivZ>«(a;) = 4lolGa r C t a n2
n=l °

almost everywhere with respect to Lebesgue measure.
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