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ON THE METRIC THEORY OF THE OPTIMAL
CONTINUED FRACTION EXPANSION

R. NAIR

Suppose k. denotes either ¢(n) or ¢(rn) (n =1, 2, -.-) where the polynomial ¢
maps the natural numbers to themselves and rr denotes the kth rational prime.
Let (pn/gn),., denote the sequence of convergents to a real numbers z for the
optimal continued fraction expansion. Define the sequence of approximation con-
stants (6n(z))pr, by

z- Bl
qn

en(x) = quz

In this paper we study the behaviour of the sequence (6, (z)),~, for almost all =
with respect to Lebesgue measure. In the special case where k, =n (n=1, 2, ---)
these results are due to Bosma and Kraaikamp.

1. INTRODUCTION

In this paper we refine some results on the optimal continued fraction expansion of
a real number proved in [1]. We first introduce the notion of a semi-regular continued
fraction expansion, which both the regular continued fraction expansion and the optimal
continued fraction expansion (our primary object of study) are examples of. For a real

number = we write

€1
T =cy+
€2
c1 +
€3
c2 +
€4
C3 +
C4 ...
also sometimes written more succinctly as [co; £1¢1, - -+, | where (c;)oo., is a sequence

of integers and ¢; € {1, 1}. The numbers ¢; (i=1, 2, ---) are called the partial
quotients of the expansion and for each natural number n the truncates
P,

- [CO; €1C1, """, Encn],

Q@n
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are called the convergents of the expansion. The expansion is called semi-regular if: (i)
¢n 18 a natural number, for positive n; (ii) €41 + ¢ns41 = 1 for all natural numbers
n and (iii) €p41 + cn+1 = 2 for infinitely many n if the expansion is itself infinite.
Central to the class of semi-regular continued fraction expansions is the regular con-
tinued fraction expansion which is also the most familiar and is obtained when ¢, is
a natural number and &, takes the value one for all n. Notice that for the regular
continued fraction expansion ¢y = |z|, that is, the greatest integer not less than z.
Each regular convergent is always a best approximation to = in the sense that there do
not exist better approximations with smaller denominators. That is, for all integers r
and s such that 0 < s € @y, if for some rational r/s we have

then r/s = P,/Q,. The converse does not hold [13, Section 16]. It is none the less
possible to improve the approximation properties of by convergents in other regards
by looking at other continued fraction expansions in the semi-regular class. We consider
two senses in which this can be done below. Firstly, as a form of Dirchlet’s theorem on
diophantine approximation [6] recall the inequality

1

P,
- 2l<a

Qn

satisfied by the convergents of the regular continued fraction expansion. Clearly if for
each natural number n we set

P

(1.1) On(z) = QF 0.

T —

)

then for each z the sequence (6,(z)),-., lies in the interval [0, 1]. It turns out that
because the convergents of any semi-regular continued fraction expansion are a sub-
sequence of the sequence of convergents of the regular continued fraction expansion,
the sequence (0,(z))a., may also be defined similarly for any semi-regular continued
fraction expansion. In particular it was observed by Minkowski that the regular conver-
gents for which 6,,(z) < 1/2 are the convergents of a semi-regular continued fraction
expansion [13]. In addition a theorem of Legendre tells us that if Q|Qzr — P| < 1/2
then P/Q is a regular convergent [6]. We shall therefore confine attention henceforth
to expansions for which 6,(z) < 1/2 holds for all natural numbers n. Secondly we
are interested in semi-regular continued fractions with convergents, henceforth denoted
(Pk/4k)pey » which are as sparse as possible as a subsequence of the sequence of regular
convergents (P,/Qn)or, . There is a restriction on how sparse the sequence (Pk/gk)me;
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can be in that to remain a semi-regular expansion one of any two consecutive terms of
(Pk/qk)mr; must remain in (P./Qn)ne,. A semi-regular continued fraction expansion
is called closest if the first requirement, namely that 8,(z) < 1/2 is true for all natural
numbers n and called fastest if (px/qx),—, is as sparse as a subset of (Pn/Qn)re;-
A number of semi-regular continued fraction expansions satisfy one or other of these
properties. See [7], [14], [9] or [10] for details. The optimal continued fraction expan-
sion introduced in [3] satisfies both. In Section 4 we shall introduce and describe in
detail this expansion which is our primary object of study. In Section 2 we introduce
certain general results from ergodic theory necessary for our investigation. In Section 3
we present certain information about the regular continued fraction expansion we also
need for our investigation. Finally in Section 5 the results of Section 2 are applied to
obtain new results on the distribution of the sequence (6,(z)),-, for almost all z with
respect to Lebesgue measure in the case of the optimal continued fraction expansion.
These results extend earlier work contained in [2].

2. Basic ERGODIC THEORY

Here and throughout the rest of the paper by a dynamical system (X, 8, u, T') we
mean a set X, together with a o-algebra 8 of subsets of X, a probability measure u on
the measurable space (X, 8) and a measurable self map T of X that is also measure
preserving. By this we mean that if given an element A of 8 if we set T714 =
{z € X: Tz € A} then u(A) = p(T-'A). We say a dynamical system is ergodic if
T-'A = A for some A in 8 means that u(A) is either zero or one in value. We say the
dynamical system (X, 3, u, T) is weak mixing (among other equivalent formulations
[17]) if for each pair of sets A and B in 3 we have

lim % Z |u(T~"AN B) - n(A)u(B)| = 0.

Weak mixing is a strictly stronger condition than ergodicity. A piece of terminology
that is becoming increasingly standard is to call a sequence k = (k,)q.., of non-negative
integers L” good universal if given any dynamical system (X, 8, u, T) and any function
fin L?(X, B, p) it is true that

N—o00

1 N
lim ,.; F(T*nz) = (),

exist almost everywhere with respect to the measure u. Here and henceforth for each
real number y, let (y) denote its fractional part, that is y — |y|. The following theorem
is proved in [12].
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THEOREM 2.1. Suppose the sequence k = (k). , of non-negative integers is
such that for each irrational number o the sequence ((knc)),- , is uniformly distributed
modulo one and for a particular p greater or equal to one that k = (ky)or, is LP
good universal. Then if the dynamical system (X, B, u, T) is weak mixing, £z(x) =
Jx f(t) du(t) almost everywhere with respect to p.

If k, denotes either ¢(n) or ¢(p,) where ¢ denotes any non-constant polynomial
mapping the natural numbers to themselves and p, denotes the nth rational prime
then k is LP good universal for any p greater than one. See [4] and [11] respectively
for proofs. The fact that for each irrational number o the sequence ({(kna))>2, is
uniformly distributed modulo one in both instances are well known classical results.
See [16] and [18] respectively. Other sequences are known by the author to satisfy
both hypotheses but these results have yet to appear in print. Henceforth for reasons
of brevity, we shall call a sequence k = (k,,)..., p-good if it satisfies the hypothesis of
Theorem 2.1 and we call it good in the special case when it is p-good for p = co.

3. REGULAR CONTINUED FRACTIONS

Suppose for a real number x that it has regular continued fraction expansion

1

xr=co+
Cl+

Let g: [0, 1] — [0, 1] be the map defined by

= () #0; g0=0,

also known as the Gauss map. Notice that ¢,(z) = ¢p—1(gz) (n =1, 2, ---) and recall
that

F,
Q—:”—‘[Co;Cl,"',Cn] (n=1727)
We have the following classical recurrence relations [6)
Pi=1; Pp=0; Pa=coPac1+Poz (n=1,2,--)

and
Q1=1,Q0=0; Qn=cnQn-1+Qn_2 (n=1,2,--.).
Set
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and

Vn=Vn($)=%($) (’I’l=1, 2"")'

Then it is straightforward to check that
T, = [0, Cn+1y Cn42y °° ']7

and
Vn = [Oa Cny, Cn—1, Cl].

From g we build a two dimensional map 7 defined on Q = ([0, 1)\ Q) x [0, 1] by

Then for each natural number n
T (z, y) = (§"7, [0; cny Ca—1, =+, €2, €1 + Y))
and in particular for non-negative n
T*(z, 0) = (Tn(z), Va(z)).

Let 3 denote the o-algebra of Borel sets in 2 and 7 the measure on 0 defined for A
in 8 by

1 dzy
n(A4) = (log 2) /A (1+zy)?*

We have the following theorem [7].
THEOREM 3.1. The dynamical system (2, 8, n, T) Is weak mixing.

4. BASIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION
Let z be an irrational real number and suppose it lies in the interval (co — 1/2,
co — 1/2) for some integer ¢y and put to = & — co, €1(z) = sgn (tp) and
(41) n = 1, Po=Co, Q1 = 0’ go = 1’

and vg = 0. Suppose t;, p;, ¢i, i, v; and €;+1 have been defined for ¢ < k¥ and some
positive integer k. Then define tx11, Pk+1, Gk+1, Ch+1, Vk+1 and €x42 inductively as
follows. Let

Utel ™! + exsavs J

Ck+1 = lltk!_l + -
2(Htk| I+ 5k+1vk+1) +1

trer = [tk = cry,

€x+2 = sgn (tk41),
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(4.2) Ph+1 = Ck41Pk + Ek+1Pk—15 Gk+1 = Ck+1qk + Ek+1qk—1

and vg41 = gk/qr+1. Now the optimal continued fraction expansion of z is

T = [co; €1€1, €202, ).

One straight forwardly verifies that

l = [0§ €k+1Ck+1; Ek4+2Ck+2) ],

and
vk = [0; Ck, ExCk—1, * - , E2€1].

The sequence (px/gx)ze_; are the convergents and as we said in the introduction
are a subsequence of the sequence of regular convergents (P, /Qn)n.._; and if we define
the function n: N — N by pi/qx = Pn(x)/Qn(x) then n(k+ 1) =n(k) +1 if and only
if k42 = 1 and n(k + 1) = n(k) + 2 otherwise, once we have set n(0) = 0 for z > 0
and n(0) = 1 otherwise. Define I' C 2 by

F:{(T,V)EQ:V<min<T, %)}

and put H = Q\I'. We have the following lemma [2].

LEMMA 4.1. Suppose z is irrational and n a natural number. The following are
equivalent:
(i) the regular continued fraction convergent P, /Q, is not an optimal con-
tinued fraction convergent;
(i) cny1 =1, 0p—1 <6, and 0, > 0,4;; and
(i) (Tp, Vn) isin T.

We now define the map U: H —- H, by
T(T, V) ifT(T,V)eH,

UT,v)= { THT,V) fT(T,V)¢H.

It is convenient to write ¢ = (1—/5)/2 and G = (1+ v/5)/2 henceforth. Let
By denote the o-algebra of Borel subsets of H and upy the probability measure on
H with density (logG)™'(1+ zy)~%. In [8] it is shown that the dynamical system
(H, Bm, pm, U), which is in fact the system induced on H by T, is exact and hence
weak mixing. It is possible to describe a dynamical system explicitly which is isomor-
phic to (H, Bu, pu, U) and which is not described indirectly as an induced system.
We do this as follows. Let A C (—1, 1) x (-1, 1) be defined by

L f24+1 t+1 2t -1
A= -1,1 -1,1):v < _— v 2 , ——— | ¢-
{(y,v)e( , 1) x ( )i mm(t+l t+2> v/max<0 1—t>}
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Define a map W from A to itself by

-1 1
W(t, v) = (Itl = B(t, v), B(t, v) + sgn (t)v>’

where

v) = -1 Lte|™" ) + sgn (t)v
ey [lt' i Q(Utkl_lj + sgn (t)v) + 1‘|.

Also define a measure pa on A by setting its Radon Nikodym derivative relative to
two dimensional Lebesgue measure to be (logG) ™" (1 + zy)~2. Finally note that if =
isin (—=1/2, 1/2) then W*(z, 0) = (t, vx) for all positive integers k. The dynamical
system (A, Ba, pa, W), where B4 is the o-algebra of Borel sets on A, is Bernoulli [8]
and hence weak mixing.

5. STATISTICAL PROPERTIES OF THE SEQUENCE (0,(z))n.;

We have the following theorem from which all the other results of this paper may
be derived.

THEOREM 5.1. Suppose (tk, vk)je, is as defined in Section 4. Then if k =
(kn)or, is good for each element A of By we have

dtdv
li — t y U, PRl
N3o N ZXA k) Vo) logG/ 1+ tv)®

almost everywhere with respect to Lebesgue measure.

PrOOF: Note that for all y such that (z, y) is in A we have

lim (Wn(za y)) - (Wn(xa 0)) = Oa

n—oo

and that W"(z, 0) = (tn, vn). Then Theorem 5.1 is an immediate consequence of
Theorem 2.1. 0

We now consider applications of this theorem. Let

H={(w,2) ERxR:w>0,2>0, 4w +22<1,w?+42%<1}.

o0
n=

THEOREM 5.2. Suppose A is a Borel subset of the set II. If k = (k)
good we have

1 18

1 1
lim — (B, 1(z), 6 _/ + )d dz,
Neoo N ZX" kn=1(z); On (2)) Ann(\/l—/iwt Jitawt)
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almost everywhere with respect to Lebesgue measure.

PRrROOF: Let 1 denote the two to one map from A to II defined by

w(t,v)z( v ’e(t)t)’

l1+tv 1+t

where ¢(t) denotes the sign of t. We note that v (tx, vi) = (6k—1, &) for each natural
number k. To see this note that from a standard fact from the elementary theory of
continued fractions we have

(5 1) = Pk + tkpk—l

. qx + tkqr-1
and so

Ek-1tk
5.2 O = ———.
(5.2) k 14 tpvg
Set
Ay ={(t,v)eA:e(t) = -1}

and

Ay ={(t,v) € A:e(t) =1}.

Also let ¥_; = ¥ja_, and 91 = 9|5, . These maps are then continuously differentiable
bijective maps from A_; (respestively A;) to II. Using the coordinate change formula
for measures, the image measure for

/ / _dtdw
w4 ~ logG Antt ( 1 + tv)?

under both maps ¥_; and i is given by

W-)(B) = ) (B) = oo [[ (1522 s

Since by (5.1) and (5.2) if e(tx) = ex+1 =1 then

2
1 —trug
— ) =1-46;_40
(1+tk’l)k> k=1

and if e(tx) = €x+1 = —1 then

1 — trvg 2
—— )} =1+440;_16
(1+t1vk) + 46,10k
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and hence the image of x4 under 3 is given by

1 1
A) = + dwdt.
Wr)(4) /Ann(\/1—4wt \/1+4wt> v

The result now follows from Theorem 5.1. ad

In [2] it is shown that for each irrational = we have 0 < f_1 + 0 < 2/ V5. Let

( (log/1+z—logy/T—z+ arctanz)/logG
if z € [0, 1/2];

h(z) = 5vV5 — 422 — 5z 2v/5 — 422 - 3z
log| ——— ] +2arctan | ————— / 2logG
vV5—4z2+ 2 5vV1 + 22

if z € [1/2,2/V5].

THEOREM 5.3. Let h be as just above. If k = (kn)n., is good

1 @ .
Iim — {1 <ng<N:bO,_1(z) + 0, (z) <a}l= / h(t)dt,
0

N-ooo
almost everywhere with respect to Lebesgue measure.
PRrROOF: The result follows immediately by applying Theorem 5.2 to the function
w + ¢t = const. 1]

In [2] it is shown that for each irrational  we have 0 < |#,_1 — 6,] < 1/2 for each
natural number k. Let

(Z) = 1 10 m — arctan z + arcsin Z_W
= log G & 1+2 V1422 '

We have the following theorem.

THEOREM 5.4. Let j be as defined just above. If k = (k). is good and a is
in [0, 1/2), we have

1 a
lim (1< <N [fky-1(2) — Ory (0)] < a =/ i(t)dt,
0

N—ooo
almost everywhere with respect to Lebesgue measure.

PRrROOF: The proof of this result is an immediate consequence of Theorem 5.2 and

the appropriate choice of A. |
In [2] it is shown that for irrational z, Og(x) is in (0, 1/2). Let
1 .
) e if z € (0, 1/\/5,
zZ)=
1 1-422
— if 1 1/2).
log G z ifz € [1/V5,1/2)

We have the following result:
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THEOREM 5.5. Suppose k is defined as just above. If k = (k,).., is good and
a isin [0, 1/2), we have

N
lim inA(ekn(w))= /A d(z) dz,

Nooo N N(0,1/2)

almost everywhere with respect to Lebesgue measure.
PROOF: Apply Theorem 5.2 with w < z. a0
Also calculating the first moment of k£ we have:

THEOREM 5.6. Ifk = (k,),., is good then

1 & 1 1
lim = = il
N N nzlg’“" (z) log G ¢t 3

almost everywhere with respect to Lebesgue measure.
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