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AN N-PARAMETER CHEBYSHEV SET WHICH
IS NOT A SUN

BY
DIETRICH BRAESS

Recently, Dunham has given examples for 1-parameter and 2-parameter Chebyshev sets which
are not suns. In this note n-parameter sets with these properties are described.

1. Introduction. When studying the old problem whether Chebyshev sets are
always convex, Klee [10] introduced certain sets which were called suns by Efimov
and Stechkin [7]. Recently, in two shorts notes Dunham [4, 5] has given examples
of 1-parameter- and 2-parameter-sets which are Chebyshev sets but not suns (cf.
also [3]). The examples refer to Chebyshev sets in €[0, 1] containing an isolated
point.

Combining Dunham’s idea with some more advanced techniques, in this note
we will construct Chebyshev sets in [0, 1] which are the union of an n-dimensional
manifold with boundary and an isolated point. Since every sun is a connected set
[4], the constructed set is not a sun.

2. The underlying set. The construction is started by introducing the following
convex cone in [0, 1]:
@.1) K={h:h(x)=z—‘i, a; >0, j=1,2,...,n}.
=1X+j

Observe that K\{0} belongs to the set of positive functions:
2.2 Ct = {he%[0, 1]:h(x) > 0,x €0, 11}.
Moreover, the cone K has the Haar property [1].

DEFINITION. Let uy, 4y, . . . , u, € [0, 1] and 0<m<n. The convex cone

{h:h(x) =Za,»u,~(x); a;eR,j=1,2,...,m;a; >0,j =m+1,..., n}

j=1

has the Haar property, if the functions {«;},.J span a Haar subspace whenever
{1,2,...,m}cJc {1,2,...,n}.

More generally, we get cones with the Haar property contained in C*+ U {0},
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when in (2.1) the terms (x+j)™* are replaced by y(j, x) with y being an arbitrary
totally positive kernel [9].
The function

23) P, ) =", 0<x<1,y>0,
is strictly increasing in y, if x is considered fixed. Hence, ¢ induces a continuous
mapping:

P! Ct— Ct,

(yh)(x) = @(x, h(x)).
We will consider the approximation in the transformed family

G = yp(K\{0}) L {0}.
Since g(0)>1 for each g € G, g#0, zero is an isolated point in G.

3. Existence. Let €[0, 1] be endowed with the uniform norm:

11 = sup{lf(®)|:x € [0, 1]}.

An element g* in a non-void subset G <%’[0, 1] is called a best approximation to
finG, if | f~gl =l /—g*| forall g € G.

To prove that there is a best approximation in G to each fe %[0, 1] consider
a minimizing sequence {g,} satisfying

lim | f~g,| = n:= inf{] f~g|:g € G}.

Without loss of generality we may assume g,7#0. Let g,=w(h,). By standard
arguments {g,} is bounded. This implies boundedness of g,(0) and #,(0). From the
representation (2.1) of the elements in K it follows that |4, is also bounded.
Select a subsequence of {/,} which converges to some i* € K. If 1*50, then the
corresponding subsequence of {g,} converges uniformly to g*=v(A*), which is a
best approximation. If on the other hand /#*=0, then the subsequence converges
to g*=0 uniformly on each compact subinterval of (0, 1). This implies optimality
of g* by simple arguments (cf. [5]).

4. Varisolvency of transformed Haar subspaces. Assume that u;, u,,...,u; €
%10, 1] span a d-dimensional subspace. With these functions a mapping

F:R%— ][0, 1],
F(al’ Aoy v oy ad) = z aiui(x)

is defined. Let 4 be an open subset of [R? such that H=F(4) is contained in C*,
the set of positive functions. Then V=y(H) is a well defined family which will be
investigated now.

Let 4y, hy € H, hy#h,. By the Haar condition /;—#, has at most d—1 zeros in
[0, 1]. It follows from the monotonicity of ¢(x, /) that y(4;)—v(h,) has as many
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zeros as hy—h,. Consequently, for each pair g;, g, € V the difference g, —g, has
at most d—1 zeros.
Let x;<x,<* * <X, be d distinct points in [0, 1]. We introduce the restriction
mapping
R:%[0,1] - R?

R .f = (f(xl),f(x2)’ s 5f(xd))'

The preceding discussion shows that R: ¥—[R?is a one-one mapping. Consequently
the product map Royo F:A—R(V)<R? is a homeomorphism. By virtue of
Brouwer’s theorem on the invariance of the domain [8], R(V) is open in R%. This
means that the set of vectors (y;, y, .. .,y,), for which the interpolation problem

gx)=y, i=12...,d

has a solution g € V, is open in d-space. Moreover, the solution is determined by
the continuous mapping R1=yodo(Royo ). Hence, V is varisolvent
[12, p. 3] with constant degree d.

Rice’s theory of varisolvent families establishes that there is at most one best
approximation in V. The gap in his theory discovered by Dunham [6], does not
matter in this case, because the degree is a constant [2].

Finally, we notice that ¥V is asymptotically convex [11, p. 163] and is an Haar
embedded manifold [13]. The construction of sets with these properties from
Haar subspaces in [11] and [13] is very similar.

5. Uniqueness. Now we are ready to prove uniqueness of the best approximation
in the set G introduced in Section 2. Formally the proof is similar to the proof of
uniqueness for cones with the Haar property [1].

Assume that g,=v(h;)#0, i=1, 2, are two best approximations to f in G.
Put 4i*=(hy+h,)/2 and observe that g*=y(h*) is another best approximation,
because the monotonicity of ¢ implies that ~*(x) lies between £,(x) and A,(x) for
each x € [0, 1]. Write A*(x)=>7 4} - (x+j)™ and set J={j:1<j<n, af >0}
The manifold

H={h=2a,x+j)":a;€ IR} NnCrt
jeJ
is a subset of a Haar subspace and satisfies the conditions specified in the last
section. Hence, there is at most one best approximation in the varisolvent family
w(H). Since gy, g» € Y(H), we have g,=g,. This proves uniqueness in G\{0}.

Assume that g, =w(h,)#0 and g,=0 are two best approximations. Put ;=h,/2.
From g,(x)=0<vp(hs)(x)<w(h)(x) we conclude that gg=v(hs) € G is another
best approximation. This contradicts uniqueness in G\{0}.
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