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1. Let Sn denote the " surface " of an w-dimensional unit sphere in Euclidean space of
n dimensions. We may suppose that the sphere is centred at the origin of coordinates 0,
so that the points P(xu x2, ..., xn) of Sn satisfy

x\+x\ + ...+xl = l (1)
We suppose that w^2.

By a spherical cap C(a) of angular radius a ̂ 77 and centre P on Sn, we mean the set of
points Q of *Sn for which the angle QOP is less than or equal to a. Our object is to obtain an
upper bound for the maximum number N(a) of non-overlapping caps C(a) which can be
placed on Sn, and to investigate this upper bound for large values of n.

It is clear that N (a) is a decreasing function of a, and that N (a) is continuous on the left
for all a in the interval 0<a<7r. We prove the following theorems :

THEOREM 1. We have
(i) lY(a) = 1 for |77<a<77;

2 sin2 a "1 , . , . , 1

(iii) N(a)=n + l for inKa^ln + 2- sin-1 - ;

(iv)

THEOREM 2. / / 0<a<|7r and jS = sin-1 (^2 sin a), then

2f U (sin 0)"-2 (cos 9 - cos /S) dO

say. Further, for large n,

cos

provided that sec 2a =o(«).
We note that it follows immediately from Theorem 1 that if n + 2 spherical caps can be

placed on $„, then so can In. This is a generalisation of the corresponding result for n = 3
obtained by Schiitte and van der Waerden (4). As Professor Rogers has since pointed out
to me, this result has already been obtained by Haj6s and Davenport (see (2), p. 188).

Theorem 2 is proved by the Blichfeldt density method. See, for example, (3).
An application to the theory of positive definite quadratic forms is given in § 4.
2. Proof of Theorem 1. We shall say that m points Plt P2, ..., Pm on Sn form an a-pack-

ing, for 0<a<j7T, if the angle subtended by any two at 0 is not less than 2a. Thus, if P,
has coordinates (xvl, xv2, ..., xvn) we have

2a (/x#v) (4)

K2 U.M.A.
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140 R. A. RANKEST

If a cap C(a) is centred at each point P,,, it is clear that no two caps will overlap. The
inequality (4) is equivalent to

r ; u >2s i i ia = p (fi¥=v), (5)

say, where r^ is the linear distance between P^ and Pv.

LEMMA 1. / / the points Plt P2, •••, Pm form an a-packing on Sn, and if P is any point on

Sn, then

( m \2 m

Z »?) -imZr2+2m(m-l)p2^0,
v=l / v = l "

where ry is the linear distance from P to Pv.
Proof. We may suppose, without loss of generality, that P is the point (1, 0, 0, ..., 0).

Then, by (5), we have
E E K*-z v *) 2

n ( m I m \2~\

= E\mSxlk-{Sxvk) \
m °\Z n ( m / m \ 2 > l

- Sxvl\ + E \m ST^-IEX^) \.
..=1 ) i=2 L »=1 \»=1 / )

Since
rl = (l-xJ*+x?2 + ...+xZn = 2(l-xvl),

we deduce that
m / m \2 n / m \2

^m{m-\)p^mZrl-l[ Er») - S ( Ex,k) ,

and the lemma follows.
LEMMA 2. / / ^7r<a<^ir, <7ie»i

2 sin2 ar 2 sin2 a "I
L2 sm2 a - 1J

Proof. Suppose that m non-overlapping caps C(a) can be placed on Sn. Then, for
any point P on Sn, we have, by Lemma 1,

fm ~)% ( / 1\ 1
1 Zri-2m\ <4m2-2m(m-l)p2=4m2-^l -2( 1 - - ) sin2aL
U=i J I V m) )

It follows that

2
i.e., — sin2 a ^ 2 sin2 a - 1 ,

m
which proves the result stated.

LEMMA 3. If ak = \n + A sin-1 j (1 <^<w), /Aew
A*

#(«*)=*+ 1.
Prao/. Since
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we only have to prove that k +1 caps G(a.k) can be placed on Sn. It is convenient to suppose
that <Sn is the intersection of Sn+1 with the hyperplane

Choose points Plt P2, .... Pk+1 on Sn as follows. For Pr we take

A . . . ^i , v s A

where A = A

It is easily verified that the angle P,fiPv is 2afc for all p * v. Hence a cap C (ak) can be
centred at each of the k +1 points without overlapping.

Since N(u) and 2 sin2 a/(2 sin2 a -1 ) are decreasing functions of a, for a > fa, part (ii) of
Theorem 1 follows immediately from Lemmas 2 and 3. Since (i) is trivial, it remains to
prove (iii) and (iv).

We observe first that
N{fa)>2n, (6)

since we may take 2w non-overlapping caps C(fa) centred at the points (±1 ,0 ,0 , . . . ,0),
(0, ±1 ,0 , ... ,0), ..., (0, 0, . . . ,0 , ±1). Note that 2ra>re + 2.

We prove (iii) by induction. I t is true for n = 2 ; we assume its truth for packings on
$„_!, and deduce the corresponding result for Sn.

Suppose that, for some a satisfying fa^a^an, there exists an a-packing of n + 2 points
Pj , P 2 , . . . , P n + 2 on Sn, where Sn is given by (1). We prove that a = fa. For suppose not,
SO that ^7r<a<an.

Without loss of generality we may suppose that Pn+2 is the point (0,0,..., 0, -1). Then,
by (2),

n
a.nv— •ES'ufcS'vjfc^cos 2 a < 0 (fx^v) (7)

*=1
Hence xiin= -a M , n + 2 > -cos 2a>0 (JLI<W + 1 ) (8)

None of the points Plt P 2 P n + 1 can be (0, 0, ..., 0 ,1) ; for if P n + 1 = (0, 0, ..., 0, 1)
we should have, by (7),

which contradicts (8). Hence 0<a;/in<l for
Write

so that

Now consider the n +1 points

p

where n^n +1 ; they lie on an Sn_1( namely

l_x = \ (11)
W e h a v e , for p * v, b y (7), (8) a n d (9),

« ; , = cos P'fiP'v=j-^(SK - x^x^)<^ (cos 2a - cos2 2 a ) < t ° S °
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say. Now - l < y < 0 , smce CC<$TT, and hence, for some <fi satisfying

\7T<<},<\7T, (12)

we have
°C,<y=cos2iA-

Hence we can place w + 1 non-overlapping caps C(tjt) on Sn_v and therefore, by the
induction hypothesis, ^T^JTT, which contradicts (12). Accordingly we must have a = \TT, and
this proves (iii).

Part (iv) will follow by (6) if we show that there does not exist a ^-packing of 2w +1
points on Sn. This is true for n = 2 and, as before, we assume its truth for Sn_v Suppose
therefore that such a ^-packing exists on Sn. Take P 2 n + 1 to be (0, 0, ..., 0, -1 ) . Then,
as before, we have

At most one of the points Plt P2, ..., P2n
 c a n be (0, 0, ..., 0, 1), so that we can assume that

I x»n | < 1 f° r
 / X ^ 2 M - 1 . Define 2n-l new points P'^ as in (10) for n^.2n-l, where AM is

given by (9) and AM>0. These 2w - 1 points lie on the (Sn_x (11), and we have

= cos

for 1 < / ^ < V < 2 W - 1 . Thus P[, P'2, ..., P'2n_i form a ^-packing on Sn_j and this contradicts
our induction hypothesis. I t follows that part (iv) of the theorem is true for all w^2.

It may be noted that the above method of proof also shows that, in every ^-packing of
2M points on Sn, the coordinates may be chosen so that the 2n points take the form

(±1 ,0 , .. . ,0), . . . , (0,0, . . . ,0 , ±1).

3. Proof of Theorem 2. We first prove the
LEMMA 4. / / 0 < / 3 < | T T and if tan fl=o(Jn) for large n, then

J:i sec2 B
(sin 0)"-2 (cos 0 - cos 8) d8 ^- (sin J8)n+1.

o '"
Proof. We have, putting t = (n -1) log (sin jS/sin 0),

Now, by applying Taylor's theorem to

we easily see that 0</(a;Xfx2 for all a;>0, and accordingly we have, for some &t satisfying

Jo » - l Jo
(sin jS)"-1 f tan2 jS 3&tan4^ \

where 0 < ^ < l . From this the lemma follows easily.

Suppose now that there are JV non-overlapping caps C(a) on »Sn, where a < j . We

replace each cap by a concentric cap C (B) where
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Further, we attach a density

to points Q on C (/S) at a distance r = 2 sin \6 from the centre of C (j8). Here -R = 2 sin £/9 and is
the linear radius of C(j8). The content of a unit sphere in w-dimensions is

T 7T*n

and the total " mass " of C(/3) is

M = I** (TO - 1) Jn_x (sin 0)"-2CT(2 sin |0) dd
J o

J " - i {" (sin 6)»-2 (cos 8-cos P)d8 (13)
Jo

= 2(w-l)^4 {
s m p Jo

Let P be any point of 8n. Then either P belongs to no cap C (|3), in which case the density
at P is zero, or else P belongs to m ^ l such caps centred at Plt P2, ..., Pm, say. In the latter
case, the total density at P is, in the notation of Lemma 1,

„=! sm2

Thus
V£rl= 4??i sin2 hfi-oP sin /S tan (8 = 4 sin2 |/9 {m - £ (1 + sec /3) CTP},

v = l

and so, by Lemma 1,

03*16 sin4 tf{m-\(\ +sec /S) aP}2 - 16m sin2 |̂ 3{m -1(1 +sec jS) aP} +±m{m - 1) sin2 /3.

This reduces to

from which it follows that

We deduce that NM is less than the total surface area of Sn, and so, by (13),

„ nJn nJn sin /S tan /3
iV < -— = —

2 ( 1) / ( i 0 ) " 2 ( 6 jS) dd2 (TO -1) /„_! (sin 0)"-2 (cos 6 - cos jS)
J o

This proves the first part of Theorem 2, and the second part follows from Lemma 4.
The " density " of an a-packing is

JV \{n -1) Jn_x (sin 0)"-2 dO \ "(sin 6)n~2 d6

-j ^ -j-p Pn-lW,
(sin 6)n-2o (2 8ini8)d8

J o

say. For small a and fixed TO we have

the right-hand side being a well-known upper bound for the density of packing of (TO-1)-

dimensional spheres in (TO - l)-dimensional Euclidean space (3).
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4. By taking a.=\ir in § 3 we can get an upper bound for the number Nn of unit hypef-
spheres which can touch a given hypersphere externally without overlapping. We have

MT)
Nn = N(hr) < 7 - n ^ ^ '- = K, (14)

2 J2r (± J (sin (9)"-2 (cos 0 - cos £TT) dd
say, and

N*~J(vn»2?-») (15)
for large n.

Consider now a positive definite quadratic form/(w1, u2, ..., un) in n real variables, and
let m be its minimum value for integral %, u2, ..., un, not all zero. Let m be attained by ft
such points (%, u2,..., «„). Then it is known (1) that

/ i<2"+1-2 (16)
We can obtain a better upper bound for /n for large n. For, by a linear transformation

of the variables ult u2, ..., un, f(ult u2, ..., un) becomes x\+x\ +... +x\ and the points at
which m is attained become points on the sphere

x\ +x\ +... +xfl = m,

no two of which are at a distance apart of less than Jm. Thus

tx^N^N^JiTrn^"-3) (17)

This is an improvement on (16) for w>4. In fact [Nf] =60, 107, 184, 309 for n = 5, 6, 7, 8,
respectively.

It follows from (15) that
lirnNl!n^J2.

n—*»
This result has already been obtained by C. A. Rogers in an unpublished manuscript (see (2),
p. 188). I observed this after the results of the present paper had been obtained, and I am
grateful to Professor Rogers for showing me his method of proof which applies to spherical
caps of general radius CC<\TT. His proof differs from the argument given in § 3 in that the
spherical caps of variable density are placed on a smaller concentric sphere of radius cos /3
and Lemma 1 is used in Blichfeldt's weaker form

From this an inequality equivalent to (2) is obtained and an upper bound slightly greater
than (3) is then deduced.
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