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Abstract

In this paper we consider a stochastic SIR (susceptible→infective→removed) epidemic
model in which individuals may make infectious contacts in two ways, both within
‘households’ (which for ease of exposition are assumed to have equal size) and along the
edges of a random graph describing additional social contacts. Heuristically motivated
branching process approximations are described, which lead to a threshold parameter
for the model and methods for calculating the probability of a major outbreak, given
few initial infectives, and the expected proportion of the population who are ultimately
infected by such a major outbreak. These approximate results are shown to be exact as the
number of households tends to infinity by proving associated limit theorems. Moreover,
simulation studies indicate that these asymptotic results provide good approximations for
modestly sized finite populations. The extension to unequal-sized households is discussed
briefly.
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1. Introduction

Epidemic models which include some element of realistic population structure have been
the subject of a considerable amount of recent study in recognition of the fact that the classical
homogeneously mixing models are quite unrealistic for all but the smallest of populations. One
approach to this has been to allow local contacts of some kind, modelling contacts which occur
on a regular basis in addition to maintaining the ‘well-mixed’ global contacts to model chance
interactions with random members of the population. A common form for these local contacts
to take arises by partitioning the population into households, where these local contacts can
occur only between individuals who are in the same household (see, for example, Becker and
Dietz (1995) and Ball et al. (1997)). This can be extended to the overlapping groups model,
where the population may be partitioned in more than one way (for example, by household and
by workplace), with local interactions taking place at (possibly) different rates within groups
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of the different partitions; see Ball and Neal (2002). Another mode of local interactions is
described by the so-called great circle model (see Ball et al. (1997) and Ball and Neal (2002),
(2003)), where the population is spread around a circle and individuals have local contact with
only their nearest neighbours. This model is closely related to ‘small-world’ models (see Watts
and Strogatz (1998)), which have received considerable attention, particularly in the physics
literature.

Another way of accounting for the inhomogeneous nature of interactions is by using random
graphs to model social networks (see, for example, Andersson (1997), (1998), (1999), Newman
(2002), Durrett (2006), Kenah and Robins (2007), and Britton et al. (2008)). Perhaps the most
important aspect of these random graph models is that they incorporate a specified degree
distribution, the degree of a node in the graph corresponding to the number of other members
in the population an individual can possibly make infectious contact with. These models have
been extended to also incorporate ‘casual contacts’by way of the classical homogeneous mixing
effects; see Kiss et al. (2006) and Ball and Neal (2008).

In this paper we investigate a model for an SIR (susceptible→infective→removed) epidemic
in a closed, finite population, which draws together the main aspects of the generalisations of
the standard homogeneously mixing model described above. We consider a population grouped
into households, with infectious contacts at a given per-pair rate, where individuals also make
global contacts along the edges of a random graph over the whole population. We use branching
process approximations to derive (i) a threshold parameter, which determines whether a disease
with just a few initial infectives can become established and infect a nonnegligible proportion
of the population (an event we call a major outbreak); (ii) the probability that a major outbreak
occurs; and (iii) the expected proportion of the population that is infected by a major outbreak.
These results are approximations that become exact in the limit as the size of the population
becomes large in an appropriate way.

A feature of our model is that there is clustering present in the network of possible contacts,
roughly meaning that there are significant numbers of triangles (and other short cycles) present in
the network. This is an important aspect as the presence of triangles captures the phenomenon
of people having mutual friends. The effect of such clustering in random networks in an
epidemiological setting has been considered, in different models, in Trapman (2007) and
Britton et al. (2008).

In the remainder of the paper we firstly describe, in Section 2, the full detail of our
model. Then in Section 3 we give the ideas behind the abovementioned branching process
approximations. In Section 4 we derive explicit formulae which allow us to calculate the
quantities of interest for two important special cases, then give some brief numerical examples
in Section 5, including demonstrating that our asymptotic results give good approximations
even for moderately sized finite populations. In Section 6 we rigorously establish the branching
process approximations by proving related limit theorems as the population size tends to infinity.
The paper concludes with a brief discussion in Section 7.

2. Model

We consider a closed population of m households, each of n individuals, and construct
the network of possible global contacts using the ‘configuration model’ (as in Durrett (2006,
Chapter 3)) as follows. Firstly, assign to each individual a number of half-edges, these numbers
being independent realisations of a random variable D (the degree distribution) with P(D =
k) = pk, k = 0, 1, . . . . Conditional on the total number of half-edges being even, we then
pair these half-edges with each other uniformly at random, whence each such pair of half-

https://doi.org/10.1239/aap/1253281063 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281063


Epidemics on networks with household structure 767

edges forms an edge in the (random) graph describing the possible global contacts. We denote
by µD and σ 2

D the mean and variance of the distribution D, and assume that both of these
quantities are finite. We also note for later reference that if we follow an edge from one vertex
to another then the degree distribution of the second vertex is the size-biased distribution D̃,
where P(D̃ = k) = kpk/µD, k = 1, 2, . . . . This is because in the construction of the graph the
half-edges are paired uniformly at random, so it is k times more likely that following an edge
leads one to a vertex of degree k than to a vertex of degree 1. By the degree of an individual we
mean the number of individuals adjacent to it in the network of global contacts, not counting
those in its own household.

Note that there may be some imperfections in the graph, in the form of parallel edges and
self-loops. However, our assumption that σ 2

D < ∞ ensures that, as m → ∞, the number of
these imperfections in the network of global contacts converges in distribution to a Poisson
random variable whose mean is a function of (µD, σ 2

D) (see Durrett (2006, Theorem 3.1.2)).
By treating the households as macro-individuals, with degree distribution given by the sum of
n independent copies of D, it follows that the numbers of parallel edges between households
and household self-loops also converge in distribution to Poisson random variables as m → ∞.
Thus, the probability that these imperfections are absent in the graph is bounded away from 0
as m → ∞, and, consequently (cf. Janson (2009)), our asymptotic results continue to hold if
the graph is conditioned on having no such imperfections.

When an infective individual makes infectious contact with a susceptible individual, the
susceptible becomes infective and remains so for a random period of time distributed according
to a nonnegative real-valued random variable I , which we specify by its Laplace transform
φ(θ) = E[e−θI ], θ ≥ 0, and call the infectious period. An infective individual makes infectious
contact with each other member of his/her household at the points of a Poisson process with
rate λL and similarly with each individual he/she is adjacent to in the network of global contacts
at rate λG. To be emphatic, both λL and λG are per-pair rates, so an infectious individual of
degree k makes infectious contacts at overall rate λL(n − 1) + λGk. As usual, all Poisson
processes and infectious periods are assumed to be mutually independent.

For ease of presentation, we assume that an epidemic is initiated by a single infective
individual within the population, either a given specific individual or an individual chosen
uniformly at random from the population. Our assumption that all households are of the same
size is also made for ease of presentation, although, as indicated in Section 7, our results
generalise easily to incorporate unequal household sizes.

3. Heuristics and description of main results

We now give informal descriptions of the branching process approximations we use, firstly,
to approximate the early stages of an outbreak, leading to a threshold parameter and a method
of calculating the probability of a major outbreak, and, secondly, to approximate the expected
relative final size of (i.e. the proportion of the population infected by) a major outbreak. These
approximations become exact in the limit as the number of households m → ∞, with the
household size n held fixed.

3.1. Forward processes

The branching process we use to analyse the early stages of the epidemic approximates
the number of households which become infected in the course of the epidemic. Because we
are interested only in the final outcome of the epidemic and not its precise time evolution,
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we can think of the epidemic as evolving in the following way (see, for example, Pellis et
al. (2008)). We first consider the epidemic spreading only within the household containing the
initial infective (the local epidemic that it initiates) and then consider the number of individuals
infected via global infectious contacts made by those infected by the local epidemic. Because
of the way the network is constructed, in the early stages of the epidemic it is highly likely
that these globally contacted individuals are all in distinct households (this being critical for
the branching process approximation). We then consider each newly infected household in the
same manner: local epidemic followed by global infections. Again, in the early stages it is
highly likely that those infected by such global infectious contacts are in distinct households
and, furthermore, that they are in previously uninfected households. We can view this as a
branching process if we consider the households infected by a local epidemic initiated by a
single infective within a typical household to be the children (offspring) of that household.

Note that the offspring distribution of the above branching process is different for the initial
(i.e. zeroth) generation than for subsequent generations, since in subsequent generations the
initial infective in a household has been infected by one of its global neighbours, so the number
of uninfected global neighbours of this individual is equal in distribution to D̃ − 1; in the
zeroth generation the initial infective is the initial infective in the whole population, and the
degree distribution of this individual is either distributed as D or is a fixed constant, according
to whether the initial infective is chosen (uniformly) at random or a specific individual in the
population is chosen to be the initial infective. We therefore define the random variable C to
be the number of global neighbours infected by members of the initial infective’s household
and C̃ to be the number infected by the household of a single infective that was infected by a
global neighbour. Our branching process approximation is then defined by it having a single
ancestor (since the epidemic starts with one initial infective), and offspring distribution C in
the initial generation and C̃ in subsequent generations. Throughout the paper, we denote a
branching process of this type by BP(1, C, C̃), or by BP(1, c, c̃), where c = (c0, c1, . . . ) and
c̃ = (c̃0, c̃1, . . . ) are the mass functions of C and C̃, respectively.

The above branching process approximation of the epidemic is made fully rigorous in
Section 6.4.1, where it is shown that, as m → ∞, the total number of households infected
by the epidemic converges in distribution to the total progeny of the branching process (see
Theorem 6.1). Thus, whether or not the epidemic can ‘take off’ and lead to a major outbreak
is determined by whether or not the branching process is supercritical (i.e. whether or not
R∗ = E[C̃] > 1). Furthermore, by standard branching process theory, the probability of such
a major outbreak is given by 1 − fC(σ ), where σ is the smallest solution of f

C̃
(s) = s in

[0, 1], and fC(s) = E[sC] and f
C̃
(s) = E[sC̃] (for s ∈ [0, 1]) denote the probability generating

functions (PGFs) of C and C̃, respectively. (Here and henceforth we denote by fX(·) the PGF
of the random variable X.) Calculations of R∗, fC(s), and f

C̃
(s) are considered in Section 4.1.

3.2. Backward processes

We now consider the expected final size of a major outbreak. Again, our analysis is of the
m → ∞ limiting epidemic process, for which we find the probability that a given individual
is infected in the event of a major outbreak. By an exchangeability argument, this probability
is equal to the asymptotic mean proportion of the population (individuals, not households)
that are ultimately infected by a major outbreak. This quantity serves as our approximation of
the expected proportion infected in a major outbreak in a finite population. We determine the
probability that a given individual is infected by considering its susceptibility set (cf. Ball and
Lyne (2001) and Ball and Neal (2002)).

https://doi.org/10.1239/aap/1253281063 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281063


Epidemics on networks with household structure 769

The idea behind susceptibility sets is that for each individual in the population we can, by
sampling from the infectious period distribution and then the relevant Poisson processes, make
a (random) list of other individuals it would infect were it to be infected itself. We then construct
a digraph (directed graph) based on these lists, in which the vertices represent individuals in the
population and we put a directed arc from i to j when, were i to become infected, it would make
infectious contact with j , i.e. if j is in i’s list. The susceptibility set of individual i consists of
those individuals from which there exists a path to i in the digraph (including i itself). Note
that an individual will become infected by an epidemic if and only if the initial infective is in
its susceptibility set. We also need the concept of a local susceptibility set, constructed in the
same way but considering only local (within-household) infectious contacts.

We approximate the size of the susceptibility set of an individual chosen uniformly at random
from the population by the total progeny of an appropriate branching process. To construct this
branching process, we break up the susceptibility set into ‘generations’ in much the same way as
we look at the spread of infection in the early stages of the epidemic. Starting with an individual
i, consider those individuals j , not in i’s household, who are in i’s susceptibility set by virtue
of an arc leading from j to an individual in i’s local susceptibility set. These individuals are
all in different households with high probability as m → ∞ and the households they are in
comprise the first ‘generation’ of the susceptibility set. Repeating this process for each of these
individuals j (i.e. looking at the individuals who make infectious global contact with a member
of j ’s local susceptibility set) gives the second ‘generation’; and by continuing this process
we can construct the whole of i’s susceptibility set. Because each individual j that joins the
susceptibility set by virtue of a global contact is in a household not previously associated with
the susceptibility set with high probability, the number of households in each generation is
approximated well by the branching process BP(1, B, B̃), where B and B̃ denote the offspring
random variables for the initial and subsequent generations, which again are typically different.

We show in Section 6.5.2 that, as m → ∞, the conditional probability that a typical initial
susceptible (i say) is infected, given that a major outbreak occurs, is given by the probability
that the branching process BP(1, B, B̃) avoids extinction (see Theorem 6.2). An intuitive
explanation of this result is as follows. As m → ∞, (i) the number of households in i’s
susceptibility set converges in distribution to the total progeny of BP(1, B, B̃); and (ii) a major
outbreak necessarily infects at least log m households (cf. Lemma 6.6). Thus, as m → ∞, the
probability that i’s susceptibility set intersects one of these log m households is 0 if BP(1, B, B̃)

goes extinct and 1 otherwise. The latter result follows because if BP(1, B, B̃) does not go extinct
then the size of i’s susceptibility set is of exact order m as m → ∞.

The above claim and standard branching process theory imply that the expected relative final
size of a major outbreak in a large finite population is approximately 1 − fB(ξ), where ξ is the
smallest solution of f

B̃
(s) = s in [0, 1]. Calculations of fB(s) and f

B̃
(s) are considered in

Section 4.2.

4. Calculations

4.1. Forward process

Consider first the threshold parameter R∗ = E[C̃]. Label the individuals in a household
0, 1, . . . , n − 1, with individual 0 the initial infective, and define χi to be the indicator of the
event that individual i is infected in the local (i.e. single-household) epidemic and Ci to be
the number of global neighbours with which i makes infectious contact, if i were to become
infected. Then C̃ = C0 + ∑n−1

i=1 χiCi, and it follows, since C1 and χ1 are independent and
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(C1, χ1), (C2, χ2), . . . , (Cn−1, χn−1) are identically distributed, that

R∗ = E[C0] + E[T ] E[C1], (4.1)

where T is the final size of the within-household epidemic (not counting the initial infective).
Denote by Ii and Ki the infectious period and number of global neighbours, not including its
infector (this affects only the initial infective within the household), of individual i . Now,
since infectious contacts between different pairs of individuals are independent, Ci | Ki, Ii ∼
Bin(Ki, 1 − exp(−λGIi)). Thus, E[Ci | Ki, Ii] = Ki(1 − exp(−λGIi)), whence, by the
independence of Ki and Ii ,

E[Ci] = E[Ki](1 − φ(λG)). (4.2)

Now, for i = 1, 2, . . . , n − 1, Ki has the same distribution as D, the prescribed degree
distribution, so E[Ki] = µD for such i. However, for the reasons noted in the first paragraph of
Section 2, since the initial infective in the household was infected by a global infection, its degree
has the size-biased distribution D̃, and because one of these neighbours (the one that infected
it) has already been infected, K0 has the same distribution as D̃ − 1, so E[K0] = E[D̃] − 1.
It follows from the definition of D̃ that E[D̃] = E[D] + var[D]/ E[D]. Substituting these
into (4.2) and then (4.1), and letting µT = E[T ], yields

R∗ =
(

µD (µT + 1) + σ 2
D

µD

− 1

)
(1 − φ(λG)). (4.3)

The mean µT may be evaluated (typically numerically) by using equations (2.25) and (2.26)
of Ball (1986), thus enabling R∗ to be calculated.

Calculation of the PGFs fC(s) and f
C̃
(s) is more difficult because the number of global

infections caused by a particular individual is dependent on that individual’s infectious period,
which also influences whether or not other individuals in the household become infective and,
thus, the number of global contacts they might make. It is possible to use the notion of ‘final
state random variables’ introduced in Ball and O’Neill (1999) to find fC and f

C̃
, but it is

not straightforward, so we do not present it here. This methodology will be discussed in a
forthcoming paper concentrating on the more applied aspects of our model. However, there are
two special cases where the above dependencies do not exist and the analysis is much simpler.
These are when the infectious period is fixed (i.e. almost surely equal to a given constant) and
when the infectious period can be only zero or infinity.

Trapman (2007) described (using results of Kuulasmaa (1982)) how these special cases lead
to bounds on quantities of interest for a very general class of epidemic models. Trapman’s
arguments hold for any epidemic model where there is only one ‘kind’ of infectious contact
rather than the two (local and global) that we are concerned with, but the methods can be easily
adapted. In addition, a fixed infectious period is often a reasonable assumption to make in
practice and it is commonly used because it leads to simplifications of the kind shown shortly
(see, for example, Britton et al. (2007) and Britton et al. (2008)). We therefore proceed to
calculate the PGFs fC and f

C̃
in these two special cases as they can be used to calculate the

abovementioned bounds and they may also give insight into the importance of and interplay
between the parameters of our model. The role of the infectious period distribution will be
discussed in the abovementioned applied paper.
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4.1.1. Zero or infinite infectious period. Suppose that P(I = ∞) = 1 − P(I = 0) = p for
some p ∈ [0, 1]. For the moment, we ignore the differences between the initial and subsequent
generations and denote the generic offspring random variable by unadorned C. Here we have

C =

⎧⎪⎪⎨
⎪⎪⎩

0 with probability 1 − p,

C0 +
n−1∑
i=1

Ci with probability p,

where Ci is the number of global neighbours infected by an infectious individual i. Thus,
C0

d= K0 (where ‘
d=’ denotes equality in distribution) and C1, C2, . . . , Cn−1 are independent

and identically distributed with

Ci =
{

0 with probability 1 − p,

Ki with probability p.

Also, note that the number, N say, of the n − 1 Cis which take the value Ki (i.e. the number of
initially susceptible individuals in the household with I = ∞) is binomially distributed, with
parameters n − 1 and p. We therefore have

fC(s) = E[sC]
= (1 − p)s0 + p E[sC0+∑n−1

i=1 Ki ]
= 1 − p + p E[sC0 ] E[s

∑N
i=1 Ki ]

= 1 − p + pfK0(s)fN(fD(s))

= 1 − p + pfK0(s)(1 − p + pfD(s))n−1,

where K0 is D or d in the initial generation and D̃ − 1 in subsequent generations (in which
case the PGF is f

C̃
rather than fC).

4.1.2. Fixed infectious period. Now suppose that P(I = c) = 1 for some c > 0. Again, we
temporarily ignore the differences between the initial and subsequent generations, label the
individuals 0, 1, . . . , n − 1, and denote by Ci the number of global neighbours infected by an
infectious individual i. Then, letting T denote the final size of the within-household epidemic,
we have C = C0 + ∑T

i=1 Ci and, conditional on the final size, C1, C2, . . . , CT are mutually
independent. Now Ci | Ki ∼ Bin(Ki, 1 − exp(−cλG)), so fCi

(s) = fKi
(1 − pG + spG),

where pG = 1 − exp(−cλG). Thus, by the usual formula for the PGF of a random sum,

fC(s) = fC0(s)fT (fC1(s)) = fK0(1 − pG + spG)fT (fD(1 − pG + spG)), (4.4)

where again K0 is D or d in the initial generation and D̃ − 1 in subsequent generations. The
PGF fT is easily calculated using Theorem 2.6 of Ball (1986).

4.2. Backward process

Now consider the branching process approximation of the growth (as described in Sec-
tion 3.2) of the susceptibility set of an individual, i∗ say, chosen uniformly at random from the
population. The offspring distribution of this process has the same distribution as the number
of individuals that make global contact with the local susceptibility set of a single individual,
say individual i. Again, we have a distinction between the initial and subsequent generations,
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but we ignore this for now and denote the random variable of interest by B. Firstly, we write

B = B0 +
M∑

j=1

Bj ,

where Bj is the number of contacts made with individual j (again labelling the individuals
within the household 0, 1, . . . , n − 1, with 0 corresponding to the primary individual i) and
M is the size of i’s local susceptibility set, not counting i itself. (If M = 0 then i’s local
susceptibility set consists of only i itself and the sum is empty.) Now Bj | Kj ∼ Bin(Kj , pG),
where Kj is the number of global neighbours of j excluding, in the case of the initial individual,
the individual it made contact with in order to join the susceptibility set and pG = 1 − φ(λG)

is the probability that an infective individual makes infectious contact with a given global
neighbour. We do not need to condition on the infectious period of individual j because the
contacts we are considering come from other individuals; the independence of the infectious
periods of these individuals implies that they make contacts with j independently of each other.
For a similar reason, B0, B1, . . . , BM are independent. Arguing as in the derivation of (4.4)
yields

fB(s) = fK0(1 − pG + spG)fM(fD(1 − pG + spG)), (4.5)

where now K0 is D in the initial generation (because of how i∗ was chosen) and D̃ − 1 in
subsequent generations.

In order to determine fM , we use Equation (3.5) of Ball and Neal (2002), which gives a
triangular system of linear equations whose solution is the mass function of M , from which we
can easily calculate the PGF. Note that (4.5) holds for any choice of infectious period distri-
bution. It is easily verified that in the fixed infectious period case T

d= M , so f
B̃
(s) = f

C̃
(s)

and, if the initial infective is chosen uniformly at random from the population, fB(s) = fC(s);
and in the zero or infinite infectious period case M ∼ Bin(n − 1, p), where p = P(I = ∞),
whence fM(s) = (1 − p + ps)n−1.

5. Numerical results

We now explore, numerically, some of the features of our model and investigate how they
depend on some of its parameters. As a way of examining how the household size n affects
the model, Figure 1 shows the critical values of the per-pair global contact rate λG and the per-
individual local contact rate λL(n − 1), above which the epidemic is supercritical, for several
household sizes, with the degree distribution and infectious period distribution fixed. Note that
the expected total rate of global contacts per individual remains constant over these plots since
D is held fixed.

Note also that if λL = 0 then n is immaterial, as is λL when n = 1. In these situations
there is no local contact, so we recover the standard network model and the critical value of
λG is at the point the plotted lines converge to as λL → 0. The plot reflects the fact that, even
as the per-individual total contact rate remains constant, increasing the household size spreads
the potential infectious contacts over a larger number of neighbours, thus avoiding repeated
contacts with the same individual and increasing the spread of the disease. We also observe that,
fixing D and letting λL → ∞, the critical value of λG tends to that for the standard network
model with the same infectious period distribution and degree distribution

∑n
i=1 Di , where

the Di are independent copies of D. This is easily verified using (4.3) and holds because, in
this limit, once an individual is infected, the whole household that it is in necessarily becomes
infected.
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Figure 1: Critical values of λG and λL(n − 1) above which the epidemic is supercritical, for n =
2, 3, . . . , 10 (in order from top to bottom). Other parameters are I ≡ 1 and D ∼ Po(5) (i.e. Poisson with

mean 5).
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Figure 2: The probability of a major outbreak versus µD for different classes of degree distribution D.
The distribution labelled ‘power law’ is Pow(k∗, 7

2 ) for k∗ = 5, 6, . . . , 18 and the distribution labelled
‘power cutoff’ is PowC(κ, 3

2 ) for κ ∈ [10, 485] (smaller values of k∗ or κ yield subcritical epidemics).
The other parameters of the model are n = 3, I ≡ 1, λL = 1, and λG = 1

10 .

Perhaps the most interesting aspect of this model to explore is the dependence of its behaviour
on the distribution of D, the number of global neighbours of a typical individual. Considerable
research, conjecture, and discussion has gone into trying to determine distributions which
capture the features of many real-life contact networks—Section III.C of Newman (2003) has an
extensive list of references. In Figure 2 we investigate the probability of a major outbreak in our
epidemic model for various distributions D with different properties, in particular different tail
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behaviours. We use the standard Poisson and geometric (with support including 0) distributions,
as well as an almost surely constant degree and two variants of heavy-tailed distributions. The
first has mass function

pk ∝
{

k−a∗ for k = 1, 2, . . . , k∗,
k−a for k = k∗ + 1, k∗ + 2, . . . ,

and the second, with mass function pk ∝ k−ae−k/κ (k = 1, 2, . . . ), is a power law with
exponential cutoff which has gained much attention in recent physics literature. We denote
these distributions by Pow(k∗, a) and PowC(κ, a), respectively.

The behaviour of these plots for relatively small values of µD (where the model is close
to critical) is largely determined by the probability of D taking very large values, i.e. the tail
of the distribution, as this dictates what opportunity the disease might have to really ‘take
hold’; however, when µD is large, the behaviour of D at small values is more important, as
the epidemic can usually move quite freely and this determines the chance that it might be
contained by the network structure.

We also briefly investigate whether our asymptotic methods give reasonable approximations
to the quantities of interest in finite populations. We estimate the probability and expected
relative final size of a major outbreak in finite populations from simulations and compare these
to the results we get from our asymptotic analysis. Each simulation consists of generating a
random network and running one epidemic on it. Figure 3 shows estimates of these quantities of
interest for increasing numbers m of households together with the theoretical (m = ∞) values
for two choices of degree distribution. The estimates of the major outbreak probability are based
on 10 000 simulations for each parameter combination and those that result in a major outbreak
are then used to estimate the expected relative final size. We have plotted point estimates of
the quantities of interest, together with error bounds based on ±2 standard errors (SE) of the
estimator. For the probability of a major outbreak, estimated as p̂, SE = [p̂(1 − p̂)/n0]1/2,
where n0 = 10 000 is the number of simulations. For the relative final size, SE = σ̂ n

−1/2
1 ,

where σ̂ 2 is the sample variance of the relative final sizes and n1 is the number of simulations
that resulted in a major outbreak.

Note that in small, finite populations the determination of a cutoff for whether a particular
final size constitutes a major outbreak is practically impossible; only for a sufficiently large
population (for m larger than about 100 in our simulations) does the distinction become clear.
In our calculations we have used a cutoff of 0.15 of the population size, this being determined
by inspecting histograms of the relative final size of the simulations. Also, note that the vertical
scale of plots (a) and (c) is different from that of plots (b) and (d). Figure 3 shows that our
asymptotic results give good approximations for these quantities of interest for populations of
only a few hundred households. Though the asymptotic values of both the major outbreak
probability and the expected relative final size seem to consistently overestimate these values
for the finite populations (as one would expect since the approximating branching process treats
each global infection as an infection of a previously uninfected household, thus overestimating
disease spread), even for populations of only 100 households, the relative error is much less than
5%. It also seems that having a heavy-tailed degree distribution may make the convergence to
the asymptotic value a little slower (compare plots (b) and (d) at around 200–500 households),
but the effect seems to be only very slight. Another interesting observation is that the relative
final size seems to be appreciably more efficiently estimated by our simulation methods than
the probability of a major outbreak. This is owing (at least in part) to the fact that from each
simulation we simply observe the occurrence or otherwise of a major outbreak—one observation
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Figure 3: Comparison of simulation estimates (the dots and crosses represent point estimates ±2 standard
errors) of the probability and expected relative final size of a major outbreak for finite populations with
asymptotic results (solid line). The Poisson degree distribution (plots (a) and (b)) has µD = σ 2

D = 8 and
the power-law distribution (plots (c) and (d)) has µD ≈ 8.04 and σ 2

D ≈ 96. Other parameters are n = 3,
I ≡ 1, λL = 1, and λG = 1

10 .

of the forward process—whereas when a major outbreak does occur, the proportion infected
has information about the susceptibility set of every initial susceptible in the population—many
(highly correlated) observations of the backward process.

6. Proofs

6.1. Overview

In this section we provide a fully rigorous justification of the results discussed in Section 3
concerning the threshold behaviour of the epidemic model and its final outcome in the event
of a major outbreak. This subsection gives a brief outline of our methods of proof. The
starting point is a sequence D = (D1, D2, . . . ) of independent copies of D. For m = 1, 2, . . . ,
(D1, D2, . . . , Dmn) is used to give the degrees of the mn individuals in a population of m

households. We then define a realisation of the epidemic, E(m) say, viewed on a generation basis,
and a realisation of an approximating branching process, say Y (m) = (Y

(m)
k , k = 0, 1, . . . ) (see
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Section 6.2). In E(m) the network is formed, i.e. the half-edges are paired up, as the epidemic
progresses. The branching process Y (m) is similar to the branching process, Y say, described in
Section 3.1, except the empirical distribution of the degrees D1, D2, . . . , Dmn is used in place
of the degree distribution D. The epidemic E(m) and approximating branching process Y (m)

are coupled so that they coincide until a random number, τ (m) + 1, of households have been
infected in E(m). It is shown that P(τ (m) > k) → 1 as m → ∞ for all k ∈ Z+, so Ẑ(m), the
number of households infected in E(m), and Ŷ (m), the total progeny of Y (m), have the same
limiting distribution as m → ∞. (We use Z+ to denote the positive integers including 0 and N

to denote the strictly positive integers.) Now, Y (m) converges in distribution to Y as m → ∞,
so Ẑ(m) is asymptotically distributed as Ŷ , the total progeny of Y (see Theorem 6.1), thus
providing a formal justification of the threshold behaviour described in Section 3.1.

Suppose now that R∗ > 1, so that major outbreaks are possible. Let tm = 
2 log log m/

log R∗�, where, for x ∈ R, 
x� denotes the greatest integer less than or equal to x. We show
(cf. Lemma 6.7) that there exists a β > 1 such that limm→∞ P(log m < Z

(m)
tm

< (log m)β) =
P (Ŷ = ∞), where Z

(m)
tm

is the number of infectious households in generation tm of E(m). It
follows that, with probability tending to 1 as m → ∞, a major outbreak has at least log m and
at most (log m)β infectious households in generation tm.

Next we consider the probability that a typical individual, i∗ say, that is susceptible at time tm
in E(m) ultimately becomes infected. We do this by stopping the construction of E(m) at time tm,
leaving the Z

(m)
tm

infectious (‘live’) half-edges unconnected, and constructing the susceptibility
set, S(m) say, of i∗ in ‘generations’ as described in Section 3.2, pairing up the half-edges as
we construct the susceptibility set. If at any point in the construction of S(m) a half-edge is
paired up with one of the Z

(m)
tm

live half-edges from the epidemic then i∗ is ultimately infected,
otherwise i∗ is not infected by the epidemic. Note that, for any individual, i say, in S(m), we
need to explore all of i’s global neighbours (and not just those that join S(m)), since if any
half-edge emanating from i is paired with one of the Z

(m)
tm

live half-edges then i∗ is ultimately
infected. Thus, we need to construct simultaneously A(m), the set of global neighbours of S(m),
also on a generation basis.

Let (S(m), A(m)) = ((S
(m)
k , A

(m)
k ), k = 0, 1, . . . ) describe the number of households in suc-

cessive generations of (S(m), A(m)). In Section 6.2 we construct realisations of (S(m), A(m)) and
an approximating two-type branching process (X(m), X

(m)
A ) = ((X

(m)
k , X

(m)
Ak ), k = 0, 1, . . . ).

The process X(m) is a single-type branching process that is similar to the branching process,
X say, described in Section 3.2, except, as with Y (m), the empirical distribution of D1, D2,

. . . , Dmn is used instead of the degree distribution D. The process X
(m)
A corresponds to global

neighbours of S(m) who are not in S(m); individuals in X
(m)
A have no offspring. The processes

(S(m), A(m)) and (X(m), X
(m)
A ) are coupled so that they coincide until τ̄ (m) + 1 households have

joined S(m) ∪ A(m), where P(τ̄ (m) > k) → 1 as m → ∞ for all k ∈ Z+. Let Ŵ (m) and Ŵ
(m)
A

denote the number of households in S(m) and A(m), respectively, and let X̂(m) and X̂ denote
the total progenies of X(m) and X, respectively. As with E(m), Ŵ (m) and X̂(m) have the same
limiting distribution as m → ∞, which, since X(m) converges in distribution to X as m → ∞,
is given by the distribution of X̂. Now, for any k ∈ N, if Ŵ (m) + Ŵ

(m)
A ≤ k then the probability

that S(m) intersects with one of the Z
(m)
tm

live half-edges tends to 0 as m → ∞ (since a major
outbreak has at most (log m)β infectious households at generation tm of the forward process),
so the limiting (as m → ∞) probability that i∗ is ultimately infected by a major outbreak is at
most P(X̂ = ∞). (Note that (X(m), X

(m)
A ) goes extinct if and only if X(m) goes extinct.)

We also construct, for all sufficiently small ε ∈ (0, 1), a branching process εX
(m), which

is a lower bound for S(m) as long as Ŵ (m) ≤ εm; whence P(Ŵ (m) > εm) ≥ P(εX̂
(m) = ∞),
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where εX̂
(m) denotes the total progeny of εX

(m). As m → ∞, εX̂
(m) converges in distribution

to εX̂, the total progeny of a branching process εX say. Moreover, for any ε > 0, if Ŵ (m) > εm,
the probability that S(m) intersects one of the Z

(m)
tm

live half-edges tends to 1 as m → ∞ (since a
major outbreak has at least log m infectious households at generation tm of the forward process),
so the limiting probability that i∗ is ultimately infected is at least P(εX̂ = ∞). Furthermore,
P(εX̂ = ∞) → P(X̂ = ∞) as ε ↓ 0, which, combined with the result described at the end
of the previous paragraph, shows that the probability that i∗ is ultimately infected by a major
outbreak tends to P(X̂ = ∞) as m → ∞ (see Theorem 6.2). It follows that the expected
proportion of the population that are infected by a major outbreak also tends to P(X̂ = ∞) as
m → ∞ (see Corollary 6.2).

Our results are proved by conditioning on the degree sequence D and showing that they hold
for P-almost all D. The unconditional results then follow using the dominated convergence
theorem. As remarked above, the network of global contacts is now constructed as the
epidemic/susceptibility set evolves, not a priori as in our model description in Section 2. This
implicitly means that, rather than conditioning on the total number of half-edges

∑mn
i=1 Di being

even, we simply ignore the single leftover half-edge in the event of
∑mn

i=1 Di being odd. This
small change does not affect the asymptotic results as m → ∞ (cf. van der Hofstad et al. (2007,
Section 1.1)).

The remainder of this section is organised as follows. The main constructions are
described in Section 6.2, with the epidemics E(m) and their approximating branching processes
being described in Section 6.2.1, and the susceptibility set processes and their approximating
branching processes being described in Section 6.2.2. Some notation concerning the offspring
distributions of various branching processes is given in Section 6.2.3. Section 6.3 contains
some preliminary results, and the main results are given in Sections 6.4 and 6.5, where we
analyse the epidemics E(m) and the susceptibility set processes (S(m), A(m)), respectively.

6.2. Construction of approximating branching processes

Let (�1, F1, P1) be a probability space, on which is defined a sequence D = (D1, D2, . . . )

of independent random variables, each distributed according to the degree distribution D. Also,
let (�2, F2, P2) be a probability space, on which are defined the following mutually independent
random quantities:

(i) for every (d, j) = ((d1, d2, . . . , dn), j) ∈ Z
n+ × {1, 2, . . . , n}, a sequence of random

variables �
(d,j)
1 , �

(d,j)
2 , . . ., which are independent copies of the random variable �(d,j)

defined below;

(ii) for every (d, j) ∈ Z
n+ × {1, 2, . . . , n}, a sequence of random variables (


(d,j)
1 , 


(d,j)
A1 ),

(

(d,j)
2 , 


(d,j)
A2 ), . . ., which are independent copies of the random variable (
(d,j),



(d,j)
A ) also defined below.

We also require other random variables defined on (�2, F2, P2), but these are described only
informally because the detail is unnecessary for our proofs.

The random variable �(d,j) describes the number of global neighbours with which
infectious contact is made by members of a household of individuals with degrees given by
d = (d1, d2, . . . , dn) in which individual j is initially infected and is defined as follows.
Let G be the random directed graph on the vertices V = {1, 2, . . . , n} obtained as follows.
For each vertex i, we take an independent realisation, Ii say, of the infectious period dis-
tribution I and then put an arc from i to each other vertex in V independently with proba-
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bility 1 − exp(−λLIi). Given G, let C1, C2, . . . , Cn be independent random variables with
Ci | I1, I2, . . . , In ∼ Bin(d ′

i , 1 − exp(λGIi)), where d ′
i = di if i �= j and d ′

j = dj − 1. Then
�(d,j) = ∑n

i=1 1{j�i} Ci , where j � i denotes the event that there is a path from vertex j to
vertex i in G (with the convention that i � i).

In a similar manner, the two components of the random variable (
(d,j), 

(d,j)
A ) describe

the number of global neighbours of the local susceptibility set of individual j in a household of
individuals with degrees given by d = (d1, d2, . . . , dn) that do and do not make global infectious
contact with their neighbour in that susceptibility set. To this end, let G be the random graph
described above and, conditional on G, let B1, B2, . . . , Bn be independent random variables
with Bi ∼ Bin(d ′

i , pG), where d ′
1, d

′
2, . . . , d

′
n are as above and pG = 1−φ(λG). We then have

(
(d,j), 

(d,j)
A ) = ∑n

i=1 1{i�j}(Bi, d
′
i − Bi).

We now introduce some further notation. For k = 1, 2, . . . , let Dk = (Dk1, Dk2, . . . , Dkn),
where, for i = 1, 2, . . . , n, Dki = D(k−1)n+i is the degree of the ith individual in the kth
household. Let Hk = ∑n

i=1 Dki denote the total degree of the kth household. Lastly, denote
by µ

(m)
H = (1/m)

∑m
i=1 Hi the (empirical) mean number of edges emanating from each of the

first m households.
The epidemic, susceptibility sets, and approximating branching processes are defined on

the probability space (�, F , P) = (�1, F1, P1) × (�2, F2, P2). Our construction and most
of our calculations will henceforth be conditional on the degree sequence D. To this end,
we denote P(· | D) by PD(·) and, similarly, E[· | D] by ED[·]. Conditional on this degree
sequence and for every m = 1, 2, . . . , we now describe the construction of a branching process,
Y (m), which approximates the early stages of the spread of the epidemic amongst households
1, 2, . . . , m; then another (two-type) branching process, (X(m), X

(m)
A ), which approximates

the ‘early growth’ of the susceptibility set (and its global neighbours) of a typical initially
susceptible individual in that population.

6.2.1. The forward processes. We first describe the branching process Y (m). Set Y
(m)
0 = 1, and

choose an individual uniformly at random from 1, 2, . . . , mn. Suppose that it is individual

ι ∈ {1, 2, . . . , n} of household �0 ∈ {1, 2, . . . , m}. Then Y
(m)
1 = �

(D�0 +eι,ι)

1 , where ei is the
unit n-vector with a 1 in the ith position. For subsequent generations k ≥ 2, we continue the
construction as follows. For each j = 1, 2, . . . , Y

(m)
k−1, sample a half-edge uniformly at random

from the mµ
(m)
H half-edges in the population and, supposing it emanates from individual ι of

household �, set Y
(m)
kj = �

(D�,ι)
ν(�,ι)+1, where ν(�, ι) is the number of times we have sampled

previously from the sequence �
(D�,ι)
1 , �

(D�,ι)
2 , . . . . Lastly, set

Y
(m)
k =

Y
(m)
k−1∑

j=1

Y
(m)
kj .

The branching process Y (m) and the epidemic process E(m) can be coupled by using the
same D, �s, and uniformly random samples. However, the coupling breaks down as soon as a
half-edge is sampled that emanates from a household that either has been used previously in the
epidemic or is a neighbour of such a previously used household. If a previously used half-edge
is sampled then in E(m) another half-edge needs to be sampled. If an unused half-edge that
emanates from a previously used household is sampled then in E(m) the spread of the epidemic
within that household is different from in Y (m) since there are fewer susceptibles. Finally, if
a half-edge emanating from a household neighbouring a household previously used in E(m) is
sampled then the spread of the epidemic from that household is in general different from that in
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Y (m), since the (effective) degree distribution of individuals in that household may be different
from that assumed in Y (m). (When constructing E(m), we need also to pair up noninfectious
half-edges from infectious individuals.) In all of these cases the construction of E(m) can be
continued appropriately, but the detail is not important for our purposes. However, we do need
a bound on the size of, and number of half-edges that emanate from, the ‘bad set’ of households
that must be avoided in order that Y (m) and E(m) remain coupled. To this end, we describe
another branching process T (m) = (T

(m)
k , k = 1, 2, . . . ), which provides such a bound.

Let T
(m)
0 be the total degree of the initial household in Y (m), so T

(m)
0 = H�0 , where �0

is as above. For k = 1, 2, . . . , T
(m)
k is determined as follows. For each j = 1, 2, . . . , T

(m)
k−1,

a half-edge is sampled uniformly at random from the mµ
(m)
H half-edges in the population,

say this half-edge emanates from household �j , and then put T
(m)
kj = H�j

− 1. Finally, set

T
(m)
k = ∑T

(m)
k−1

j=1 T
(m)
kj . The processes Y (m), E(m), and T (m) can be coupled in an obvious fashion

so that their sampled half-edges correspond. Let T̂
(m)
k = ∑k

l=0 T
(m)
l (k = 0, 1, . . . ) be the

total progeny of T (m) up to generation k. Then 2T̂
(m)
k+1 provides an upper bound for the number

of half-edges that emanate from (and hence also for the size of) the bad set of households
in generation k of E(m). The index k + 1 arises because the bad set consists of not just all
households infected up to generation k of E(m) but also their neighbouring households. The
factor 2 arises because T (m) does not count the receiving half-edge when the half-edges are
paired up.

The above construction of Y (m) (and implicitly E(m)) is continued for a fixed number of
generations, tm, and T (m) is continued for tm + 1 generations. (Of course, some or all of these
processes may die out beforehand.)

6.2.2. The backward processes. The two-type branching process (X(m), X
(m)
A ) is defined anal-

ogously to Y (m) except the random variables (

(d,j)
i , 


(d,j)
Ai ) are used instead of �

(d,j)
i (recall

that there are no offspring in X
(m)
A ). The process X(m) approximates the growth, described

by generations as in Section 3.2, of the susceptibility set of an individual chosen uniformly
at random from all susceptible individuals at time tm in the epidemic process E(m) and X

(m)
A

approximates the number of global neighbours of this susceptibility set, also on a generation
basis. The processes (X(m), X

(m)
A ) and (S(m), A(m)) can be coupled in a similar fashion to that

used for Y (m) and E(m), though note that now the coupling breaks down if a sampled half-edge
emanates from either (i) a household previously used in the susceptibility set; (ii) a household
neighbouring such a household; or (iii) a household or neighbour of a household used in the
forward process up to time tm. Also, note that this coupling may break down at generation 0 (if
the initial individual is in a household that is either infected in E(m) or a neighbour of a household
infected in E(m)). As with the epidemic process E(m), the construction of (S(m), A(m)) can be
continued appropriately after the coupling breaks down, but we do not require such detail.

6.2.3. Further notation and limiting processes. For m = 1, 2, . . . , let c(m) = (c
(m)
0 , c

(m)
1 , . . . )

and c̃(m) = (c̃
(m)
0 , c̃

(m)
1 , . . . ) denote the offspring distributions of the initial individual and all

subsequent individuals, respectively, in Y (m). For d = (d1, d2, . . . , dn) ∈ Z
n+, let

p
(m)
d = 1

m

m∑
i=1

1{Di=d} and p̃
(m)
d = |d|

mµ
(m)
H

m∑
i=1

1{Di=d},

where |d| = ∑n
j=1 dj . Then the ‘household type’ (i.e. the degrees of individuals within the

household) of the initial individual in Y (m) is distributed according to p
(m)
d (d ∈ Z

n+) and
the household type of any subsequent individual is distributed according to p̃

(m)
d (d ∈ Z

n+).
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It follows that, for k = 0, 1, . . . ,

c
(m)
k =

∑
d∈Z

n+

p
(m)
d P(�d = k) and c̃

(m)
k =

∑
d∈Z

n+

p̃
(m)
d P(�̃d = k), (6.1)

where �d and �̃d are random variables with distributions given by

P(�d = k) = 1

n

n∑
i=1

P(�(d+ei ,i) = k), k = 0, 1, . . . , |d|, (6.2)

and

P(�̃d = k) =
n∑

i=1

di

|d| P(�(d,i) = k), k = 0, 1, . . . , |d| − 1. (6.3)

For m = 1, 2, . . . , the offspring distributions of the initial and subsequent individuals in
X(m), b(m), and b̃(m) are defined analagously to c(m) and c̃(m), using (6.1)–(6.3) with � replaced
by 
 and �̃ by 
̃ throughout. Replacing � by (
, 
A) and �̃ by (
̃, 
̃A) throughout gives
the offspring distributions associated with the two-type process (X(m), X

(m)
A ).

Furthermore, for m = 1, 2, . . . , let r(m) = (r
(m)
0 , r

(m)
1 , . . . ) denote the distribution of the

number of initial ancestors and let r̃(m) = (r̃
(m)
0 , r̃

(m)
1 , . . . ) denote the offspring distribution of

both the ancestors and any subsequent individuals in T (m). Then, for k = 0, 1, . . . ,

r
(m)
k =

∑
{d∈Z

n+ : |d|=k}
p

(m)
d and r̃

(m)
k =

∑
{d∈Z

n+ : |d|=k+1}
p̃

(m)
d .

For m = 1, 2, . . . , let µ
(m)
c = ∑∞

k=1 kc
(m)
k be the mean of the empirical distribution c(m), and

define µ̃
(m)
c , µ

(m)
b , µ̃

(m)
b , µ

(m)
r , and µ̃

(m)
r analogously.

In Section 6.3 we prove that the offspring distributions of Y (m), X(m), and T (m) and the
distribution of the number of ancestors in T (m) converge almost surely as m → ∞ to those of
branching processes, which we denote by Y , X and T , respectively. To this end, for d ∈ Z

n+,
let pd = ∏n

i=1 pdi
and p̃d = pd |d|/nµD . (Recall that pk = P(D = k) (k = 0, 1, . . . ) and

µD = ∑∞
k=1 kpk .) Also, for k = 0, 1, . . . , let

pH (k) =
∑

{d∈Z
n+ : |d|=k}

pd = P(D1 + D2 + · · · + Dn = k) = P(H1 = k),

and, for k = 1, 2, . . . , let p̃H (k) = kpH (k)/nµD . Now, for k = 0, 1, . . . , let ck be defined
analogously to c

(m)
k but with p

(m)
d replaced by pd , and define c̃k , bk , and b̃k similarly. Also, for

k = 0, 1, . . . , let rk = pH (k) and r̃k = p̃H (k + 1). Let c = (c0, c1, . . . ), and define c̃, b, b̃, r ,
and r̃ similarly. Let µc = ∑∞

k=1 kck , and define µ̃c, µb, µ̃b, µr , and µ̃r in the obvious fashion.
Let Y = (Y0, Y1, . . . ), X = (X0, X1, . . . ) and T = (T0, T1, . . . ) be the branching processes

BP(1, c, c̃), BP(1, b, b̃) and, in an obvious notation, BP(r, r̃, r̃), respectively. Note that the
branching processes Y and X are those described in Sections 3.1 and 3.2, respectively. Note
especially that, in the notation of Section 3.1, this implies that µ̃c = R∗. We also require a
two-type branching process (X, A), defined analagously to (X(m), X

(m)
A ), but again using pd

and p̃d in defining the offspring distribution instead of the empirical versions p
(m)
d and p̃

(m)
d .
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6.3. Preliminary results

In this section we collect some results required in the analysis of the forward and backward
processes. Recall that we have made the assumption that σ 2

D = var[D] is finite (although some
results only require µD < ∞).

Lemma 6.1. There exists A1 ∈ F1, with P1(A1) = 1, such that, for all ω1 ∈ A1,

(i) limm→∞ µ
(m)
H (ω1) = nµD;

(ii) limm→∞ p
(m)
d (ω1) = pd and limm→∞ p̃

(m)
d (ω1) = p̃d for each d ∈ Z

n+;

(iii) limm→∞ c(m)(ω1) = c, limm→∞ c̃(m)(ω1) = c̃, limm→∞ b(m)(ω1) = b,

limm→∞ b̃(m)(ω1) = b̃, limm→∞ r(m)(ω1) = r , and limm→∞ r̃(m)(ω1) = r̃;

(iv) limm→∞ µ
(m)
c (ω1) = µc, limm→∞ µ̃

(m)
c (ω1) = µ̃c, limm→∞ µ

(m)
b (ω1) = µb,

limm→∞ µ̃
(m)
b (ω1) = µ̃b, limm→∞ µ

(m)
r (ω1) = µr , and limm→∞ µ̃

(m)
r (ω1) = µ̃r .

Here and henceforth, convergence of a sequence of sequences is interpreted elementwise, so,
for example, limm→∞ c(m) = c means that limm→∞ c

(m)
k = ck for each k = 0, 1, . . . .

Proof. By the strong law of large numbers, there exists A2 ∈ F1 with P1(A2) = 1 such that
limm→∞ µ

(m)
H (ω1) = nµD (ω1 ∈ A2) and, for each d ∈ Z

n+, there exists Ad ∈ F1 with
P1(Ad) = 1 such that limm→∞ p

(m)
d (ω1) = pd (ω1 ∈ Ad ). Let A3 = A2 ∩ ⋂

d∈Z
n+ Ad . Then

P1(A3) = 1 and it is easily verified that (i) and (ii) hold for all ω1 ∈ A3, whence (iii) also holds
for all ω1 ∈ A3 by Scheffé’s theorem (see, for example, Billingsley (1968, p. 224)). Next,
consider

µ̃(m)
c =

∞∑
k=1

kc̃
(m)
k

=
∞∑

k=1

k
∑

d∈Z
n+

p̃
(m)
d P(�̃d = k)

=
∞∑

k=1

k
∑

d∈Z
n+

|d|
mµ

(m)
H

m∑
i=1

1{Di=d} P(�̃d = k)

= 1

µ
(m)
H

1

m

m∑
i=1

|Di |
∞∑

k=1

k P(�̃Di
= k).

Now, P(�̃Di
= k) = 0 for k ≥ |Di | − 1, so

E

[
|D1|

∞∑
k=1

k P(�̃D1 = k)

]
≤ E[|D1|(|D1| − 1)] < ∞,

as σ 2
D < ∞. Thus, by the strong law of large numbers, there exists A4 ∈ F1 with P1(A4) = 1

such that, for all ω1 ∈ A4,

lim
m→∞

1

m

m∑
i=1

|Di (ω1)|
∞∑

k=1

k P(�̃Di (ω1) = k) = E

[
|D1|

∞∑
k=1

k P(�̃D1 = k)

]

=
∑

d∈Z
n+

pd |d|
∞∑

k=1

k P(�̃d = k).
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It follows that limm→∞ µ̃
(m)
c (ω1) = µ̃c for all ω1 ∈ A2 ∩ A4. Similar arguments hold for the

other means in (iv) and the lemma is thus proved.

Remark. Throughout the remainder of the paper, A1 refers to a set that satisfies the statement
of Lemma 6.1.

The following result concerns the convergence of certain quantities associated with a
sequence of branching processes when their offspring distributions converge in distribution.

Lemma 6.2. Suppose that a, ã, a(m), and ã(m) (m = 1, 2, . . . ) are probability distributions
satisfying a(m) → a and ã(m) → ã as m → ∞. Let Y (m) ∼ BP(1, a(m), ã(m)) (m =
1, 2, . . . ) and Y ∼ BP(1, a, ã). Then, denoting by Ŷ (m) and Ŷ the total progeny of Y (m) and
Y , respectively,

(i) limm→∞ P(Ŷ (m) = k) = P(Ŷ = k), k = 1, 2, . . . ;

(ii) limm→∞ P(Ŷ (m) = ∞) = P(Ŷ = ∞), provided ã1 �= 1.

Proof. Part (i) follows immediately by considering the sum of the probabilities of the finite
number of sample paths of Y (m) with Ŷ (m) = k. Part (ii) is a simple extension of Lemma 4.1
of Britton et al. (2007).

Remarks. 1. The condition in part (ii) of the lemma is in practice only a technical condition
which will always hold true. As pointed out by Britton et al. (2007), although the case ã1 = 1
really can be an exception (for example, if ã

(m)
0 = 1 − ã

(m)
1 = 1/m), such a scenario is, from

an applied viewpoint, decidedly pathological.

2. We sometimes use a slight variant of Lemma 6.2, where the branching processes are indexed
by ε ∈ (0, 1) and their offspring distributions converge as ε ↓ 0. Of course, the analogous
results hold, and the proof is exactly the same.

Lastly, we have a result concerning the probability of picking a ‘bad’ half-edge in our
constructions of the forward and backward processes.

Lemma 6.3. Suppose that, for each m = 1, 2, . . . , we draw elements uniformly at random,
with replacement, from the set J(m) = {1, 2, . . . , mµ

(m)
H }. Suppose also that, for each m,

there is an increasing sequence of (random) sets J(m)
1 ⊂ J(m)

2 ⊂ · · · ⊂ J(m) and at the

ith pick we wish to avoid picking a member of J(m)
i . Denote the ith pick by χ

(m)
i , and let

τ (m) = min{i : χ
(m)
i ∈ J(m)

i } − 1 be the number of picks we make before making a pick from a
set we wish to avoid. Suppose further that there exist strictly positive integers g(m) and h(m)

(m = 1, 2, . . . ) satisfying limm→∞ g(m)h(m)m−1 = 0 and

lim
m→∞ PD(ω1)(J

(m)
g(m) ≤ h(m)) = 1 (6.4)

for all ω1 ∈ A1, where J
(m)
i = |J(m)

i |. Then, for all ω1 ∈ A1,

lim
m→∞ PD(ω1)(τ

(m) > g(m)) = 1. (6.5)
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Proof. In view of (6.4), for ω1 ∈ A1,

lim inf
m→∞ PD(ω1)(τ

(m) > g(m))

= lim inf
m→∞ PD(ω1)(τ

(m) > g(m) | J
(m)
g(m) ≤ h(m)) PD(ω1)(J

(m)
g(m) ≤ h(m))

≥ lim inf
m→∞

(
1 − h(m)

mµ
(m)
H (ω1)

)g(m)

PD(ω1)(J
(m)
g(m) ≤ h(m))

≥ lim inf
m→∞

(
1 − g(m)h(m)

mµ
(m)
H (ω1)

)
PD(ω1)(J

(m)
g(m) ≤ h(m))

= 1,

using (6.4), Lemma 6.1(i), and the fact that g(m)h(m)m−1 → 0 as m → ∞. Assertion (6.5)
then follows.

6.4. Analysis of the forward process

6.4.1. Threshold theorem for the epidemic E(m). In order to prove a threshold theorem for the
epidemic, we first establish a bound for the size of the bad set of half-edges after k generations
of the epidemic E(m). Recall (from the discussion at the end of Section 6.2.1) that the number
of half-edges in this set is bounded by 2T̂

(m)
k+1.

Lemma 6.4. For all ω1 ∈ A1,

lim
m→∞ PD(ω1)(T̂

(m)
k > log m) = 0, k = 1, 2, . . . .

Proof. Fix ω1 ∈ A1. Then note that

ED(ω1)[T̂ (m)
k ] = µ(m)

r (ω1){1 + µ̃(m)
r (ω1) + (µ̃(m)

r (ω1))
2 + · · · + (µ̃(m)

r (ω1))
k}

and also that µ
(m)
r (ω1) ≤ µ̃

(m)
r (ω1) + 1. Thus, ED(ω1)[T̂ (m)

k ] ≤ (k +1)(µ̃
(m)
r (ω1)+1)k+1 and,

by Markov’s inequality,

PD(ω1)(T̂
(m)
k (ω1) > log m) ≤ k + 1

log m
(µ̃(m)

r (ω1) + 1)k+1.

The lemma now follows, since µ̃
(m)
r (ω1) → µ̃r as m → ∞ for all ω1 ∈ A1, by Lemma 6.1(iv).

For m = 1, 2, . . . , let Ẑ(m) denote the total number of households infected in epidemic
E(m), including the initial household, and let Ŷ (m) and Ŷ be the total progeny, including the
initial individual, of the branching processes Y (m) and Y , respectively. We now show that the
total number of households infected in E(m) converges in distribution to the total progeny of Y .

Theorem 6.1. For k = 1, 2, . . . ,

(i) for all ω1 ∈ A1, limm→∞ PD(ω1)(Ẑ
(m) = k) = P(Ŷ = k);

(ii) limm→∞ P(Ẑ(m) = k) = P(Ŷ = k).
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Proof. Fix ω1 ∈ A1, and let τ (m) be the number of households infected in E(m) before a
bad half-edge is chosen. Fix k ∈ N. Then

PD(ω1)(Ẑ
(m) = k) = PD(ω1)(Ẑ

(m) = k, τ (m) ≤ k) + PD(ω1)(Ẑ
(m) = k, τ (m) > k). (6.6)

Let J(m)
l , l = 1, 2, . . . be the set of half-edges we wish to avoid when choosing the lth household

to spread the epidemic to. Then J
(m)
k = |J(m)

k | ≤ 2T̂
(m)
k , so

PD(ω1)(J
(m)
k ≤ 2 log m) ≥ PD(ω1)(T̂

(m)
k ≤ log m) → 1

as m → ∞, by Lemma 6.4. Thus, using Lemma 6.3 with g(m) = k and h(m) = 2 log m,
limm→∞ PD(ω1)(τ

(m) > k) = 1. Therefore, limm→∞ PD(ω1)(Ẑ
(m) = k, τ (m) ≤ k) = 0 and,

recalling (6.6),

lim
m→∞ PD(ω1)(Ẑ

(m) = k) = lim
m→∞ PD(ω1)(Ẑ

(m) = k, τ (m) > k)

= lim
m→∞ PD(ω1)(Ŷ

(m) = k, τ (m) > k)

= lim
m→∞ PD(ω1)(Ŷ

(m) = k)

= P(Ŷ = k),

using Lemmas 6.1(iii) and 6.2(i), proving assertion (i). Furthermore,

lim
m→∞ P(Ẑ(m) = k) = lim

m→∞ E[PD(Ẑ(m) = k)] = P(Ŷ = k),

using the dominated convergence theorem, proving assertion (ii).

6.4.2. Early behaviour of major outbreaks. Theorem 6.1 shows that the total number of house-
holds infected in E(m) converges in distribution as m → ∞ to the total progeny of Y , so if
µ̃c ≤ 1 then only minor outbreaks can occur in the limit as m → ∞ (recall that R∗ = µ̃c). We
now assume that µ̃c > 1 and study the early behaviour of E(m) when a major outbreak occurs.
For m = 1, 2, . . . , let

tm =
⌊

2 log log m

log µ̃c

⌋
.

We obtain a bound on the size of the bad set of half-edges at time tm and show that, with
probability tending to 1 as m → ∞, in a major outbreak there are at least log m infected
households after tm generations of the epidemic process.

Lemma 6.5. There exists a β ∈ (1, ∞) such that, for all ω1 ∈ A1,

lim
m→∞ PD(ω1)(T̂

(m)
tm+1 ≥ (log m)β) = 0.

Proof. Fix ω1 ∈ A1, and note that, for all sufficiently large m,

ED(ω1)[T̂ (m)
tm+1] = µ(m)

r (ω1)(1 + µ̃(m)
r (ω1) + · · · + (µ̃(m)

r (ω1))
tm+1)

≤ µ(m)
r (ω1)

(µ̃
(m)
r (ω1))

tm+2

µ̃
(m)
r (ω1) − 1

.
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Thus, by Markov’s inequality, for such m,

PD(ω1)(T̂
(m)
tm+1 ≥ (log m)β) ≤ (µ̃

(m)
r (ω1))

tm+2

(log m)β

µ
(m)
r (ω1)

µ̃
(m)
r (ω1) − 1

. (6.7)

It is readily shown, by considering its logarithm and using Lemma 6.1(iv), that, for all suffi-
ciently large β, the right-hand side of (6.7) tends to 0 as m → ∞, and the lemma follows.

Lemma 6.6. For all ω1 ∈ A1,

lim
m→∞ PD(ω1)(Y

(m)
tm

> log m) = P(Ŷ = ∞).

Proof. Note that either (i) c and c̃ both have infinite support; or (ii) c and c̃ are supported on
{0, 1, . . . , ndmax} and {0, 1, . . . , ndmax − 1} (or subsets thereof), respectively, where dmax =
max{k : pk > 0}.

Consider (i) first. For sufficiently small ε > 0, let k0 = min{k : ∑∞
i=k+1 ci < ε}, ε′ =∑∞

i=k0+1 ci , k̃0 = min{k : ∑∞
i=k+1 c̃i < ε}, and ε̃′ = ∑∞

i=k̃0+1
c̃i , so ε′ < ε and ε̃′ < ε. Note

that k0 and k̃0 are well defined whenever ε < 1 − (c0 ∨ c̃0) (where a ∨ b = max(a, b)), and
also that both k0 and k̃0 tend to ∞ as ε ↓ 0. Now let Y ε = (Y ε

k , k = 0, 1, . . . ) ∼ BP(1, cε, c̃ε),
where cε has elements cε

i = ci + ε′/(k0 + 1) for i = 0, 1, . . . , k0 and cε
i = 0 for i > k0, and

c̃ε = (c̃ε
i , i = 0, 1, . . . ) is defined similarly but with ci , ε′, and k0 replaced by c̃i , ε̃′, and k̃0,

respectively. Also, let µε = ∑∞
k=1 kcε

k and µ̃ε = ∑∞
k=1 kc̃ε

k .

Now, note that
∑k

i=0 ci <
∑k

i=0 cε
i (k = 0, 1, . . . ), so µε < µc. We also have µε =∑k0

i=1 icε
i ≥ ∑k0

i=1 ici → µc as ε ↓ 0, so µε → µc as ε ↓ 0. Similarly, µ̃ε → µ̃c as
ε ↓ 0. Now fix ω1 ∈ A1. Then, by Lemma 6.1(iii), c(m)(ω1) → c and c̃(m)(ω1) → c̃

as m → ∞, so there exists an M(ε, ω1) such that, for all m ≥ M(ε, ω1), c
(m)
i (ω1) < cε

i

for i = 1, 2, . . . , k0 and c̃
(m)
i (ω1) < c̃ε

i for i = 1, 2, . . . , k̃0. Thus, for m ≥ M(ε, ω1) and
k = 0, 1, . . . ,

∑k
i=0 c

(m)
i (ω1) <

∑k
i=0 cε

i and
∑k

i=0 c̃
(m)
i (ω1) <

∑k
i=0 c̃ε

i (note, for example,
that

∑k
i=0 cε

i = 1 if k ≥ k0), whence Y (m)(ω1) ≥st Y ε, where ‘≥st’denotes stochastic ordering.
Therefore, for ω1 ∈ A1 and m ≥ M(ε, ω1),

PD(ω1)(Y
(m)
tm

> log m) ≥ P(Y ε
tm

> log m) = P

(
Y ε

tm

µεµ̃
tm−1
ε

>
log m

µεµ̃
tm−1
ε

)
. (6.8)

Now, note that
∑∞

i=1 c̃ε
i i log i < ∞ (the summand is 0 for i > k̃0), so by the well-known

result concerning the exponential growth of branching processes (see, for example, Haccou et
al. (2005, Theorem 6.1)), there exists a random variable W ε, which takes the value 0 if and
only if Y ε goes extinct (i.e. if and only if Ŷ ε = ∑∞

i=0 Y ε
i < ∞), such that

Y ε
tm

µεµ̃
tm−1
ε

→ W ε almost surely as m → ∞.

Next, since tm = 
2 log log m/ log µ̃c�, observe that, for suitable θm ∈ [0, 1),

log
log m

µεµ̃
tm−1
ε

=
(

1 − 2
log µ̃ε

log µ̃c

)
log log m + log

µ̃ε

µε

+ θm log µ̃ε.

Recalling that µ̃ε → µ̃c as ε → 0 we see that, for sufficiently small ε, log µ̃ε/ log µ̃c > 1
2 and,

thus, log m/(µεµ̃
tm−1
ε ) → 0 as m → ∞. It then follows from (6.8) that, for such ε,

lim inf
m→∞ PD(ω1)(Y

(m)
tm

> log m) ≥ P(W ε > 0) = P(Ŷ ε = ∞). (6.9)
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Now, cε → c and c̃ε → c̃ as ε ↓ 0, so letting ε ↓ 0 in (6.9) and using Lemma 6.2(ii) yields

lim inf
m→∞ PD(ω1)(Y

(m)
tm

> log m) ≥ P(Ŷ = ∞). (6.10)

Now, for k = 1, 2, . . . ,

lim sup
m→∞

PD(ω1)(Y
(m)
tm

> log m) ≤ lim sup
m→∞

PD(ω1)(Ŷ
(m) > log m)

≤ lim sup
m→∞

PD(ω1)(Ŷ
(m) > k)

= P(Ŷ > k),

using Lemmas 6.1(iii) and 6.2(i). Letting k → ∞ then yields

lim sup
m→∞

PD(ω1)(Y
(m)
tm

> log m) ≤ P(Ŷ = ∞),

which, together with (6.10), establishes the lemma.
In case (ii), a suitable lower bounding branching process is obtained by setting, for ε <

cndmax ∧ c̃ndmax−1 (where a ∧ b = min(a, b)), cε
i = ci + ε/(ndmax) (i = 0, 1, . . . , ndmax − 1),

cε
ndmax

= cdmax − ε, c̃ε
i = c̃i + ε/(ndmax − 1) (i = 0, 1, . . . , ndmax−2), and c̃ε

ndmax−1 = c̃ndmax−
1 − ε, and (6.10) follows as above.

For m = 1, 2, . . . and k = 0, 1, . . . , let Z
(m)
k denote the number of infectious households in

generation k of E(m).

Lemma 6.7. Let β be as in Lemma 6.5. Then, for all ω1 ∈ A1,

lim
m→∞ PD(ω1)(Z

(m)
tm

> log m, T̂
(m)
tm+1 < (log m)β) = P(Ŷ = ∞). (6.11)

Proof. Lemma 6.5 and Lemma 6.6 show that (6.11) holds with Z
(m)
tm

replaced by Y
(m)
tm

.
Application of Lemma 6.3, with g(m) = (log m)β and h(m) = 2(log m)β , then shows that
limm→∞ PD(ω1)(Z

(m)
tm

= Y
(m)
tm

) = 1, and the assertion follows.

Corollary 6.1. (i) For all ω1 ∈ A1, limm→∞ PD(ω1)(Ẑ
(m) > log m) = P(Ŷ = ∞);

(ii) limm→∞ P(Ẑ(m) > log m) = P(Ŷ = ∞).

Proof. Fix ω1 ∈ A1. For k = 1, 2, . . . ,

lim sup
m→∞

PD(ω1)(Ẑ
(m) > log m) ≤ lim sup

m→∞
PD(ω1)(Ẑ

(m) > k)

= P(Ŷ > k) (using Theorem 6.1(i)),

and letting k → ∞ yields

lim sup
m→∞

PD(ω1)(Ẑ
(m) > log m) ≤ P(Ŷ = ∞).

Also,
lim inf
m→∞ PD(ω1)(Ẑ

(m) > log m) ≥ lim inf
m→∞ PD(ω1)(Z

(m)
tm

> log m)

= P(Ŷ = ∞) (using Lemmas 6.5 and 6.7),

and assertion (i) follows. Assertion (ii) then follows using the dominated convergence theorem,
as in the proof of Theorem 6.1(ii).
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Note that Theorem 6.1 and Corollary 6.1 imply that if (hm) is any sequence of real numbers
satisfying hm → ∞ as m → ∞ and hm < log m for all m, then

lim
m→∞ PD(ω1)(Ẑ

(m) ∈ [hm, log m)) = 0 for all ω1 ∈ A1

and lim
m→∞ P(Ẑ(m) ∈ [hm, log m)) = 0.

Thus, for m = 1, 2, . . . , it is natural to define a major outbreak as one which infects at least
log m households, i.e. as one in which the event Ḡ(m) = {ω ∈ � : Ẑ(m)(ω) > log m} occurs.
Let G(m) = {ω ∈ � : Z

(m)
tm

> log m, T̂
(m)
tm+1 < (log m)β}, where β is as in Lemma 6.5. Clearly,

G(m) ⊆ Ḡ(m), and Lemma 6.5 and Corollary 6.1 imply that limm→∞ PD(ω1)(Ḡ
(m) \G(m)) = 0

for all ω1 ∈ A1 and limm→∞ P(Ḡ(m)\G(m)) = 0, so we can take G(m) as our working definition
of a major outbreak.

6.5. Analysis of the backward process

6.5.1. Lower bounding branching processes. We now analyse the ‘backward’ process, which
describes the generation-wise growth of the susceptibility set (and its neighbours) of a typical
individual that is susceptible at time tm in the forward process, in order to find the asymptotic
probability that such an individual is ultimately infected, given that a major outbreak occurs
(i.e. Z(m)

tm
> log m and T̂

(m)
tm+1 < (log m)β , where β is as in Lemma 6.5). To this end, it is fruitful

to have, for all sufficiently small ε > 0, a branching process εX
(m) which asymptotically

bounds S(m) from below until the susceptibility set covers a proportion ε of the households in
the population (cf. Whittle (1955)). In order to do this, we need an almost-sure bound, η̄(ε),
for the proportion of households that are neighbours of the susceptibility set when the size (in
terms of households) of the susceptibility set is at most εm, which we now obtain.

Suppose that D has infinite support. Recall the definitions of pH (·) and p̃H (·) from
Section 6.2.3. Let k1 = min{k : pH (k) > 0} and ε0 = 1 − pH (k1) − pH (k1 + 1). Then, for
ε ∈ (0, ε0), let

κ(ε) = max

{
k :

k∑
i=k1

pH (i) ∈ (0, 1 − ε)

}
, κ∗(ε) = max{k < κ(ε) : pH (k) > 0},

and η(ε) =
∞∑

i=κ∗(ε)
p̃H (i).

(The definition of κ∗(ε) requires κ(ε) > k1, which in turn requires ε < ε0.) Note that η(ε) ↓ 0
as ε ↓ 0. Let η̄(ε) = 2nµDη(ε) and, for m = 1, 2, . . . , let H

(m)
(1) , H

(m)
(2) , . . . , H

(m)
(m) be the order

statistics of the household degrees H1, H2, . . . , Hm.

Lemma 6.8. For any ω1 ∈ A1 and ε ∈ (0, ε0),

1

mµ
(m)
H (ω1)

m∑
k=m−
εm�+1

H
(m)
(k) (ω1) ≤ η(ε) (6.12)

and
1

m

m∑
k=m−
εm�+1

H
(m)
(k) (ω1) ≤ η̄(ε) (6.13)

for all sufficiently large m.
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Proof. Fix ω1 ∈ A1, and note that, for k = 0, 1, . . . ,

lim
m→∞

1

m

m∑
i=1

1{Hi(ω1)=k} = lim
m→∞

1

m

m∑
i=1

∑
{d : |d|=k}

1{Di (ω1)=d}

= lim
m→∞

∑
{d : |d|=k}

p
(m)
d (ω1)

=
∑

{d : |d|=k}
pd (using Lemma 6.1(ii))

= pH (k), (6.14)

whence

lim
m→∞

1

m

m∑
i=1

1{Hi(ω1)≥κ(ε)+1} = 1 − lim
m→∞

1

m

m∑
i=1

κ(ε)∑
j=0

1{Hi(ω1)=j}

=
∞∑

j=κ(ε)+1

pH (j).

Thus, since
∑∞

j=κ(ε)+1 pH (j) > ε (by the definition of κ(ε)), we have, for all sufficiently large
m, say m ≥ N0(ε, ω1), that m−1 ∑m

i=1 1{Hi(ω1)≥κ(ε)+1} > ε, whence H
(m)
(m−
εm�+1)(ω1) > κ(ε).

Hence, for m ≥ N0(ε, ω1),

1

mµ
(m)
H (ω1)

m∑
k=m−
εm�+1

H
(m)
(k) (ω1) ≤ 1

mµ
(m)
H (ω1)

m∑
i=1

∞∑
k=κ(ε)+1

k 1{Hi(ω1)=k}

= mµ
(m)
H (ω1) − ∑m

i=1
∑κ(ε)

k=0 k 1{Hi(ω1)=k}
mµ

(m)
H (ω1)

= 1 − 1

µ
(m)
H (ω1)

κ(ε)∑
k=0

k

m

m∑
i=1

1{Hi(ω1)=k}

→ 1 −
κ(ε)∑
k=1

p̃H (k)

=
∞∑

k=κ(ε)+1

p̃H (k)

as m → ∞, using (6.14) and Lemma 6.1(i). Assertion (6.12) follows upon recalling the
definition of κ∗(ε). The second assertion, (6.13), follows from the first assertion after applying
Lemma 6.1(i) and recalling the definition of η̄(ε).

Remarks. 1. If dmax < ∞ (i.e. D has finite support) then it is readily seen that Lemma 6.8
holds with η(ε) = 2dmaxε/µD and η̄(ε) = ndmaxε.

2. For ω1 ∈ A1, Lemma 6.8 provides, for all sufficiently large m, a bound for the number
of half-edges that emanate from households in a susceptibility set (and, hence, also for the
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number of households neighbouring a susceptibility set), if the susceptibility set contains no
more than εm households. The number of such half-edges, H(m)(ε) say, is given by the sum
of the degrees of the households in the susceptibility set, which is bounded by the sum of the
degrees of the 
εm� households of highest degree. Thus, by (6.13), H(m)(ε) ≤ mη̄(ε) for all
sufficiently large m.

Recall from Section 6.2.2 that the coupling of the susceptibility set process S(m) and its
approximating branching process X(m) breaks down when a half-edge is sampled that emanates
from an appropriate bad set of households. This can happen in two fundamentally different
ways. First, a half-edge through which we try to extend the susceptibility set may be paired
up with another half-edge through which we want to extend the susceptibility set in the same
generation. Note that in this case, neither of the two half-edges concerned actually extends the
susceptibility set. Second, the half-edge may be paired with a bad half-edge which is not one
through which we wish to extend the susceptibility set in the current generation, in which case
the susceptibility set may still be extended, though the offspring distribution is different to that
in the branching process. We treat these two cases sequentially.

For m = 1, 2, . . . and k = 0, 1, . . . , let X̂
(m)
k = ∑k

i=0 X
(m)
i be the total number of

individuals that have lived in the approximating branching process X(m) by time k, and let
Ŵ

(m)
k = ∑k

i=0 S
(m)
i be the total number of households in the susceptibility set process S(m) up

to and including generation k. Furthermore, let X̂(m) = ∑∞
i=0 X

(m)
i and Ŵ (m) = ∑∞

i=0 S
(m)
i .

Suppose that ω1 ∈ A1. Then, for all sufficiently large m, while Ŵ
(m)
k ≤ εm, the probability that

a half-edge is paired with another half-edge through which we want to extend the susceptibility
set in the same generation is no more than η(ε). For such m, suppose that at some generation k

there are X
(m)
k−1 = i ‘live’ half-edges through which we attempt to extend the susceptibility set.

Denote by YL the number of these half-edges that do not pair up with another of these i live
half-edges, and let Y̌L ∼ Bin(i, 1 − √

η(ε)). We now show that YL ≥st Y̌L.
First, define another random variable ŶL as follows. Take a live half-edge, then with

probability η(ε) pair it up with another live half-edge, otherwise it ‘survives’ to be connected
with a nonlive half-edge. Repeat this process until all live half-edges have been either paired
up or designated to survive. Note that if there is a single live half-edge left at the end of
this procedure, it must survive. Let ŶL be the number of surviving half-edges under this
regime. Since the proportion of half-edges that are actually live is less than η(ε), YL ≥st ŶL.
We now show that ŶL ≥st Y̌L by describing these two random variables as the number of
renewals of a discrete-time renewal process by time i and showing that the corresponding
lifetime distributions, T̂ and Ť say, satisfy T̂ ≤st Ť . This we achieve by taking a lifetime in
the renewal process as being the number of half-edges examined to find a surviving half-edge.
It is immediate that P(Ť = k) = (1 − η(ε)1/2)η(ε)(k−1)/2, k = 1, 2, . . . . Now, since pairing
one live half-edge with another obviously uses up two half-edges, T̂ cannot take even values
and P(T̂ = 2k + 1) = (1 − η(ε))η(ε)k, k = 0, 1, . . . . An elementary calculation shows that
P(T̂ ≥ k) ≤ P(Ť ≥ k), k = 1, 2, . . . , so Ť ≥st T̂ , whence ŶL ≥st Y̌L.

The above argument shows that, in a given generation, the number of half-edges that survive
to be paired with nonlive half-edges is stochastically larger than if they survive independently
with probability 1 − √

η(ε). Now consider a live half-edge that survives this first stage and,
thus, is paired with a half-edge chosen uniformly at random from all the nonlive half-edges. The
probability that it avoids being paired with a half-edge from the bad set is therefore larger than
if it were paired with a half-edge chosen uniformly at random from all of the half-edges. Recall
that p̃

(m)
d is the probability that a half-edge chosen at random from all mµ

(m)
H half-edges in the
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population emanates from a household of type d. Furthermore, for ω1 ∈ A1 and sufficiently
large m, conditional on choosing a household of type d, if Ŵ

(m)
k ≤ εm and Y

(m)
tm

< (log m)β

then the probability of choosing a bad household is bounded above by

γ̃
(m)
d (ε) = (log m)β + εm + η̄(ε)m

mp̃
(m)
d

∧ 1.

This bound is obtained by noting that, under the stated conditions, there are fewer than (log m)β

bad households from the forward process, fewer than εm households in the susceptibility set,
and fewer than η̄(ε)m households that are neighbours of the susceptibility set; and then assuming
that all of these bad households are of type d.

It follows from this discussion that, for all sufficiently large m, if Y
(m)
tm

< (log m)β then,
while Ŵ

(m)
k ≤ εm, the susceptibility set process S(m) is stochastically larger than a branching

process, εX
(m) say, in which each potential birth (live half-edge) is aborted independently

with probability
√

η(ε) and the potential offspring (live half-edges) of an unaborted birth are
obtained by first sampling d according to p̃

(m)
d , then with probability γ̃

(m)
d (ε), this unaborted

birth is aborted at this stage and otherwise its potential offspring is distributed according to the
random variable 
̃d defined at the end of the paragraph following (6.3).

The number, X̄
(m)
1 say, of potential births that emanate from the initial individual in the

susceptibility set may be found as follows. First a household is chosen uniformly at random from
the households not infected by time tm in the forward process. Suppose that this household is of
type d . Then, if this household is not a neighbour of a household in the forward process, X̄

(m)
1

is distributed according to the random variable 
d , also defined in the paragraph immediately
following (6.3). If the sampled household is a neighbour of a household in the forward process
then X̄

(m)
1 has a different distribution. Suppose that T̂

(m)
tm+1 < (log m)β . Then the number of

households that are neighbours of the forward process is less than 2(log m)β and it follows
that X̄

(m)
1 is stochastically larger than a random variable, ¯̄X(m)

1 say, obtained by first sampling
d according to p

(m)
d and then setting ¯̄X(m)

1 = 0 with probability γ
(m)
d = 2(log m)β/mp

(m)
d ∧ 1,

otherwise ¯̄X(m)

1 is distributed according to 
d .

Assume that there is a single ancestor in the branching process εX
(m), which has a number

of potential offspring distributed as ¯̄X(m)

1 . We now have a complete description of how εX
(m)

evolves. Let εX̂
(m) and εŴ

(m) respectively be the total number of potential and unaborted
births in εX

(m). Recall the event G(m) defined at the end of Section 6.4.2, giving our working
definition of a major outbreak. The above arguments show that

PD(ω1)(Ŵ
(m) > 
εm� | G(m)) ≥ PD(ω1)(εŴ

(m) ≥ 
εm�)
≥ PD(ω1)(εŴ

(m) = ∞)

= PD(ω1)(εX̂
(m) = ∞). (6.15)

For the branching process εX
(m), let εb

(m) = (εb
(m)
0 ,ε b

(m)
1 , . . . ) denote the distribution of

the number of potential offspring of the initial individual and let εb̃
(m) = (εb̃

(m)
0 ,ε b̃

(m)
1 , . . . )
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denote the distribution of the number of potential offspring of a typical potential birth. Then

εb
(m)
0 =

∑
d∈Z

n+

p
(m)
d (γ

(m)
d + (1 − γ

(m)
d ) P(
d = 0)),

εb
(m)
k =

∑
d∈Z

n+

p
(m)
d (1 − γ

(m)
d ) P(
d = k), k = 1, 2, . . . ,

εb̃
(m)
0 = √

η(ε) + (1 − √
η(ε))

∑
d∈Z

n+

p̃
(m)
d (γ̃

(m)
d (ε) + (1 − γ̃

(m)
d (ε)) P(
̃d = 0)),

and

εb̃
(m)
k = (1 − √

η(ε))
∑

d∈Z
n+

p̃
(m)
d (1 − γ̃

(m)
d (ε)) P(
̃d = k), k = 1, 2, . . . .

Note that εb
(m) does not depend on ε; however, it is distinct from b(m) and we retain the notation

εb
(m) to indicate that it is associated with the branching process εX

(m).
The following lemma is useful for determining the limits of the distributions εb

(m) and εb̃
(m)

as m → ∞. Its proof is standard and is hence omitted.

Lemma 6.9. Suppose that, for all d ∈ Z
n+ and m = 1, 2, . . . , the real numbers

(i) p
(m)
d and pd are nonnegative and satisfy p

(m)
d → pd as m → ∞, and

∑
d∈Z

n+ p
(m)
d =∑

d∈Z
n+ pd = 1;

(ii) α
(m)
d and αd belong to [0, 1] and satisfy α

(m)
d → αd as m → ∞;

(iii) cd belongs to [0, 1].
Then, as m → ∞, ∑

d∈Z
n+

p
(m)
d α

(m)
d cd →

∑
d∈Z

n+

pdαdcd .

For d ∈ Z
n+ and ε ∈ (0, ε0), let

γ̃d(ε) =
⎧⎨
⎩

(
ε + η̄(ε)

p̃d

)
∧ 1 if p̃d > 0,

0 if p̃d = 0.

Lemma 6.10. For all ω1 ∈ A1, limm→∞ εb
(m) = b and limm→∞ εb̃

(m) = εb̃, where b =
(b0, b1, . . . ) is as in Section 6.2.3, and εb̃ = (εb̃0,ε b̃1, . . . ) is given by

εb̃0 = √
η(ε) + (1 − √

η(ε))
∑

d∈Z
n+

p̃d(γ̃d(ε) + (1 − γ̃d(ε)) P(
̃d = 0))

and

εb̃k = (1 − √
η(ε))

∑
d∈Z

n+

p̃d(1 − γ̃d(ε)) P(
̃d = k), k = 1, 2, . . . .

Proof. Note that, for ω1 ∈ A1, γ
(m)
d (ω1) → 0 and γ̃

(m)
d (ε, ω1) → γd(ε) as m → ∞ (for

all d with pd > 0). The required assertions then follow using Lemma 6.9.
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Remark. It is easily verified that
∑∞

k=0 εb̃k = 1, i.e. that εb̃ is a proper probability distribution.

Recall the definition of ε0 in the paragraph preceding Lemma 6.8 and, for ε ∈ (0, ε0), let
εX = (εXk, k = 0, 1, . . . ) ∼ BP(1, b,ε b̃). Let εX̂ denote the total progeny of εX, excluding
the ancestor. Let (X̂, X̂A) denote the total progeny of the branching process (X, XA) (defined at
the end of Section 6.2.3), including the ancestor. Also, let X̂(m)

A = ∑∞
i=0 X

(m)
Ai , so (X̂(m), X̂

(m)
A )

is the total progeny of (X(m), X
(m)
A ).

Lemma 6.11. (i) For all ω1 ∈ A1,

(a) limm→∞ PD(ω1)(X̂
(m) + X̂

(m)
A = k) = P(X̂ + X̂A = k), k = 1, 2, . . . ;

(b) limm→∞ PD(ω1)(X̂
(m) + X̂

(m)
A = ∞) = P(X̂ = ∞).

(ii) For all ω1 ∈ A1 and ε ∈ (0, ε0),

(a) limm→∞ PD(ω1)(εX̂
(m) = k) = P(εX̂ = k), k = 1, 2, . . . ;

(b) limm→∞ PD(ω1)(εX̂
(m) = ∞) = P(εX̂ = ∞).

Proof. For all ω1 ∈ A1 and d ∈ Z
n+, p

(m)
d (ω1) → pd and p̃

(m)
d (ω1) → p̃d as m → ∞, so,

using Scheffé’s theorem, b(m)(ω1) → b and b̃(m)(ω1) → b̃ as m → ∞. Part (i)(b) then follows
using Lemma 6.2(ii) and noting that, almost surely, X̂(m) + X̂

(m)
A = ∞ if and only if X̂(m) = ∞.

A similar argument shows that, for all ω1 ∈ A1, the offspring laws of (X(m), X
(m)
A ) converge to

those of (X, XA) as m → ∞. Part (i)(a) then follows from the extension of Lemma 6.2(i) to
two-type branching processes. Part (ii) of the lemma follows immediately from Lemmas 6.2
and 6.10.

6.5.2. Relative final size of a major outbreak. For m = 1, 2, . . . , let B(m) be the event that an
individual chosen uniformly at random from all individuals that are susceptible at time tm in
the forward process is ultimately infected by the epidemic E(m). Thus, if A(m) denotes the set
of global neighbours of S(m) then B(m) occurs if and only if one of the Z

(m)
tm

‘live’ half-edges
from the forward process is paired in the construction of S(m) ∪ A(m). Recall the working
definition of a major outbreak, viz. G(m) = {Z(m)

tm
> log m, T̂

(m)
tm+1 < (log m)β}, where β is as

in Lemma 6.5.

Theorem 6.2. For all ω1 ∈ A1,

lim
m→∞ PD(ω1)(B

(m) | G(m)) = P(X̂ = ∞).

Proof. For m = 1, 2, . . . , let T
(m)
P be the number of half-edge pairings made in the

construction of S(m) ∪ A(m) until one of the Z
(m)
tm

live half-edges from the forward process
is chosen. In determining T

(m)
P it is assumed that, if necessary, the pairings continue after

S(m) ∪ A(m) goes extinct and that T
(m)
P includes the pairing when the first live half-edge is

chosen.
Fix ω1 ∈ A1. First we obtain an upper bound for PD(ω1)(B

(m) | G(m)). For all fixed k ∈ N,

1 − PD(ω1)(B
(m) | G(m)) ≥ PD(ω1)(T

(m)
P > k, X̂(m) + X̂

(m)
A ≤ k, τ̄ (m) > k | G(m)), (6.16)

where τ̄ (m) is the number of households in the construction of S(m) ∪ A(m) when the first bad
half-edge is chosen. Note that τ̄ (m) = 1 if the initial individual in (X(m), X

(m)
A ) belongs to the

set of bad households at time tm in the forward process. Given G(m), the number of such bad
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households is less than (log m)β , so PD(ω1)(τ̄
(m) = 1 | G(m)) → 0 as m → ∞. Arguing as in

the proof of Theorem 6.1 then shows that, for all k ∈ N,

lim
m→∞ PD(ω1)(τ̄

(m) > k | G(m)) = 1. (6.17)

Let Q(m) denote the number of half-edges used up to time tm in the forward process. Now,
for all k ∈ N,

PD(ω1)(T
(m)
P > k | G(m), Q(m), Z

(m)
tm

) =
k∏

i=1

mµ
(m)
h (ω1) − Q(m) − 2(i − 1) − Z

(m)
tm

mµ
(m)
h (ω1) − Q(m) − 2(i − 1)

(6.18)

and, since we have conditioned on G(m), Q(m) < 2(log m)β and Z
(m)
tm

< 2(log m)β . It then
follows from (6.18) that

lim
m→∞ PD(ω1)(T

(m)
P > k | G(m)) = 1 for all k ∈ N. (6.19)

Letting m → ∞ in (6.16), using (6.17) and (6.19), and noting that X̂(m) + X̂
(m)
A and G(m) are

conditionally independent given D(ω1), yields, for all k ∈ N,

lim sup
m→∞

PD(ω1)(B
(m) | G(m)) ≤ lim sup

m→∞
PD(ω1)(X̂

(m) + X̂
(m)
A > k)

= P(X̂ + X̂A > k),

using Lemma 6.11(i)(a). Letting k → ∞ then yields

lim sup
m→∞

PD(ω1)(B
(m) | G(m)) ≤ P(X̂ = ∞). (6.20)

Now we obtain a lower bound for PD(ω1)(B
(m) | G(m)). First note, using (6.18), that for any

ε ∈ (0, 1), we have

PD(ω1)(T
(m)
P > 
εm� | G(m)) ≤

(
1 − log m

mµ
(m)
H (ω1)

)
εm�
≤ exp

(−
εm� log m

mµ
(m)
H (ω1)

)
.

Now, µ
(m)
H (ω1) → nµD as m → ∞ (since ω1 ∈ A1), so 
εm� log m/mµ

(m)
H (ω1) → ∞ as

m → ∞, whence
lim

m→∞ PD(ω1)(T
(m)
P ≤ 
εm� | G(m)) = 1. (6.21)

Also, note that, since S(m) is obviously contained in S(m) ∪ A(m),

PD(ω1)(B
(m) | G(m)) ≥ PD(ω1)(T

(m)
P ≤ 
εm�, Ŵ (m) > 
εm� | G(m)) (6.22)

for any ε ∈ (0, 1). Thus, using (6.21) and (6.22), then (6.15) and Lemma 6.11(ii)(b), for any
ε ∈ (0, ε0),

lim inf
m→∞ PD(ω1)(B

(m) | G(m)) ≥ lim inf
m→∞ PD(ω1)(Ŵ

(m) > 
εm� | G(m))

≥ lim inf
m→∞ PD(ω1)(εX̂

(m) = ∞)

= P(εX̂ = ∞). (6.23)
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It is easily verified, using the dominated convergence theorem, that (εb,ε b̃) → (b, b̃) as ε ↓ 0,
so letting ε ↓ 0 in (6.23) and using Lemma 6.2(ii) yields

lim inf
m→∞ PD(ω1)(B

(m) | G(m)) ≥ P(X̂ = ∞),

which together with (6.20) establishes the assertion of the theorem.

For m = 1, 2, . . . , let Z̄(m)
k be the total number of individuals infected by time k in the forward

epidemic process E(m) (k = 0, 1, . . . ) and let Z̄(m) denote the total number of individuals who
are ultimately infected in E(m).

Corollary 6.2. (i) For all ω1 ∈ A1, limm→∞(1/mn) ED(ω1)[Z̄(m) | G(m)] = P(X̂ = ∞);

(ii) limm→∞(1/mn) E[Z̄(m) | G(m)] = P(X̂ = ∞).

Proof. Fix ω1 ∈ A1. For m = 1, 2, . . . , let X̄tm denote the number of susceptible individuals
at time tm in the forward process, and label these individuals 1, 2, . . . , X̄tm . Then

Z̄(m) = Z̄
(m)
tm

+
X̄tm∑
i=1

1{i ultimately infected} .

Given the occurrence of G(m), Z̄
(m)
tm

< 2n(log m)β and X̄tm > nm − 2n(log m)β . Thus,

lim
m→∞

1

mn
ED(ω1)[Z̄(m) | G(m)] = lim

m→∞ PD(ω1)(B
(m) | G(m)),

and assertion (i) follows using Theorem 6.2. Assertion (ii) then follows by the dominated
convergence theorem.

Finally, note from the discussion at the end of Section 6.4.2 that Corollary 6.2 holds with
G(m) replaced by Ḡ(m), where Ḡ(m) is the event that the epidemic E(m) infects at least log m

households.

7. Concluding comments

We have analysed the spread of an SIR epidemic within a population structure that features
some significant departures from traditional homogeneous mixing; specifying both a local
household structure and using random networks with an arbitrary degree distribution (with
finite variance) to model potential ‘global’ contacts. Rigorous limit theorems were obtained,
valid as the number of households m tends to ∞, from which one can determine the probability
of a major outbreak and the expected relative final size of such an outbreak. The potential
usefulness of these results was verified by showing, numerically, that these asymptotic results
provide good approximations for the behaviour of moderately sized finite populations.

As stated in Section 2, our results easily generalise to allow for unequal household sizes. For
example, we can decompose R∗ in a variable household size framework as R∗ = ∑∞

n=1 ρ̃nR
(n)∗ ,

where ρ̃n is the size-biased proportion of households of size n and R
(n)∗ is the threshold parameter

R∗ in the case of a fixed household size n. (The size bias of ρ̃n arises because if a proportion ρn

of households are of size n then an individual chosen uniformly at random is in a household of
size n with probability proportional to nρn; thus, we require that

∑∞
n=1 nρn < ∞.) Full details

of this generalisation will appear in a forthcoming paper, which will discuss our model from a
more applied viewpoint.
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Another condition that we have required is that the variance, σ 2
D , of the degree distribution

is finite. Whilst this is necessary for all of our proofs, the PGFs of C, C̃, B, and B̃ are all well
defined so long as µD < ∞, and numerical studies (along the lines of those encompassed by
Figure 3) indicate that our methods at least give good approximations when σ 2

D = ∞. This is
particularly relevant in light of several of the studies cited in Newman (2003, Section III.C),
which suggest that degree distributions which asymptotically follow some power law are
appropriate models in some real-world situations. We note, however, that when σ 2

D = ∞, it is
not known (to the authors’knowledge) whether self-loops and parallel edges remain sufficiently
sparse in the network, so the argument that our results continue to hold if we condition on there
being no such imperfections (second paragraph of Section 2) may not be valid.

Of course, there are other features of our model that in many circumstances will be unrealistic.
In particular, the method of construction of the random graph—pairing the half-edges uniformly
at random—ensures not only that there are (asymptotically) very few 1-cycles (self-loops)
and 2-cycles (parallel edges) in the resulting multigraph, but also that there are very few
3-cycles (triangles). Thus, in the asymptotic model that we analyse, individuals have no mutual
acquaintances outside their household, which is unrealistic. Similarly, the random graph model
has very few edges which join individuals in the same pair of households, i.e. the acquaintances
of two individuals are, with probability close to 1, all in distinct households. That this is
the case stems from the construction of the random graph: although there is heterogeneity
amongst the individuals (through differing degrees), the uniformly at random pairing of half-
edges means that the mixing is still homogeneous—this being critical for the branching process
approximations. In this sense it seems fair to say that our model incorporates some heterogeneity
of both the individuals in the population (via the differing degrees of individuals and varying
household sizes) and their mixing (having both local and global infection).

Nevertheless, our model does capture some important heterogeneities which are present in
real populations and which doubtless have a significant effect on the spread of disease through
these populations. Some additional features, such as having the degree distribution D or the
infection rates λL and λG depend on household size or incorporating correlation between the
degrees of individuals within the same household, can in principle be included in our model
relatively simply, though the calculations quickly become very cumbersome.

The usual approach for obtaining fully rigorous results concerning the final size of a major
epidemic on a random network is via the existence and uniqueness of a giant component in an
associated bond percolation model (see, for example, Britton et al. (2007) and the discussion in
Section 4 of Britton et al. (2008)). This requires that the infectious period is constant (though
see Kenah and Robins (2007)) and fully rigorous results concerning the component structure
of the percolation model, which may not be easy to prove. We have developed a different
approach, which does not require a constant infectious period. Although not the focus of the
paper, it seems plausible that our methods can be used to prove existence and uniqueness of
a giant component for our random network (and indeed for other network models) and that
they might also be applicable to epidemics on other random graph models, such as the random
intersection graph considered in Britton et al. (2008).

Further study of this model will include an analysis of the effect of vaccination on epidemic
spread (work ongoing) and it seems likely that a central limit theorem for the final size of a
major outbreak might be derived using methods similar to those of Ball and Neal (2008).
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