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Abstract

A cover of a group is a finite collection of proper subgroups whose union is the whole group. A cover is
minimal if no cover of the group has fewer members. It is conjectured that a group with a minimal cover
of nilpotent subgroups is soluble. It is shown that a minimal counterexample to this conjecture is almost
simple and that none of a range of almost simple groups are counterexamples to the conjecture.
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1. Introduction

A finite collection of subgroups of a group whose union is the whole group is a
cover of the group. The first result on covers seems to have come from Miller [12].
Many different aspects of covers have been studied and applications found in geometry
(translation planes) and number theory (for example, Kronecker classes of fields). The
reader is referred to the survey article [14] for a discussion of a range of results on
covers of groups and some of these applications.

A cover is irredundant if no proper subcollection is also a cover. A minimal cover is
irredundant and no collection of subgroups with fewer members is a cover. The earliest
results on minimal covers appear in Cohn [7] and Tomkinson [18]. In [4] minimal
covers of GL2(q) and related groups are described. The articles of Maróti [11] and
Britnell et al. [3] provide much information about the size of minimal covers of the
alternating and symmetric groups, and for a wide class of linear groups. In [9] the sizes
of minimal covers for a selection of sporadic simple groups are determined. Every
finite group has, of course, an irredundant cover of abelian, even cyclic, subgroups.
However the present authors showed in [5] that a group with a minimal cover of abelian
subgroups is soluble of very restricted structure. In this note we collect some results

c© 2009 Australian Mathematical Society 1446-7887/09 $A2.00+ 0.00

353

https://doi.org/10.1017/S1446788708000670 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000670


354 R. A. Bryce and L. Serena [2]

on groups that admit a minimal cover with all members nilpotent, a nilpotent minimal
cover in short. The nonnilpotent groups in this class can be viewed as generalisations
of minimally nonnilpotent groups. We conjecture that groups admitting a nilpotent
minimal cover are soluble. As a first step towards a possible proof of this we show, in
the next section, that if there is an insoluble group admitting a nilpotent minimal cover
there is a finite, almost simple one.

In Section 3 we derive a number of conditions that are necessary in order for a
group to admit a nilpotent minimal cover. In Section 4 we limit the range of possible
counterexamples to our conjecture by showing that the groups of certain classes of
almost simple groups violate these conditions.

For ease of reference we list here two easy lemmas concerning a minimal cover
A= {A1, . . . , An} of a group G: proofs are left to the reader.

LEMMA 1.1. If N � G, then either G = Ai N for some i or {Ai N/N : 1≤ i ≤ n} is
a minimal cover for G/N.

LEMMA 1.2. For 1≤ i < j ≤ n, 〈Ai , A j 〉 = G.

2. Minimal counterexample

Let G be an insoluble group with a nilpotent minimal cover, A= {A1, . . . , An}

say. Write D for the intersection of the cover so that |G : D| is finite by a result of
Neumann [13]. Since C := coreG(D) is nilpotent, G/C is insoluble. Moreover, G/C
is finite, as it embeds in the symmetric group of degree |G : D| and, by Lemma 1.1,
{Ai C/C : 1≤ i ≤ n} is a nilpotent minimal cover of G/C . We prove more.

PROPOSITION 2.1. If there is an insoluble group admitting a nilpotent minimal cover
there is a finite, almost simple one.

We assume that G is a finite, insoluble group of smallest order admitting a nilpotent
minimal cover {A1, A2, . . . , An}. Our proof that G is almost simple begins with two
lemmas.

LEMMA 2.2. G is monolithic with nonabelian monolith.

PROOF. If W is an arbitrary minimal normal subgroup of G, then G/W is soluble
either because W Ai = G for some i , and then G/W ∼= Ai/Ai ∩W is nilpotent; or
because there is no such i and then {Ai W/W : 1≤ i ≤ n} is a nilpotent minimal cover
for G/W by Lemma 1.1 so, by the minimality of G, G/W would be soluble. This
shows at once that W is not abelian, or G would be soluble. If X is a minimal normal
subgroup other than W , then W ∩ X = 1 and G embeds in G/W × G/X which would
be soluble, a contradiction. We have therefore proved what was claimed. 2

Now let U be the monolith of G so that U = S1 × S2 × · · · × Sm where S1 ∼=

Si (1≤ i ≤ m) and S1 is nonabelian and simple. Moreover {S1, S2, . . . , Sm} is a
conjugacy class of G. If m = 1, then G is almost simple, so suppose that m > 1.
We denote by N the normaliser in G of S1. Note that U ≤ N 6= G.
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LEMMA 2.3. If Ai 6≤ N and Ai ∩ S1 6= 1 then |Ai : Ai ∩ N | and |Ai ∩ S1| are powers
of the same prime, p say; and p′-elements of Ai are in N.

PROOF. Since Ai is nilpotent there is a composition chain from Ai ∩ N to Ai : let
V1/V2 be one of its factors whose order, a prime, is p, say. A p-element in V1 \ V2
centralises each p′-element of S1 ∩ Ai since Ai is nilpotent but, on the other hand,
conjugates it into an S j whose intersection with S1 is trivial. That is Ai ∩ S1 is a
p-group. The same argument shows that all factors in the chain above Ai ∩ N are
of this same order p. Consequently |Ai : Ai ∩ N | is a power of p. Since Ai ∩ N is
subnormal in Ai all p′-elements of Ai are in N . 2

We resume the proof of Proposition 2.1. At most one of the Ai is in N by
Lemma 1.2; and not all of the Ai not in N intersect S1 trivially as S1 is not contained
in an A j . We renumber the Ai , if necessary, so that

Ai 6≤ N (1≤ i ≤ n − 1) and Ai ∩ S1 6= 1 (1≤ i ≤ r) where r ≤ n − 1.

Let us assume, for now, that G/U is nilpotent. We write P for the set of those
primes that divide the indices |Ai : Ai ∩ N | (1≤ i ≤ r); and for p ∈ P let Tp/U be
the Sylow p-subgroup of G/U . If p | |Ai : Ai ∩ N | then Ai ≤ Tp N by Lemma 2.3;
note that Tp � G so that Tp N is a subgroup. By Lemma 1.2 no two Ai are in the same
Tp N unless Tp N = G. That is either |P| = r or |P| = 1.

Now
S1 = (S1 ∩ A1) ∪ (S1 ∩ A2) ∪ · · · ∪ (S1 ∩ Ar ) ∪ (S1 ∩ An)

where the first r terms in the union are subgroups of prime-power order either all for
the same prime or for r different primes. In the first case choose another prime, q say,
dividing |S1|, and then all Sylow q-subgroups of S1 are in S1 ∩ An yielding S1 ≤ An ,
a contradiction to the nilpotence of An . In the second case for each i ∈ {1, 2, . . . , r}
there is a Sylow subgroup X i of S1, not containing S1 ∩ Ai , but involving the same
prime. Therefore, X i ≤ S1 ∩ An and, of course, Sylow subgroups of S1 for all primes
not in P are all in S1 ∩ An so S1 ≤ An , again a contradiction.

Hence, G/U is not nilpotent and so U Ai 6= G (1≤ i ≤ n). The subgroups U Ai/U
together form a nilpotent minimal cover of G/U so, by the minimality of G, G/U is
soluble. The following information about such a group was given in [5, Theorem 11].
Let Z/U be the hypercentre of G/U . Then G/Z is monolithic: let K/Z be its
monolith, an elementary abelian t-group where t is prime. Here G/K is cyclic of order
co-prime to t . (The group G/Z is Frobenius.) Also Z =U Ai ∩U A j (1≤ i < j ≤ n)
and one of the members of this cover is K/U ; we assume that it is U An/U . The others
are, modulo Z/U , the complements for K/U in G/U . Also note that U ≤ Z ≤U Ai
gives

Z =U (Z ∩ Ai ) (1≤ i ≤ n) and Z = (Z ∩ N )(Z ∩ Ai ) 1≤ i ≤ n. (1)

Case 1: Z 6≤ N. Then Z ∩ Ai 6≤ N (1≤ i ≤ n). By Lemma 2.3 |Z ∩ Ai : Ai ∩ Z ∩ N |
is a prime power for some prime p and S1 ∩ Ai is a p-subgroup whenever S1 ∩ Ai 6= 1.
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However (1) shows that

|Z : Z ∩ N | = |Z ∩ Ai : Ai ∩ Z ∩ N |

so p is the same for all i for which S1 ∩ Ai 6= 1, meaning that S1 is a union of
p-subgroups, a contradiction.

Case 2: Z ≤ N . First we prove a useful lemma.

LEMMA 2.4. Let H = V L be a Frobenius group where the kernel V is elementary
abelian and L is a complement for V . Assume that L1, L2 are proper subgroups
of L whose indices in L are co-prime and where L2 � L. Let 1 6= v ∈ V . Then
〈L1, Lv2〉 = H.

PROOF. Write T := 〈L1, Lv2〉. Modulo V , H = T so T acts, by conjugation,
irreducibly on V . Also T ∩ V � H so, if T ∩ V 6= 1, T = H , as required. Suppose
that T ∩ V = 1. Then T ∩ L ≥ L1 6= 1 so T = L as H is Frobenius and then

[L2, v] ≤ 〈L2, Lv2〉 ≤ L ∩ V = 1.

However, L2 contains every Sylow subgroup of L for primes dividing |L : L1| so there
is a nontrivial normal subgroup of L with nontrivial centraliser in V contradicting that
L acts faithfully and irreducibly on V . 2

Now N 6= G as m > 1 so no two of {Ai | 1≤ i ≤ n − 1} are in N ; let us say
Ai 6≤ N (1≤ i ≤ n − 2). We assume that S1 ∩ Ai 6= 1 (1≤ i ≤ s ≤ n − 2); note that
s ≥ 2 as S1 is not coverable by three or fewer of the Ai s. By Lemma 2.3 each
|Ai : Ai ∩ N | (1≤ i ≤ s) is a prime power. If two of these indices, say for i = 1, 2,
were co-prime then, by Lemma 2.4 and working modulo Z ,

N ≥ 〈N ∩ A1, N ∩ A2〉 = G,

which is a contradiction. It follows that

S1 = X1 ∪ X2 ∪ · · · ∪ Xs ∪ (S1 ∩ An−1) ∪ (S1 ∩ An)

where X j (1≤ j ≤ s) are p-groups for the same prime p. Note that p 6= t . If
U An = K 6≤ N , so that An 6≤ N , it follows from Lemma 2.3 that S1 ∩ An is a t-group
(possibly trivial). Now S1 is insoluble so, by Burnside’s theorem, there is a prime q ,
different from both p and t , dividing |S1|. All Sylow q-subgroups of S1 are therefore
in S1 ∩ An−1 yielding S1 ≤ An−1 contradicting the nilpotence of An−1. This leaves us
to consider U An = K ≤ N . However, then Ai 6≤ N (1≤ i ≤ n − 1) by Lemma 1.2 so,
using the argument at the beginning of this paragraph, we find that also S1 ∩ An−1 is
a p-group. Consequently all Sylow q-subgroups of S1 are in S1 ∩ An giving S1 ≤ An ,
which is another contradiction.

This completes the proof of Proposition 2.1. 2

https://doi.org/10.1017/S1446788708000670 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000670


[5] Some remarks on groups with nilpotent minimal covers 357

3. Further reduction

Next we derive a number of necessary conditions on finite groups admitting a
nilpotent minimal cover. These will allow us to qualify further the almost simplicity
of a minimum counterexample. Throughout A := {A1, A2, . . . , An} is a nilpotent
minimal cover of a group G.

LEMMA 3.1. The intersection of a nilpotent cover for an almost simple group is 1.

PROOF. Let G be almost simple with socle U . Now CG(U )= 1. If S were a Sylow
p-subgroup of the nontrivial intersection of a nilpotent cover for G it would centralise
every p′-element of U and therefore centralise U , which is a contradiction. 2

The following lemma is well known; it was proved in [12], but we give a proof for
the convenience of the reader.

LEMMA 3.2. A finite abelian group with a partition is elementary.

PROOF. Suppose that G is an abelian group with a partition {Bi | 1≤ i ≤ n}. Let
b ∈ B1 have prime order p. We prove that all elements of G \ B1 have order p. If
a ∈ G \ B1, say a ∈ B j where j > 1, then ab 6∈ B1 ∪ B j so ab ∈ Bk where 1 6= k 6= j .
Now a p

= (ab)p
∈ B j ∩ Bk = 1 so all elements outside B1 have order p as, similarly,

do all elements outside B2. Therefore, G has exponent p and is elementary. 2

PROPOSITION 3.3. Let G be a finite group with trivial centre and a nilpotent minimal
cover A. Let p be a prime dividing |G| and suppose that P ∈ Sylp(G) is abelian and
not normal in G. Then:
(a) either P is elementary abelian but not of order p; or
(b) P is a Sylow p-subgroup of some Ai and

(i) NG(P) is a maximal subgroup of G;
(ii) NG(P) is strongly p-embedded in G (that is, |NG(P) ∩ NG(P)g|p = 1 for

all g ∈ G \ NG(P));
(iii) and CG(P)= Ai .

PROOF. Suppose that P is in no Ai ; in particular, P is not of order p. Using
Lemma 1.2

Ai ∩ A j ∩ P ≤ Z(G)= 1.

That is, P admits a partition so, by Lemma 3.2, it is elementary.
Next suppose that P is not elementary or is of order p. Then P is a Sylow

p-subgroup of Ai for some i . If g ∈ G and Pg
6= P , then Pg is a Sylow p-subgroup

of A j for some j 6= i . Suppose that NG(P) is not a maximal subgroup of G so that
NG(P) < M < G for some proper subgroup M of G. Choose g ∈ M \ NG(P). Then

M ≥ 〈NG(P), NG(P)
g
〉 ≥ 〈Ai , A j 〉 = G,
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a contradiction so NG(P) is maximal in G. Note that NG(P)≥ Ai . Next note that,
for g ∈ G \ NG(P), NG(P)g = NG(Pg)≥ A j for some j 6= i . We have

|NG(P) ∩ NG(P
g)|p = 1

because, if 1 6= x ∈ NG(P) ∩ NG(P)g, with |〈x〉| = p, then CG(x)≥ 〈Ai , A j 〉 = G,
a contradiction to Z(G)= 1. So NG(P) is strongly p-embedded in G.

Now we prove that CG(P)= Ai . Suppose, to obtain a contradiction, that Ai is
a proper subset of CG(P). There is a p′-element x ∈ CG(P) \ Ai . With 1 6= a ∈ P ,
ax 6∈ Ai so ax ∈ A j for some j 6= i yielding a ∈ A j and so CG(a)≥ 〈Ai , A j 〉 = G,
another contradiction to Z(G)= 1. 2

COROLLARY 3.4. Let G be a finite group with Z(G)= 1, A a nilpotent minimal
cover of G and let P ∈ Sylp(G) be cyclic, or abelian but not elementary, and not
normal in G. Then CG(P) is nilpotent and NG(P) is the unique maximal subgroup of
G containing CG(P).

PROOF. First P ≤ Ai for some i . Let g ∈ G \ NG(P). Then Pg
≤ A j for some j 6= i

and therefore

A j = CG(P
g)= CG(P)

g
= Ag

i .

From this we see that

〈Ai , g〉 ≥ 〈Ai , Ag
i 〉 = 〈Ai , A j 〉 = G.

Consequently every proper subgroup of G containing Ai is contained in NG(P). In
other words NG(P) is, as claimed, the unique maximal subgroup of G containing
CG(P). 2

It is this result that allows us to see that various insoluble groups do not admit
nilpotent minimal covers. In particular an almost simple group G with an abelian
Sylow subgroup P which is cyclic or not elementary does not admit a nilpotent
minimal cover if either CG(P) is not nilpotent or if NG(P) is not maximal.

COROLLARY 3.5. With the same hypotheses as in the last corollary each member
of A either contains a Sylow p-subgroup or is a p′-group; those containing Sylow
p-subgroups form a conjugacy class.

Since no group is the union of a conjugacy class of subgroups there are, under these
hypotheses, p′-subgroups in every nilpotent, minimal cover of the group.

4. Applications

Here we demonstrate the use of Corollary 3.4 in showing that several classes
of potential minimal counterexamples to the solubility of a group with a nilpotent
minimal cover are not, in fact, minimally coverable by nilpotent subgroups.
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4.1. Symmetric groups

LEMMA 4.1. The alternating groups of degree n ≥ 5 and the symmetric groups of
degree n ≥ 4 do not have nilpotent minimal covers.

PROOF. If P = 〈(123)〉 ∈ Syl3(Alt5), then CG(P)= P ≤ Sym3 ∩ Alt4 and conse-
quently there are two maximal subgroups of Alt5 containing CG(P). This contradicts
Corollary 3.4, so Alt5 does not admit a nilpotent minimal cover. (In any case nilpotent
subgroups of Alt5 are abelian so a nilpotent minimal cover would be an abelian
minimal cover making Alt5 soluble by [5].)

Suppose now that n ≥ 6 and denote Altn by G. Seeking a contradiction, we suppose
that G does have a nilpotent minimal cover. Bertrand’s postulate ensures that there is a
prime p satisfying (1/2)n < p < n. Note that p ≥ 5 and that 2p > n so p2 - |G|. Let
P = 〈(12 . . . p)〉 ∈ Sylp(Altn). Then, if H is the subgroup of permutations in Altn
fixing each of 1, 2, . . . , p, CG(P)≤ Altp × H . Consequently, since

Altp × H < G, Altp ≤ Altp × H ≤ NG(P),

using Corollary 3.4, contradicting the simplicity of Altp.
The proof for the symmetric groups with n ≥ 4 is similar. 2

4.2. Suzuki groups

LEMMA 4.2. None of the Suzuki groups Sz(q) has a nilpotent minimal cover.

PROOF. Let G = Sz(q) be a finite simple Suzuki group with q = 22m+1 and let A=
{A1, . . . , An} be a nilpotent minimal cover of G. Let S ∈ Syl2(G) and N = NG(S).
Then |N | = q2(q − 1) and N is a Hall subgroup of G (see [15]). The subgroups
of order q − 1 are cyclic Hall subgroups of G. Moreover if |H | = q − 1, then
CG(y)= H for all nonidentities y in H . It follows by Proposition 3.3 that A must
contain all subgroups of order q − 1 among its members. On the other hand, N
contains distinct subgroups H1, H2 of order q − 1. If H1 ≤ A1, H2 ≤ A2, say, then

G = 〈A1, A2〉 = 〈H1, H2〉 ≤ N ,

which is a contradiction. Therefore, none of the simple Suzuki groups admits a
nilpotent minimal cover. 2

4.3. Linear groups

THEOREM 4.3. Let PSLn(q)≤ G ≤ PGLn(q) where n ≥ 3, or n = 2 and q ≥ 4. Then
G admits no nilpotent minimal cover.

PROOF. We suppose, seeking a contradiction, that some such G does admit a nilpotent
minimal cover and produce a contradiction. To this end let A= {A1, A2, . . . , An} be
a nilpotent minimal cover of G. We write Z for the centre of GLn(q) and define G
and Ai , subgroups of GLn(q), by G/Z = G and Ai/Z = Ai (1≤ i ≤ n). Note that
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A := {Ai | 1≤ i ≤ n} is a nilpotent, irredundant cover of G. Denote by V the natural
vector space on which GLn(q) acts.

We need in the proof the (seemingly well known) fact that whenever PSLn(q) is
simple, then G satisfying PSLn(q)≤ G ≤ PGLn(q) is almost simple, so, in particular,
its centre is trivial; a proof follows easily from Suzuki [16, Theorem 9.9]. We divide
the present proof into cases according to whether n ≥ 4 or n < 4.

Case 1: n ≥ 4. Suppose first of all that qn−1
− 1 has a primitive prime divisor, p.

Since

q − 1= (qn
− 1)− q(qn−1

− 1)

it follows that p - qn
− 1. Let V1 be a subspace of V with dimension one. Write

V = V1 ⊕ V2 and let L be the Levi component of this decomposition of V in the
stabiliser of the flag (V1, V ): abstractly L ∼= GF(q)× × GL(V2).

Now let P be the Sylow p-subgroup of a Singer cycle of GL(V2); on order
considerations it is in SL(V2). Extend its action to the whole of V via trivial action on
V1. Order considerations also show that P is a Sylow p-subgroup of GLn(q); it is in
SLn(q) and so it is a (cyclic) Sylow subgroup of G.

If h ∈ NG(P), then it is easy to see that V1h, V2h both admit the action of P .
However, V1, V2 are nonisomorphic as P-modules so are the unique proper, nontrivial
submodules of V |P . Therefore, V1h = V1 and V2h = V2, so V1, V2 are NG(P)-
submodules of V . This shows that NG(P)≤ L ∩ G.

Now G 6≤ L as SLn(q) 6≤ L . However, Proposition 3.3 requires that NG(P Z/Z) be
maximal in G and so NG(P) is maximal in G. Therefore, NG(P)= L ∩ G. However,

SL(V2)≤ SLn(q) ∩ L ≤ L ∩ G = NG(P),

which is a contradiction, since P Z/Z is not normal in G.
If qn−1

− 1 has no primitive prime divisor then, by Zsygmondy’s theorem,
n − 1= 6 and q = 2. That is G = GL7(2). Here G has a Sylow subgroup P of
order 31 whose action splits V as U ⊕W where dim U = 5 and on W the action
of P is trivial. Therefore, CG(P) contains a copy of GL2(2) which is not nilpotent,
contradicting Corollary 3.4; so Case 1 does not arise.

Case 2: n ≤ 3. A Singer cycle of G is the intersection of G with a Singer cycle of
GLn(q). Every Singer cycle of G is, of course, in some member of A. Denote by AS
the subset of A of those members containing a Singer cycle. Also let T be the set of
stabilisers in G of one-dimensional subspaces of V .

LEMMA 4.4. (1) Each A ∈AS contains exactly one Singer cycle. This Singer cycle
has index at most 2 in A and if its index is exactly 2 then n = 2 and q = 2β − 1
with β ≥ 3.

(2) We have G = (∪AS) ∪ (∪T ) and no member of AS is omissible from this union.
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Here ∪AS denotes the union of the members of AS and ∪T the union of the
members of T .

PROOF. Let S be a Singer cycle of G with S ≤ A ∈AS . Suppose firstly that qn
− 1

has a primitive prime divisor, p say. Then, on order considerations, the Sylow
p-subgroup P of S is a Sylow subgroup of G, even of SLn(q). Here A ≤ CG(P)
since A is nilpotent. As P acts irreducibly on V , S = CG(P) which is in A so S = A
confirming (1) in this case.

If, on the other hand, qn
− 1 has no primitive prime divisor then, by Zsygmondy’s

theorem, n = 2 and q = 2β − 1 for some β ≥ 3. The Sylow 2-subgroups of SL2(q)
and GL2(q) are generalised quaternion and semidihedral respectively (see Carter and
Fong [6, pp. 142–3]) of orders 2β+1, 2β+2 so a Sylow 2-subgroup of G is one or other
of these. S has Sylow 2-subgroup C , cyclic of index two in a Sylow subgroup D of G
and is the unique cyclic subgroup of index 2 in D. Here C acts irreducibly on V and
so S ≤ CG(C)≤ S, and that is S = CG(C). Since A is nilpotent S is of index at most
2 in A. Since a Sylow 2-subgroup of G has a unique cyclic subgroup of index 2, S is
the only Singer cycle in A. This completes the proof of (1).

Now the centraliser of an element acting irreducibly on V is a Singer cycle so lies in
some A ∈AS . On the other hand, an element whose action on V is reducible is in some
member of T . This is obvious when n = 2 so we may suppose that g ∈ GL3(q) acts
reducibly on V with U a two-dimensional, irreducible submodule. Write g = g0g1
where g0 is an s-element, supposing q = sδ , and g1 an s′-element. Then U (g0 − 1)
is a proper 〈g〉-submodule of U so it is zero; hence, U is irreducible for 〈g1〉. Then,
by Maschke’s theorem, V =U ⊕W where W admits the action of g1. However, Wg0
admits g1 so, as the decomposition V |〈g1〉 =U ⊕W is unique, Wg0 =W meaning
that W is a one-dimensional subspace of V stabilised by g. The nonomissibility of
members of AS follows since no Singer cycle stabilises a one-dimensional subspace
of V . This completes the proof of (2) and with it the proof of Lemma 4.4. 2

The following corollary comes immediately from Lemma 4.4.

COROLLARY 4.5. We have |A \AS| ≤ |T |.
We show now that this is false, under our continuing assumption that Theorem 4.3

is not true.
To this end consider all unordered pairs σ = {U, W } of nonzero, complementary

subspaces of V . Define an element aσ of SLn(q) as follows (supposing, for
convenience, that dim U = 1): aσ is to act completely reducibly on V with aσ |W being
a Singer element of GL(W ) and aσ |U the scalar needed to make det aσ = 1.

LEMMA 4.6. If aσ is in A ∈A, then A 6∈AS .

PROOF. Suppose, in contrast, that A ∈AS . By Lemma 4.4 either A is a Singer cycle
or contains a unique Singer cycle S with index 2. The first case does not occur
as otherwise, by Clifford’s theorem, V |〈aσ 〉 would be a direct sum of isomorphic
irreducible modules which it is not. In the second case n = 2 and a2

σ generates
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the unique subgroup of S of order (q − 1)/2. However, this is a subgroup of Z , a
contradiction since 4 - q − 1. 2

LEMMA 4.7. If σ, τ are distinct pairs of complementary subspaces of V , then there is
no member of A containing both aσ and aτ .

PROOF. Suppose, in contrast, that aσ , aτ ∈ A, a member of A, and write H :=
〈aσ , aτ 〉. First suppose that V |H is irreducible. Since V |〈aσ 〉 is reducible, and since
H is nilpotent, there is a composition factor K/L of H for which aσ ∈ L , V |L is
reducible whilst V |K is not. By Clifford’s theorem V |L is completely reducible and,
since V |〈aσ 〉 has unique decomposition U ⊕W , this is also a decomposition of V |L .
Moreover, U, W are conjugate submodules for L , a contradiction if n = 3.

So suppose that n = 2. Let |K : L| = r , a prime. The elements of kerL(U ) and
kerL(W ) all have determinant one so they are the identity. Consequently L is cyclic,
indeed L = 〈aσ 〉 since its order is q − 1, the largest possible. Here W =Uλ for some
r -element λ ∈ K \ L . Since aσ acts as different scalars `−1, ` on U, W , respectively,
λ, aσ do not commute. Writing U = GF(q)u:

(ua−1
σ )λ= (`u)λ= (uλ)aσ = u(λaσλ

−1)λ

whence u = u(λaσλ−1aσ ). That is λaσλ−1aσ = 1 so λaσλ−1
= a−1

σ . However,
then λ2 and aσ commute entailing r = 2 or else λ and aσ commute. Also the
nilpotence of K demands q − 1= 2γ for some γ ≥ 2. The order of SL2(q) is therefore
2γ+1(2γ−1

+ 1)(2γ + 1) so K is a Sylow 2-subgroup of SL2(q) and therefore of H
also. Here K is a generalised quaternion when γ > 2. In this case 〈aσ 〉 is the unique
cyclic subgroup of index 2 in the unique Sylow 2-subgroup of H and, similarly, so is
〈aτ 〉. Therefore, 〈aσ 〉 = 〈aτ 〉 whence σ = τ . When γ = 2, G is either PSL2(5)∼= Alt5
or PGL2(5)∼= Sym5 but in neither case does G have a nilpotent minimal cover, by
Lemma 4.1.

It remains to treat the case when V |H is reducible. We show first that it is
completely reducible. Let us write q = sδ where s is a prime. It will be enough
to show that s - |H |, that is, that Os(H)= 1 since A is nilpotent. Suppose that X
is a proper, nonzero submodule of V |H . Then V/X is irreducible for H since it is
irreducible for 〈aσ 〉. Therefore, Os(H) is in the kernel of both X, V/X but not in the
kernel of V . If 1 6= h ∈ Os(H), vX 7→ v(h − 1) is a well-defined 〈aσ 〉-isomorphism
V/X→ X , which is a contradiction. Hence, Os(H)= 1 so, by Maschke’s theorem,
V |H = X ⊕ Y for some H -submodule Y . However, X and Y admit both aσ , aτ each
of which gives a unique splitting of V . Therefore, σ = τ . The proof of Lemma 4.7 is
complete. 2

There are more unordered pairs of complementary subspaces of V than there are
subspaces of dimension one. Hence, |A \ AS|> |T |, which provides a contradiction
to Corollary 4.5. Thus, our assumption that Theorem 4.3 was false is incorrect and
Theorem 4.3 is established. 2
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4.4. Sporadic simple groups In this section we give references from the literature to
show that the sporadic simple groups do not have a nilpotent minimal cover. The idea
is to indicate in each a Sylow subgroup P of prime order for which either NG(P) is
not maximal or CG(P) is not nilpotent so as to invoke Corollary 3.4. In what follows
Cn indicates a cyclic Sylow subgroup of order n in the group under consideration.

(1) The Mathieu group G = M11. Here |G| = 24
· 32
· 5 · 11 and NG(C5) is a

Frobenius group of order 20 and is not maximal (see [17, p. 211]).
(2) The Mathieu group G = M12. Here |G| = 26

· 33
· 5 · 11 and NG(C5)= C2 × F

where F is a Frobenius group of order 20; it is not maximal (see [17, p. 212]).
(3) The Mathieu group G = M22. Here |G| = 27

· 32
· 5 · 7 · 11 and NG(C5) is a

Frobenius group of order 20 and is not maximal (see [17, p. 212].)
(4) The Mathieu group G = M23. Here |G| = 27

· 32
· 5 · 7 · 11 · 23 and NG(C5) is

a semi-direct product of C15 by C4 and is not maximal (see [17, p. 213]).
(5) The Mathieu group G = M24. Here |G| = 210

· 33
· 5 · 7 · 11 · 23 and NG(C11)

is a Frobenius group of order 110 and it is not maximal (see [17, p. 213]).
(6) The Janko group G = J1. Here |G| = 23

· 3 · 5 · 7 · 11 · 19 and CG(C5)= C5 ×

D6 is the direct product of C5 and a dihedral group of order 6, so it is not nilpotent
(see [17, p. 213]).

(7) The Hall–Janko group G = J2. Here |G| = 27
· 33
· 52
· 7 and NG(C7) is a

Frobenius group of order 42 and it is not maximal (see [17, p. 214]).
(8) The Janko group G = J3. Here |G| = 27

· 35
· 5 · 7 · 17 · 19 and NG(C17) is a

Frobenius group of order 17 · 8 and it is not maximal (see [17, p. 214]).
(9) The Janko group G = J4. Here |G| = 221

· 33
· 5 · 7 · 113

· 23 · 29 · 31 · 37 · 43
and CG(C7)= C7 × Sym5 is not nilpotent (see [17, p. 215]).

(10) The Conway group G = Co3. Here |G| = 210
· 37
· 53
· 7 · 11 · 23 and

CG(C7)∼= C7 × Sym3 is not nilpotent (see [17, p. 216]).
(11) The Conway group G = Co2. Here |G| = 218

· 36
· 53
· 7 · 11 · 23 and NG(C11)

is a Frobenius group of order 110 (see [17, p. 216]); it is not maximal (see
[8, p. 154]).

(12) The Conway group G = Co1. Here |G| = 221
· 39
· 54
· 72
· 11 · 13 · 23 and

CG(C11)= C11 × Sym3 is not nilpotent (see [1, p. 302]).
(13) The Fischer group G = F22. Here |G| = 217

· 39
· 52
· 7 · 11 · 13 and CG(C7)∼=

C7 × Sym3 is not nilpotent (see [2, p. 251]).
(14) The Fischer group G = F23. Here |G| = 218

· 313
· 52
· 7 · 11 · 13 · 17 · 23 and

CG(C13)∼= C13 × Sym3 is not nilpotent (see [2, p. 252]).
(15) The Fischer group G = F ′24. Here |G| = 221

· 316
· 52
· 73
· 11 · 13 · 17 · 23 · 29

and CG(C13)≥ C13 × Sym3 so is not nilpotent (see [2, p. 252]).
(16) The Baby Monster G = F2. Here

|G| = 241
· 313
· 56
· 72
· 11 · 13 · 17 · 19 · 23 · 31 · 47

and CG(C11)∼= C11 × Sym5 is not nilpotent (see [8, p. 217]).
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(17) The Fischer group (Monster) G = F1. Here

|G| = 246
· 320
· 59
· 76
· 112
· 133
· 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

and CG(C23)∼= C23 × Sym4 is not nilpotent (see [8, p. 234]).
(18) The Higman–Sims group G = H S. Here |G| = 29

· 32
· 53
· 7 · 11 and NG(C7)

is a Frobenius group of order 42 and it is not maximal (see [17, p. 220]).
(19) The Held group G = He. Here |G| = 210

· 33
· 52
· 73
· 17 and NG(C17) is a

Frobenius group of order 17 · 8 and it is not maximal (see [17, p. 221]).
(20) The Suzuki group G = Suz. Here |G| = 213

· 37
· 52
· 7 · 11 · 13 and CG(C7)≥

C7 × Alt4 is not nilpotent (see [1, p. 303]).
(21) The McLaughlin group G =Mc. Here |G| = 27

· 36
· 53
· 7 · 11 and NG(C11) is

not maximal (see [8, p. 100]).
(22) The Lyons group G = Ly. Here |G| = 28

· 37
· 56
· 7 · 11 · 31 · 37 · 67 and

CG(C7)' C7 × SL2(3) is not nilpotent (see [17, p. 223]).
(23) The Rudvalis group G = Ru. Here |G| = 214

· 33
· 53
· 7 · 13 · 29 and NG(C29)

is a Frobenius group of order 29 · 14 (see [17, p. 224]) and it is not maximal (see
[8, p. 126]).

(24) The O’Nan–Sims group G = O’N. Here |G| = 29
· 34
· 5 · 73

· 11 · 19 · 31 and
NG(C11) has order 110 (see [17, p. 225]) and it is not maximal (see [8, p. 132]).

(25) The Thompson group G = Th. Here |G| = 215
· 310
· 53
· 72
· 13 · 19 · 31 and

NG(C19) is a Frobenius group of order 19 · 18 (see [17, p. 225]) and it is not
maximal (see [10, p. 79]).

(26) The Harada group G. Here |G| = 214
· 36
· 56
· 7 · 11 · 19 and CG(C7)= C7

× Alt5 is not nilpotent (see [17, p. 226]).
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