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SOLUTION BEHAVIOUR IN A CLASS OF
DIFFERENCE-DIFFERENTIAL EQUATIONS

A.D. FEDORENKO, V.V. FEDORENKO, A.F. IVANOV AND A.N. SHARKOVSKY

Difference equations with piecewise continuous nonlinearities and their singular per-
turbations, first order neutral type delay differential equations with small parameters,
are considered. Solutions of the difference equations are shown to be asymptotically
periodic with period-adding bifurcations and bifurcations determined by Farey's rule
taking place for periods and types of solutions. Solutions of the singularly perturbed
delay differential equations are considered and compared with solutions of the differ-
ence equations within finite time intervals. The comparison is based on a continuous
dependence of solutions on the singular parameter.

1. INTRODUCTION

Consider delay differential equations of the form

(1) n[±{t + 1) + cx(t)} + x(t + 1) = f(x(t))

where n,c are constants, \i ^ 0, \c\ < 1, and / is a piecewise continuous function denned

by

, . , . _ / g(x), if 0 ̂  x ̂  b, and

y h(x), if a < x ̂  1 ,

with a, b satisfying 0 < a $J b < 1 and g, h are monotonic increasing continuous functions

defined on / = [0,1] and such that 0 < h(x) < x < g(x) < 1 for all x e (0,1) (and,

hence, h(0) = 0, g(l) = 1).

When n = 0 the delay differential equation (1) becomes a continuous time difference
equation
(3) x(t+l)=f(x(t)).
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The qualitative behaviour of solutions of equations (1) and (3) is determined by properties
of the map

(4) * - > / ( * ) .

Equations in the form (1) and (3) appear in many applications. For example, they
come from certain boundary value problems for hyperbolic partial differential equations
[1, 5, 6, 7, 8, 10], which describe such real life phenomena as electromagnetic, sound
and other types of oscillations. Equation (1), which mathematically is a singular per-
turbation of equation (3), is a more "accurate" model where viscosity effects are taken
into account. There is a number of publications on singularly perturbed delay differential
equations, however, most of them deal with the case of the retarded type perturbations
corresponding to c = 0 in (1); see [4] for further references. In this paper we study sin-
gularly perturbed equations of the neutral type (c ^ 0), moreover, when the nonlinearity
/ is a multi-valued function. This type of nonlinearity frequently appears, for example,
in control theory [3].

We consider cases \i = 0 and fi > 0 separately. When fi ^ 0, solutions of equation (1)
are studied on finite time intervals. Our approach in this case is based on the continuous
dependence of solutions on all involved parameters, in particular, on the continuous
dependence on the parameter n at /x = 0.

li a < b function / is two-valued on the interval (a, b] and, therefore, we have to make
additional assumptions in order to obtain a uniquely denned trajectory xn — fn(x0), n =

0,1,2, . . . , for each x0. li x0 6 (a, b] we set xi = g(x0); if xn € (a, b] for n > 0 we use
the following rule (which is the ordinary rule under the existence of "hysteresis"): if
xn — g(xn-i), then xn+\ = g{xn)\ if xn = h(xn-i), then xn+\ = h(xn) too. Under such
an agreement map, (4) generates a dynamical system with a so-called two-sheeted phase
space. For n ^ 0 it is defined by

{ g(xn), if either xn ^ a, or a < xn ^ b and then
either n = 0, or n > 0 and xn = g(xn-i),

h(xn), otherwise.

Since h(a) < f(x) ^ g(b), for all x £ /, it can be assumed that

xelu(6) Six) =

where I\ = (h(a),b], /2 = (a,g(b)]. If the intervals I\ and / 2 are considered as two
different sheets of the phase space then, by identifying the endpoints a and h{a) of the
interval I\ and the endpoints b and g{b) of the interval I2, one gets a circle S made up of
two arcs I\ and /2. In this case function / defines a generally discontinuous one-to-one
map on the circle S. In particular, if g~l(b) exists and is less than b, h~l{a) exists and is
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greater than a, the function / assumes the following form

9(x), x 6 J

m f(r) = J %(*)). x e (g-l(b),b],
K ' J( ' S h(x), xe/2\[a,/i-1(a)],

g(h(x)), xe(a,h-l(a)).

Thus one gets a dynamical system defined on a circle. This naturally leads to "Farey's
rule" for the bifurcations of periodic and close to periodic solutions of corresponding dif-
ference and differential-difference equations. In the remaining part of the paper, however,
we shall not employ this approach of the reduction to a circle map, but will deal instead
with the map (4) directly.

In what follows we shall consider map / defined by (5) whose parameters a and 6
belong to the domain Q = {u> = (a, b) \ 0 < a ^ b < 1}. Also we shall always assume
that the conditions

(8) 5(0) > / i ( l ) . that is g{[0,b])nh((a,l])=<b,

and

(9) g,h£ LipL(I, I) with L < 1

are satisfied.

For any measurable set B C / , mes f(B) ^ Lines JB and hence mes/n (B) —> 0

as n —> 0. In particular, mes / n ( / ) —> 0 as n —> oo implying mesA(f) — 0 where
oo

A(f) = p | / " ( / ) . This means that the set A(f) is nowhere dense. Therefore, the
n=0

attractor of the dynamical system (5) is contained inside a nowhere dense set of the
interval / .

Let V(f) - {x e (0,1) | 3n ̂  0, fn(x) e {a,b}}, that is, V(f) is a set of points
from (0,1), each of which gets mapped into a or 6 after a finite number of iterations. The
set T>(f) can be finite (possibly empty) or infinite. The set V(f) is a nowhere dense set
[9].

The following fundamental property is obvious.
LEMMA A. If J is an interval from I \ V(f) then for each n > 0, fn(J) is also an

interval, and for any two points x', x" € J, \fn(x') - fn(x")\ < Ln \x' - x"\.
Thus, the set V(f) defines a partition of the set / \ V(f) into a finite (if £>(/) is

finite) or countable number of intervals J,,s = 1,2,..., with disjoint interiors which form

a Markov partition of the phase space: for any interval Js>, there exists interval Js» such

that f{J3<) C J3n. It allows us to reduce the study of dynamical system (5) to the analysis

of possible paths of the graph induced by the transfer matrix of the Markov parti t ion. In

particular, closed loops of the graph correspond to periodic trajectories of the dynamical

system. From the analysis of the graph it follows tha t the statements:
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(i) V(f) is a finite set,

(ii) there exits an asymptotically periodic trajectory,

(iii) every trajectory is asymptotically periodic

are equivalent [2, 9].
Typical for the domain Q situation is that every trajectory of the map f is asymptot-

ically periodic [2, 9]: parameter values for which the map / has asymptotically periodic
trajectories form a set containing an open and dense subset of Q. Almost always the map
/ has either one or two periodic trajectories. In the latter case the difference between
the periods equals 2.

We shall call any function ip : R1 -> G, where G is a finite set from R1, a step-
function.

The following lemma is a consequence of Lemma A.

LEMMA B. Assume £>(/) is a finite set. Then there exists an integer m > 1 such
that for any x S / the limit lim fm'(x) exists and the limiting function f*(x) is a step-

i—>oo

function equal to a constant on each interval of I\T>(f). Moreover, for any e > 0 there
are integers m > 0 and N > 0 such that \fmn(x) - f*(x)\ < e for anyx€l\ V(f) and
n> N.

2. PROPERTIES OF SOLUTIONS OF THE DIFFERENCE EQUATION

In this section we consider the continuous time difference equation (3). We shall use
an integral metric which is given by the norm ||a;||[Q^] := /f \x(t)\ dt.

THEOREM 1 . IfD(f) is a finite set, then every solution of difference equation (3)
with continuous argument converges to a periodic step-function in the integral metric as
t -* +oo.

PROOF: The statement follows from the fact that the function x(t) — fn(<p{{t})), n -
0 ,1 , . . . (here {t} is the fractional part of t), is the solution of the equation x(t + 1) =
f{x(t)) with the initial function tp(t), 0 < i < 1. If the map / has periodic
points, this solution tends in the integral metric to a periodic step-function defined
by x*(t+j) = fjf*(<p(t)), j = 0 ,1 , . . . ,m - 1, where f\x) = lim/mi(x), m = n or
n(n + 2), and n is a lesser period of two possible periodic points of the map / .

We need a more detailed classification of periodic trajectories based not only on their
periods but also using the so-called type of the trajectories [2, 9].

Let P be a periodic trajectory of map / for some w' = (a', b') G fi, and Pi = {/? €
P I f(J3) = 9{P)}, P2 = {0€P\ f(fi) = h{fi)}. Let A < p2 < ... < Pni be points of
the set Pi and /?ni+i < - •. < Pm+n2 be points of the set P2. Denote by p the number of
points 0 € Pi whose preimages belong to P2. Then the number of points P € P? whose
preimages belong to Pi is also p. We shall call p a turn number for the trajectory P.
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The trajectory P generates a cyclic permutation n of length rii + ri2 : n(i) = j if
and only if / ( # ) = /?,-, 1 ^ i, j ^ nx + n2.

For every periodic trajectory P of the map (5) there exist positive coprime integers
p . q, p < q, and a nonnegative integer d such that the cyclic permutation generated by
the periodic trajectory P has the form [2, 9]

(10)

if 2p ^ q, and if 2p > q, it equals honoh, where /i(z) = g + 2d + 1 - i, i = 1,... ,q + 2d.

From formula (10) one can see the meaning of p, q and d. The period of the trajectory
P generating the cyclic permutation n is q+2d, and p is the turn number of the trajectory
P.

In what follows, we always assume that p and q are coprime numbers, p < q, and d is
a nonnegative integer. We shall call the triple (p, q, d) the type of the periodic trajectory.

Let fip,,,,d = {u € fi| the periodic trajectory of map (5) has type (p, q,d)}. It follows
from [2, 9], that for every triple (p,q,d), the sets £2M,d and int £lPlq,d are nonempty
connected sets with a rectagle shape. In particular, Cl° q d = ini f2Pi(7id\ (^P,9,d-i U S^p .̂d+i)
is a nonempty set. If w € ^p,q,d> then the map / has a unique periodic trajectory which
attracts all other trajectories (here fip,,,,-i = 0).

Suppose the map / has a unique periodic trajectory forming the cycle {/?i,..., /?„}.
If n is a cycle permutation generated by this periodic trajectory, then every limit step-
function x* has the following property: if x*(t0) — /%„ at to 6 R1, then a;* (to + j) = ArJ(t0)
for any positive integer j . Thus, in this case, periodic step-functions generated by the
equation x(t + 1) = f(x(t)) can also be classified by cyclic permutations and, hence, by
the triple (p, q, d) introduced above. We shall call this triple the type of the periodic
step-function, too.

Moreover, it makes a sense to call a triple (p, q, d) the type of the solution of the
difference equation (3) if the limiting step-function for this solution is of the type (p, q, d).

This allows us to state the following properties of solutions. D

THEOREM 2 . Let u € ftp1,,A. For any function if : [0,1] -> [0,1], the solution xv of
difference equation (3) with initial function <p is of type (p,q,d).

The theorem is a direct consequence of Lemma B, in accordance with the introduced
classification.

The properties of the bifurcation diagram for types of periodic trajectories of the
map / were described in [2, 9]. It was shown that there are two types of bifurcations
of periodic trajectories, namely, bifurcations determined by Farey's rule and also the so-
called period-adding bifurcations. By making use of Theorem 2, the analogous properties
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of solutions of difference equation (3) can be formulated immediately as follows

THEOREM 3 . Let u>i 6 Qpitqitdj> i = 1,2 be two collections of parameters. Then

(Farey's rule) ifpi/qi < p2lq2, then for any arc £ inside Q. connecting UJI,LJ2, and
any p,q such that Pi/qi < p/q < p2/q2, there exists w e £ for which the type of
solutions of difference equation (3) is (p, q, d) with some d ̂  0;
(period-adding) if p\/q\ = p2/q2 and di < d2, then there is an arc £ inside Q,
connecting U>I,UJ2, such that a) for any w 6 £, the corresponding solution of dif-
ference equation (3) has type (pi,q\,d) with some d, d\ < d ^ d2, and b) for any
d', d\ < d! < d2, there exists u/ e £ for which type of solutions of equation (3) is

3. BEHAVIOUR OF SOLUTIONS OF SINGULARLY PERTURBED EQUATIONS ON FINITE

TIME INTERVALS

In this section, the results on asymptotic behaviour of solutions of difference equation
(3) and properties of bifurcation diagrams are translated to the delay differential equation
(1). The latter can be considered as a singular perturbation of equation (3) if fj, is
sufficiently small. This approach via the singular perturbations allows us to use the
continuous dependence of solutions on parameters for the difference-differential equations
involved which can be established within finite time intervals.

3.1. CONTINUOUS DEPENDENCE OF SOLUTIONS ON SINGULAR PARAMETER Consider
equation (1) again. As it has been shown in [4], in the case c = 0 the asymptotic
behaviour as t -* 00 of solutions of equations (3) and (1) can be essentially different.
Therefore, generally speaking the same differences persist when one compares the more
general neutral type differential equation (1) with its limiting case at /z = 0, the difference
equation (3). In spite of the diferences in the asymptotic behaviour one can expect,
however, the closeness between the solutions at least within finite time intervals. Indeed,
similar to the case c = 0, this type of closeness also takes place for equation (1).

Differential equation (1) can be rewritten in the following integral form

s) ds
rt

x(t + 1) = -cx(t) + (c/n) / exp{(s -

Jo

(11) + (l/(J,)£exp{(s-t)/n}f(x(s))ds

+ [cx(0) + x(l)] exp{-t/fi}, t ^ 0
allowing us to consider "solutions" to equation (1) which are only piecewise continuous
functions.

To construct a solution of equation (1) for t > 1 one needs an initial function <p which
can be integrated in the initial interval [0,1] according to the above integral equation.
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Equation (1) is solved then by using the step method. Denote the set of all piecewise

Lipschitz continuous functions denned on the interval [0,1] by PL. Throughout this

section we shall always assume tha t ip € PL. The corresponding solution x£(t) is then

a continuous function which is piecewise differentiable for t > 1. Note tha t the Lips-

chitz condition here is a technical one only, which is chosen to match the corresponding

assumption on the function / .

In contrast with the case c = 0, there is no invariance property for the solutions of

equation (1). Therefore, given an initial function (p G PL the corresponding solution i £

may leave the interval / for some t > 1. This prompts us, in order to be able to compare

solutions of equations (1) and (3), to extend the function f(x) beyond the interval / by

setting

f(x) = 1 if x>\ and f(x) = 0 if x < 0.

For any ip £ PL the solution xffi) of equation (1) is a continuous function for

t > 1, while the corresponding solution xv,(<) of equation (3) is in general a discontinuous

function for t > 1 with j ump discontinuities. The discontinuities of xv(t) come from

several different sources. Firstly, they are the discontinuities of the initial function ip

that are mapped by / into the next time interval. Secondly, one generally has a jump

discontinuity a t integer points U = i, i G N , if the consistency condition for the initial

function, y ( l ) = / ( < / J ( 0 ) ) , does not hold. And finally, a jump discontinuity arises every

time when the value of the initial function hits the discontinuity of / for tha t particular

sheet which is being used at tha t moment. This in particular means that there is no

uniform closeness between solutions of equations (1) and (3). However they are close in

the integral metric.

The following theorem is our principal result about the closeness in the integral

metric between solutions of equations (1) and (3) for small /J, > 0.

THEOREM 4 . Suppose ip e PL and let e > 0, T > 0 be arbitrary. There exist

6 > 0 and /io > 0 such that \\x£ — £t/,||r0Ti < e for any tp € PL with ||y> — ?/>|L y < 6 and

every 0 < /x ^ |x0-

PROOF: Let <p € PL and T > 0 be given and let 0 ^ U < t2 < • • -tk ^ T be the

discontinuity set of the corresponding solution xv(t) in [0, T\. Obviously the result can

be proved by induction by establishing the closeness on the interval [l,t\] first, then on

the interval [ti, 2̂] > a n d s o o n until the last interval of the continuity set of xv. Since

a specific sheet of / is used on each of the intervals, the function f(<p(t)), t e [0,T], is

piecewise Lipschitz continuous. Therefore, it is sufficient to show the integral closeness

within the first interval [l,ti] assuming that both tp(t) and f(ip(t)), t £ [0, ti - 1] are

Lipschitz continuous functions in there. Due to the same induction argument one can

also let t\ = 1. To continue with the proof we need several auxiliary statements. D

LEMMA C. Suppose <p,ip G PL are fixed. Then for every e > 0 there exist S > 0
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and no > 0 such that | |z£ - ^ | | [ 1 2 ] < e for allO < fi ^ fx0 provided \\<p - tp\\^0^ < 6.

P R O O F : From the integral equation (11) it follows tha t the difference

A(t + 1) := x»(t + 1) - x^(t + 1), t € [0,1] satisfies the equation

cA(O)]exp{-t//i}

(12) + (l/»)£exp{(s-t)/n}{f(<p(s))

+ (c//i) f exp{(s - t)/p}[p(s) - tp{s)} ds, t ^ 0.
Jo

We shall estimate next each component of this equation in the integral metric over the
interval [0,1]. We have first

(13) l l -czMIL x] = / | - cA( t ) | dt = c f \<p(t) - i/>(t)\ dt ^ cS.
1 ' ' JO Jo

Since (p(t),ip(t) are fixed and piecewise Lipschitz continuous, there is a constant M > 0
such that \tp(t)\ ^ M and \<j)(t)\ ^ M, for all t £ [0,1]. This gives us

-cA(0)]exp{-t//4||01 = / [A{1) + cA(O)]exp{-t/n} dt

(14) < S(l + \c\)

Next we have

exp{(s - t)/n}[tp(s) - V(s)] ds

/

[0,1]

= (|c( //x) / ' I' exp{(s - t)//x} |v?(s) - ip{s)\ dtds
Jo Jo

(15) = \c\ jT1 |V(«) - ^ ( s ) | (1 - exp{(s -

Using the piecewise Lipschitz condition \f(x) — /(j/)| ^ K \x — y\, likewise we can derive

the estimate

(16) |(1/M) f exp{(s -
II Jo

dsl ^ L • 5.
II [o,i]

Now the required estimate on | |A(£)| |J1 |2J follows from (12) and (13-16). D

LEMMA D . Assume <p € PL. For arbitrary e > 0 there exists Ho > 0 such that

v\\[i2} <£ for all0< (i^ fi0-v> xv\\[i,2}

P R O O F : We make use of the fact that

rt
/ exp{(s -
Jo

ds=l-
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Therefore, for any function a(t)

rt

a(t) = a(t) exp{-i//x} + (1/^) / exp{(s - t)/(i}a(t) ds.
Jo

Since xv(t + 1) = f(f(t)), t G [0,1], and in view of the integral equation (12), one then
has for t G [0,1]

exp{(s - *)//*}/(¥>(«)) ds - f(<p(t))

- fit))]'

exp{(s — t)/fi}\f((p(s)) — f(<p{t))] ds

rt
exp{(s - t)/n}[(p(s) - <p(t)} ds.

The nonintegral part of the latter expression can be estimated as follows

</>(!) — f{<fi(t)) + c(<p(0) — <p(t)) exp{—t/A*} ^ 2(M -I- |c|) / exp{—t/fj,}dt

(17) < 2(M+|c | ) M .

Using next the Lipschitz property of the initial function, \<p(t) — <p(s)\ ^ L\ • \s — t\, we

have

(c//i) / exp{(s — t)/n}[(p(s) — <p(t)] ds\\
II Jo ll[o,i]

^ ( l c l / ^ ) / / exp{(s — t)/fi} \<p(s) — <p{t)\ dsdt

\c\ L\ fl [*•
^ / / exp{(s — t)/(j.} \s - t\ dsdt

H Jo Jo
^ \c\Li /•' 2 ft/i*
^ —•— / (/r / vexp (—v) dv) dt

fj, Jo Jo
(18) ^ |,

^ |c| L\L\i.
[o,i]

Likewise, using the Lipschitz property of function / with the constant L, we can obtain

(19) (l//x) / exp{(s — t)/fi}\f((p(s)) — f(f(t))] ds

Combining the inequalities (17-19) we therefore have

x^(t) — ^ ( i ) ^ C • n for some constant C,
II v II [1,2]

which immediately implies the statement of the Lemma.

Now to complete the proof of Theorem 4, we apply Lemmas C and D to the inequality
x*\\ ** r* x4 + \\xv xn- •
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3.2. FAREY'S RULE FOR SOLUTIONS OF SINGULARLY PERTURBED DELAY DIFFEREN-

TIAL EQUATIONS We shall introduce first several notions allowing us to classify solutions
of equation (1) within finite time intervals and to extend Theorems 1 and 2 to the case
of small positive [i.

We call a function z(t), e-periodic with period s on the interval \Ti,T-^ with T2 >

7\ + s if \\z{t) - z(t + s)| | [Tl |T2_s] <e\T2-Ti- s\.

The following lemma is an obvious implication of Lemma B.

LEMMA E. If map (5) has a unique cycle with period s then for any e > 0, there
exists To such that solution xv of equation (3) satisfies

Wx^t) - xv(t+ s)\\[TiT+s] <es.

for any T > TQ and for any initial function tp.

Thus, in this case, every solution of equation (3) is e-periodic on any interval [T0,T]

if To + s < T < 00.

We call a function z(t), t G [Ti,T2], e-periodic of the type (p,q,d) if it is e-periodic
with period s = q + 2d on the interval [Ti, T2] and there exists a periodic step-function
zo{t) of the type (p,q,d) such that ||z(*) - zo(t)\\[TtT+a] < es for T 6 [TUT2 - s\.

LEMMA F . If the conditions of Lemma E are satisfied and the triple (p, q, d) is the

type of the cycle of map (5), then any solution of equation (3) is an e-periodic function

of type (p, q, d) on each interval [7i, T2] for any T2 > Ti +q + 2d.

It should be noted that the type of solutions of equation (3) is defined uniquely if e
is sufficiently small.

Due to the continuous dependence of the solutions of equation (3) on the parameter
10 within any of the domains fi£ q d, the following lemma is obviously true.

LEMMA G. For any triple (p,q,d), for arbitrary e > 0 and 6 > 0, there exist a
parameter set Q'pq4 C D,°gd with mes ( f i j ^ \ %,q,d) < & and T > To + q + 2d such
that for any u> £ Q'pqd an(^ f°r any initial function tp, the solution xv of the difference
equation (3) is an e-periodic function of type (p,q,d) on the interval [TQ,T].

Now, using results on closeness between solutions of the difference equation (3) and
the difference-differential equation (1) for small /i, we can easily obtain an analog of
Lemma G for the delay differential equation (1).

THEOREM 5 . For any triple (p, q, d) and arbitrary e > 0 and 6 > 0, there exist a
parameter set fi;qd C OPp^d with mes (fi°i?>d \ f2;?d) < 6, and also T>T0 + q + 2d, an
integer k > 0, and /J.O > 0 such that for any fi < fj,0, for any w € fip|(/]d, and for any initial
function ip € PL, the solution x^, of the delay differential equation (1) is an e-periodic
function of type (p,q,d) on the interval [T0,T].

Theorem 6 below follows from Theorem 5 and properties of the bifurcation diagram
for the difference equation (3). It describes the bifurcation diagram for equation (1) and
is an analog of Theorem 3 for this case.
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THEOREM 6 . (1) Let w,- € fipj,,^, i = 1,2, be two collections of parameters and

Pi/ii < P2/<l2- Let N be arbitrary integer > 1 and S C 0, be an arc connecting ux

and w2 such that 9 n fip,,,d ^ 0 implies q + 2d ^ N and 5 n il°<q4 ± 0. Then for

any <p 6 PL, T > To + N, e > 0, there exists /x0 > 0 such that for any p, q with

Pi/Qi ^ P/Q ^ P2/92, there is a collection of parameters w € S for which the solution i£

of equation (1) with any n < Ho is an e-periodic function of type (p, q, d) on the interval

[To, T] with some d, q + 2d < N.

(2) Let ijj{ € ^ p , ^ , i — 1,2, be two collections of parameters and d\ < di- Let

5 C U QP,q,d be an arc connecting u>i and LJ2 such that 5 n QPtq,d / 0 for d\ ^ d ^ d2-
d=d\

Then for any d, dx ^ d ^ d2, any ip e PL, any T > To + q + 2d, and any e > 0, there

exist ^0 > 0 and a collection of parameters u> 6 9 for which the solution x^ of equation

(1) with any /J, < /zo is an e-periodic function of type (p, q, d) on the interval [To, T\.
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