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OF MULTIPLE SOLUTIONS OF A SIMPLE
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Abstract

The first part of this paper starts with a brief discussion of some methods for solution of
nonlinear equations which have interested the first author over the last twenty years or
so. In the second part we discuss a recent research involvement, the success of which
relies heavily on the numerical solution of nonlinear equation systems. We briefly describe
path-following methods and then present an application to a simple steady-state reaction-
diffusion equation arising in combustion theory. Results for some regular geometric shapes
are shown and compared with those from an approximate method.

1. Solution of nonlinear equation systems

The main thrust of this paper is to discuss some methods for the solution of nonlinear
equation systems containing parameters applied to a specific physical model. That
particular system may be written as

F(u, p) = 0,

where u e SR" and fi e fHm.
We commence with a brief discussion of Newton-like methods which have inter-

ested the first author over many years. These methods are described in the context of
solving the non-parametric equations

F(x) = 0,

where F, x e 9*".
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All Newton-type methods assume that an initial approximation x° to a solution x*
is given. After k steps we assume that an approximation x* has been reached. At this
step a direction d* is sought, and F(x) = 0 linearized about x* so that, if J(x*) is the
Jacobian of F(x*), then

F(x* + d*) = F(x*) + J(x*)d*

1.1. Newton method The classical Newton method [8] truncates the above equation
after the linear term so that the direction d* is found by solving the linear equation
system

J(x*)d* = -F(x*)

and then setting x*+1 = x* + d*. A line search, with line search parameter, ak, is often
incorporated, in which case x*+1 = x* + ak d*.

1.2. Discrete Newton method Since the basic Newton method requires evaluation
of the analytic Jacobian matrix at each iteration, it is rarely used in that form, though
modern computer algebra software has made this process less arduous. Traditionally,
some modification is incorporated to reduce the overall computational effort. Much
software which incorporates gradient information computes this approximation to the
Jacobian using finite-difference approximations [8]. A popular choice is the forward-
difference approximation to column; of J(x*), namely

where e,- is column j of the unit matrix I. The resultant method is referred to as the
discrete Newton (DN) method. Choice of the hj is a balance between discretization
and rounding errors, and is commonly taken as the square root of machine epsilon
(~ 10~8 for double precision (64-bit) IEEE arithmetic) in a relative sense. This variant
is also time consuming in that n additional function evaluations are required for each
iteration.

1.3. Shamanskii variation The Shamanskii [17] modification fixes the Jacobian
at a given value for m steps, choosing m to maximize some efficiency index. The
efficiency index used by Brent [4] is the logarithm of that used by Ostrowski, and
Brent shows that it has the value

£ = ln(w + 1)
n + m

The method can introduce a significant reduction in computational effort if m is chosen
to maximise E. For n = 10, for example, m = 1 and E % 0.122. Since the efficiency
index of DN is In2/(n + 1) « 0.063, the Shamanskii modification is nearly twice as
efficient as the basic DN method.
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1.4. Brown-type methods A completely different approach to modifying Newton's
method was introduced by Brown [5]. Rather than linearize all components of F(x)
simultaneously, as is done in the straight Newton method, the component equations
are linearized sequentially. Let the 7 * partial derivative of F,(x) be denned by

k = dF,tf)
iJ dxj "

Assuming that the first component, f\ (x), of F(x) is the first to be linearised, it can
be rearranged to solve for the component xr of x for which the partial derivative is the
largest in magnitude (IF*,.! > \Ffj |). This gives

X ~Xk - V ^Xr ~Xr

Then the second component F2(x) of F(x) is linearized, and xr substituted so that
F2(x) is a function of the remaining n — 1 variables. This process is repeated, n — 1
times in all. Overall, each iteration requires only 1/2 of the function evaluations of
the discrete Newton method. However, at each stage a back substitution is required
to find the relevant Fj (x), so that considerable computational effort may be required
here. Brown's original implementation (based on LUfactorizations), required O(n4)
flops, but Gay [13] was able to reduce this to O(n3). Brent produced a variant based
on QR factorizations, also requiring O(n3) flops.

The previously mentioned Shamanskii modification can be incorporated into either
the Gay or Brent methods. Joe [14] performed tests which showed that the correspond-
ing Gay implementation appeared to be more efficient and robust than that applied to
the method of Brent.

1.5. Broyden (quasi-Newton) methods Broyden [6] avoided the problems of
direct computation of the Jacobian, or a discrete approximation to it, by using a
simpler approximation to it (or its inverse). This method can be very effective if
the starting vector is sufficiently close to the sought solution. Such methods may be
viewed as variants on the generalised secant method.

1.6. Continuation (homotopy) methods The main weakness of the methods de-
scribed above is the desirability of providing a good starting vector x°. Davidenko [10]
suggested an alternative strategy (in the context of integral equations) in which the
original problem was modified by the introduction of a parameter 0 e [0, 1] such that

G(x,0) = F(x)-0F(x°).

The solution of G(x, 0) = 0 is the required solution of the equation system F(x) = 0.
Zith a suitable strategy for computing the sequence of 0 values, starting with 0 = 1,
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Broyden [7] demonstrated that this method can be very effective for solving systems
of nonlinear equations. In the univariate case, Broyden's method [6] reduces to
the conventional secant method, and Swift and Lindfield [18] described an effective
continuation method based on this approach (this algorithm is the basis for the NAG
routine C05 AJF).

2. Path following

Any of the methods described in Section 1 may be used to solve the algebraic
system

F(u, n) = 0

for fixed values of the parameters //. In many such problems, it is desirable to find
the range of values of the parameters for which a solution exists. We assume that the
solution for a particular parameter k is desired, all other parameters in fi being fixed
(see Eilbeck [11] for example). Some starting point Uo = u(A0) is assumed to be given
and we assume also that the method has progressed to find u(k) for the particular k.
Then the implicit function theorem ensures that u'(k) = du(k)/dk is found by solving
the equation

Fu(u(A), k)u'(k) + Fx(u(X), k) = 0.

To extend the solution to k + 8k, find an initial estimate u°(A. + Sk) of the solution
using an Euler method so that

u°(A. + Sk) = u(k) + Sku'(k).

A Newton (or Newton-like) corrector is used to improve this initial approximation,
the correction Suk to u*, k — 1, 2 , . . . , satisfying the nonlinear system

Fu(u*, k + Sk)8uk + Fx(u*. k + 8k) = 0.

The solutions may be used to plot some measure of the solution u, such as ||u||oo>
as a function of k. In most such situations, the researcher wishes to investigate
bifurcation and other critical points at which the Jacobian becomes singular, so that
Newton's method will fail. To overcome this, Keller [15] suggested the introduction
of an additional parameter s (the pseudo-arc length), which requires an additional
normalisation equation, so that the expanded system has the form

F(U(J ) , k(s), s) = 0, N(u(i), k(s), s) = 0.

The path-following algorithm described above is then applied to these n + 1 nonlinear
equations, with s as the path-following parameter rather than A..
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3. Reaction-diffusion equation

In this section we briefly describe a combustion model whose critical parameters
may be computed by setting up an approximating nonlinear equation system.

Suppose we have a body of potentially combustible material undergoing exother-
mic reaction in a bounded region Q. Neglecting reactant consumption, and assuming
Arrhenius kinetics, the equation for heat balance can be written (see Wake and Jack-
son [19] for example)

/ E \ _ 37
\~R~f) ~C~a~i'

On the boundary 3 £2, the most general boundary condition will be

k^- + H(T - Ta) = 0.
3/i

An explanation of the various physical and chemical parameters appearing in these
equations may be found in the paper of Balakrishnan, Swift and Wake [1].

3.1. Steady state formulation We are particularly interested in the behaviour of
the steady-state solution with increasing ambient temperature Ta. In this case the
reaction-diffusion equation is

3.2. Frank-Kamenetskii formulation The original approach was due to Frank-
Kamenetskii [12] (the "old" variable case) which took 6 = E(T - Ta)/RT2, the
dimensionless temperature rise over ambient, as the dependent variable.

Under the Frank-Kamenetskii approximation, (RTa/E) <K 1, the steady-state heat
balance equation simplifies to the "old" case equation

V26> + 8 exp(6») = 0,

with boundary condition

dO
— +BiO = 0.
on

The Frank-Kamenetskii parameter is given by S = o Qa^EA/ikR T2) and the Biot
number by Bi = Hao/k, where a^ is the half-width of Q.

Note that Ta appears in the variable 0, the parameter 8 and the boundary condition,
which makes direct computation of its critical values difficult.
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3.3. "New" variable formulation Motivated by the above-mentioned difficulty,
Burnell, Graham-Eagle, Gray and Wake [9] introduced the "new" case, with dimen-
sionless variable u and dimensionless parameter U,

RT rr RTa

u = — and U =E E
In this case the governing steady-state heat balance equation has the form

f — j =0,

with boundary conditions

Note that no approximations have been made here, unlike the "old" case. Hence,
in either the "old" or "new" case, the model can be described by the equation

V2u + kf(u)=0, (1)

where

/ (u) = exp(u) and / (w) = exP(-I),

with boundary conditions

au du
— +Biu = Q and — + Bi (M - U) = 0, (2)
on on

respectively. The bifurcation (distinguished) parameter in the "old" case is X. In the
"new" case it can be either U or X. However, in the reaction-diffusion problem being
discussed, we are mainly interested in solution behaviour with ambient temperature,
so take U oc Ta as the distinguished parameter, with X fixed.

4. Shape factor method

For regular shapes (class A shapes, N = 1, 2, 3, the infinite slab, infinite circular
cylinder and sphere respectively) (1) has the one-dimensional form

d2u /N-l\du
TT + ( )-r + \f(u) = 0, 0 < r < I,
dr2 \ r ) dr

and so is not difficult to solve. Critical values found from the shape factor method
for Class A shapes will be accurate, assuming the boundary value solver is of suitable
accuracy. Boddington, Gray and Harvey [3] generalised this ease of solution to other
shapes by defining a shape factor for a body of volume V and surface area 5 in terms
of an arbitrary dimension N related to the geometry. Critical values found from this
approach for non-Class A shapes will be approximate only.
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4.1. Multiplicity of solutions One interesting feature of either form of the above
steady-state equation is the existence of multiple solutions [1]. In the "old" variable
case, when

there is an infinite number of solutions for N in the range

2 < N < 10,

whilst in the "new" variable case, for sufficiently large values of X, solutions of
multiplicity greater than three may occur for any TV in the range

2 < N < 12.

5. Direct method

In order to find accurate values of the critical parameters for non-Class A shapes,
the reaction-diffusion equations (1) and (2) must be solved numerically. We use
O(h2) finite-difference approximations to the derivatives in these for the simplest two-
dimensional geometry, the square of side length 2, centred at the origin, corresponding
to the infinite square rod (ISR). Note that, in fact, this geometry is most poorly
approximated by the shape factor method. If the interval [0,1] is divided into M — 1
equal intervals (so that h = 1/(M — 1)) and taking advantage of symmetry, the
discretization produces a M2 x (M2 + 1) nonlinear algebraic system of the form used
in Section 1, written as

F(w, v) = 0.

The function F is written as fiw + c(f (w))w + Df (w), where w is the vector of
discretized approximations to u and v is the bifurcation parameter S, U for the "old",
"new" cases respectively, labelled as an additional variable v — wM2+i (though fixed
as far as the current boundary value solution is concerned). The matrix B € JftM2*M2 is
block tridiagonal, D is a diagonal matrix, null in the "old" case as boundary conditions
do not involve the bifurcation parameter, and the vector c 6 9tM2. The software
package PITCON [16] uses a form of Newton iteration to solve these equations and
numerical evidence indicates that computed estimates of the critical parameters are
accurate to O(h2). A similar procedure is used to solve the reaction-diffusion equation
over a cube; in this case it is essential to choose the mesh size to provide a balance
between excessive computation and accuracy. A mesh size of h = 0.1 (M = 11)
turns out to give critical values accurate to within about 0.2% [2].
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FIGURE 1. Comparison of methods—"old" variable.
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FIGURE 2. Comparison of methods—"new" variable.
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6. Results

63

Our primary interest is the study of the solution set (u, U, k) for a unit ISR and a
unit cube and we compare the effectiveness of the shape factor approach with the direct
numerical approach in computing these solution sets. In a practical situation, interest
lies in the onset of critical behaviour as the distinguished parameter increases from
zero. The critical parameter values associated with this phenomenon are referred to
as Scr in the "old" variable case and Ucr in the "new" variable case. Note that Ucr will
exist only if A. is greater than a certain critical k,r. Note also that Scr and X,r correspond
to ignition points in the "old" and "new" variable cases respectively. Both the methods
given are implemented for two- and three-dimensional non-class A shapes. Figure 1
shows a comparison of the shape factor and direct methods for a cube in the "old"
variables, and Figure 2 shows a similar comparison in the "new" variables.

Tables 1 and 2 display the numerical values for the critical parameters found by
each of the shape factor and direct methods. The direct method values are accurate to
0.2% as mentioned in Section 5.

TABLE 1. Comparison of Scr values for the e8 case: Bi = oo.

ISR
Cube

Shape factor method
1.717
2.586

Direct method
1.701
2.475

% difference
0.9
4.5

TABLE 2. Comparision of \,r values for the e~(1/u) case: Bi = oo.

ISR
Cube

Shape factor method
9.577
15.470

Direct method
9.341
14.201

% difference
2.5
8.9
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