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Abstract

Let q be a prime and let A be an elementary abelian group of order at least q3 acting by automorphisms
on a finite q′-group G. We prove that if |γ∞(CG(a))| ≤ m for any a ∈ A#, then the order of γ∞(G) is m-
bounded. If F(CG(a)) has index at most m in CG(a) for any a ∈ A#, then the index of F2(G) is m-bounded.
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1. Introduction

Suppose that a finite group A acts by automorphisms on a finite group G. The action
is coprime if the groups A and G have coprime orders. We denote by CG(A) the set

{g ∈ G | ga = g for all a ∈ A},

the centraliser of A in G (the fixed-point subgroup). In what follows, we denote
by A# the set of nontrivial elements of A. It is known that centralisers of coprime
automorphisms have a strong influence on the structure of G.

Ward showed that if A is an elementary abelian q-group of rank at least three and if
CG(a) is nilpotent for any a ∈ A#, then the group G is nilpotent [11]. Later, the second
author showed that if, under these hypotheses, CG(a) is nilpotent of class at most
c for any a ∈ A#, then the group G is nilpotent with (c, q)-bounded nilpotency class
[8]. Throughout the paper, we use the expression ‘(a, b, . . .)-bounded’ to abbreviate
‘bounded from above in terms of a, b, . . . only’. Subsequently, the above result was
extended to the case where A is not necessarily abelian. Namely, it was shown in [3]
that if A is a finite group of prime exponent q and order at least q3 acting on a finite
q′-group G in such a manner that CG(a) is nilpotent of class at most c for any a ∈ A#,
then G is nilpotent with class bounded solely in terms of c and q. Many other results
illustrating the influence of centralisers of automorphisms on the structure of G can be
found in [7].
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In this article we address the case where A is an elementary abelian q-group of rank
at least three and CG(a) is ‘almost’ nilpotent for any a ∈ A#. Recall that the nilpotent
residual of a finite group G is the intersection of all terms of the lower central series of
G. This will be denoted by γ∞(G). One of the results obtained in [2] is that if A and G
are as above and γ∞(CG(a)) has order at most m for any a ∈ A#, then the order of γ∞(G)
is (m, q)-bounded. The purpose of this article is to obtain a better result by showing
that the order of γ∞(G) is m-bounded and, in particular, that the order of γ∞(G) can be
bounded by a number that is independent of the order of A.

Theorem 1.1. Let q be a prime and let m be a positive integer. Let A be an elementary
abelian group of order at least q3 acting by automorphisms on a finite q′-group G.
Assume that |γ∞(CG(a))| ≤ m for any a ∈ A#. Then |γ∞(G)| is m-bounded.

Further, suppose that the Fitting subgroup of CG(a) has index at most m in CG(a)
for any a ∈ A#. It was shown in [9] that under this assumption the index of the
Fitting subgroup of G is (m, q)-bounded. In view of Theorem 1.1, it is natural to
conjecture that, in fact, the index of the Fitting subgroup of G can be bounded in
terms of m alone. We have not been able to confirm this. Our next result should
be regarded as evidence in favour of the conjecture. Recall that the second Fitting
subgroup F2(G) of a finite group G is defined as the inverse image of F(G/F(G)), that
is, F2(G)/F(G) = F(G/F(G)). Here F(G) stands for the Fitting subgroup of G.

Theorem 1.2. Let q be a prime and let m be a positive integer. Let A be an elementary
abelian group of order at least q3 acting by automorphisms on a finite q′-group G.
Assume that F(CG(a)) has index at most m in CG(a) for any a ∈ A#. Then the index of
F2(G) is m-bounded.

In the next section, we give some lemmas that will be used in the proofs of the
above results. Section 3 deals with the proof of Theorem 1.2. In Section 4, we prove
Theorem 1.1.

2. Preliminaries

If A is a group of automorphisms of a group G, the subgroup generated by elements
of the form g−1gα with g ∈ G and α ∈ A is denoted by [G, A]. The subgroup [G, A] is
an A-invariant normal subgroup in G. Our first lemma is a collection of well-known
facts on coprime actions (see, for example, [5]). Throughout the paper, we will use it
without explicit references.

Lemma 2.1. Let A be a group of automorphisms of a finite group G with (|G|, |A|) = 1.
Then:

(i) G = [G, A]CG(A);
(ii) [G, A, A] = [G, A];
(iii) A leaves invariant some Sylow p-subgroup of G for each prime p ∈ π(G);
(iv) CG/N(A) = CG(A)N/N for any A-invariant normal subgroup N of G;
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(v) if A is a noncyclic elementary abelian group and A1, . . . , As are the maximal
subgroups in A, then G = 〈CG(A1), . . . ,CG(As)〉 and, furthermore, if G is
nilpotent, then G =

∏
i CG(Ai).

The following lemma was proved in [10]. The case where the group G is soluble
was established in Goldschmidt [4, Lemma 2.1].

Lemma 2.2. Let G be a finite group acted on by a finite group A such that (|A|, |G|) = 1.
Then [G, A] is generated by all nilpotent subgroups T such that T = [T, A].

Lemma 2.3. Let q be a prime and let A be an elementary abelian group of order at least
q2 acting by automorphisms on a finite q′-group G. Let A1, . . . , As be the subgroups of
index q in A. Then [G, A] is generated by the subgroups [CG(Ai), A].

Proof. If G is abelian, the result is immediate from Lemma 2.1(v) since the subgroups
CG(Ai) are A-invariant. If G is nilpotent, the result can be obtained by considering the
action of A on the abelian group G/Φ(G). Finally, the general case follows from the
nilpotent case and Lemma 2.2. �

The following lemma is an application of the three subgroup lemma.

Lemma 2.4. Let A be a group of automorphisms of a finite group G and let N be a
normal subgroup of G contained in CG(A). Then [[G, A], N] = 1. In particular, if
G = [G, A], then N ≤ Z(G).

Proof. Indeed, by the hypotheses, [N,G, A] = [A, N,G] = 1. Thus [G, A, N] = 1 and
the lemma follows. �

In the next lemma, we will employ the fact that if A is any coprime group of
automorphisms of a finite simple group, then A is cyclic (see, for example, [6]). We
denote by R(H) the soluble radical of a finite group H, that is, the largest normal
soluble subgroup of H.

Theorem 2.5. Let q be a prime and let m be a positive integer such that m < q. Let A
be an elementary abelian group of order q2 acting on a finite q′-group G in such a way
that the index of R(CG(a)) in CG(a) is at most m for any a ∈ A#. Then [G, A] is soluble.

Proof. We argue by contradiction. Choose a counterexample G of minimal order.
Then G = [G, A] and R(G) = 1. Suppose that G contains a proper normal A-invariant
subgroup N. Since [N,A] is subnormal, we conclude that [N,A] = 1 and so N = CN(A).
Then by Lemma 2.4, N is central and, in view of R(G) = 1, we have a contradiction.

Hence G has no proper normal A-invariant subgroups and so G = S1 × · · · Sl, where
Si are isomorphic nonabelian simple subgroups transitively permuted by A. We will
prove that, under these assumptions, G has order at most m.

If l = 1, then G is a simple group and so G = CG(a) for some a ∈ A#. In this case,
we conclude that G has order at most m by the hypotheses. Suppose, therefore, that
l , 1 and so l = q, or l = q2.
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In the first case, G = S × S a × · · · × S aq−1
for some a ∈ A and there exists b ∈ A such

that S b = S . Here S = S1. We see that CG(a) is the ‘diagonal’ of the direct product.
In particular, CG(a) � S is a simple group and so CG(a) is of order at most m. Since
m < q and b leaves CG(a) invariant, we conclude that CG(a) ≤ CG(b). Combining this
with the fact that b stabilises all simple factors, we deduce that b acts trivially on G. It
follows that |G| ≤ m.

Finally, suppose that G is a product of q2 simple factors that are transitively
permuted by A. For each a ∈ A, we see that CG(a) is a product of q ‘diagonal’
subgroups. In particular, CG(a) contains a direct product of q nonabelian simple
groups. This is a contradiction since [CG(a) : R(CG(a))] is at most m and m < q.

This proves that G has order at most m. Then, of course, A acts trivially on G. We
conclude that [G, A] = 1. This is a contradiction and completes the proof. �

3. Proof of Theorem 1.2
Assume the hypothesis of Theorem 1.2. Thus, A is an elementary abelian group

of order at least q3 acting on a finite q′-group G in such a manner that F(CG(a)) has
index at most m in CG(a) for any a ∈ A#. We wish to show that F2(G) has m-bounded
index in G. It is clear that A contains a subgroup of order q3. Thus, replacing A by
such a subgroup, if necessary, we may assume that A has order q3. In what follows,
A1, . . . , As denote the subgroups of index q in A.

It was proved in [9, 2.11] that, under this hypothesis, the subgroup F(G) has (q,m)-
bounded index in G. Hence, if q ≤ m, the subgroup F(G) (and, consequently, F2(G))
has m-bounded index. We will therefore assume that q > m. In this case, A acts
trivially on CG(a)/F(CG(a)) for any a ∈ A#. Consequently, [CG(a), A] ≤ F(CG(a)) for
any a ∈ A#.

Observe that 〈[CG(Ai), A], [CG(A j), A]〉 is nilpotent for any 1 ≤ i, j ≤ s. This is
because the intersection Ai ∩ A j contains a nontrivial element a and the subgroups
[CG(Ai), A] and [CG(A j), A] are both contained in the nilpotent subgroup [CG(a), A].

Lemma 3.1. The subgroup [G, A] is nilpotent.

Proof. We argue by contradiction. Suppose G is a counterexample of minimal possible
order. By Lemma 2.5, the subgroup [G, A] is soluble. Let V be a minimal A-invariant
normal subgroup of G. Then V is an elementary abelian p-group and G/V is an r-
group for some primes p , r. Write G = VH, where H is an A-invariant Sylow r-
subgroup such that H = [H, A]. From Lemma 2.3, H is generated by the subgroups
[CH(Ai),A]. Thus, H centralises [V,A] since [CV (Ai),A] and [CH(A j),A] have coprime
order for each 1 ≤ i, j ≤ s. Hence [V, A] ≤ Z(G), and by the minimality we conclude
that [V, A] = 1 and V = CV (A). But then, by Lemma 2.4, V ≤ Z(G) since V is a normal
subgroup and G = [G, A]. This is a contradiction and the lemma is proved. �

We can now easily complete the proof of Theorem 1.2. By the above lemma, A
acts trivially on the quotient G/F(G). Therefore G = F(G)CG(A). This shows that
F(CG(A)) ≤ F2(G). Since the index of F(CG(A)) in CG(A) is at most m, the result
follows.
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4. Proof of Theorem 1.1

We say that a finite group G is metanilpotent if γ∞(G) ≤ F(G).
The following elementary lemma will be useful (for the proof, see, for example,

[1, Lemma 2.4]).

Lemma 4.1. Let G be a metanilpotent finite group. Let P be a Sylow p-subgroup of
γ∞(G) and let H be a Hall p′-subgroup of G. Then P = [P,H].

Let us now assume the hypothesis of Theorem 1.1. Thus A is an elementary abelian
group of order at least q3 acting on a finite q′-group G in such a manner that γ∞(CG(a))
has order at most m for any a ∈ A#. We wish to show that γ∞(G) has m-bounded order.
Replacing A by a subgroup, if necessary, we may assume that A has order q3. Since
γ∞(CG(a)) has order at most m, we obtain that F(CG(a)) has index at most m! (see, for
example, [7, 2.4.5]). By [2, Theorem 1.1], γ∞(G) has (q,m)-bounded order. Without
loss of generality, we will assume that m! < q. In particular, [G, A] is nilpotent by
Lemma 3.1.

Lemma 4.2. If G is soluble, then γ∞(G) = γ∞(CG(A)).

Proof. We will use induction on the Fitting height h of G.
Suppose first that G is metanilpotent. Let P be a Sylow p-subgroup of γ∞(G) and H

be a Hall A-invariant p′-subgroup of G. By Lemma 4.1, we have γ∞(G) = [P,H] = P.
It is sufficient to show that P ≤ γ∞(CG(A)). Therefore, without loss of generality, we
assume that G = PH. With this in mind, observe that γ∞(CG(a)) = [CP(a),CH(a)] for
any a ∈ A#.

We will prove that P = [CP(A),CH(A)]. Note that A acts trivially on γ∞(CG(a)) for
any a ∈ A# since m < q. Hence γ∞(CG(a)) ≤ CP(A) for any a ∈ A#. Let a, b ∈ A. We
have [γ∞(CG(a)),CH(b)] ≤ [CP(A),CH(b)] ≤ γ∞(CG(b)). Let us show that P = CP(A).

First, assume that P is abelian. Observe that the subgroup N =
∏

a∈A# γ∞(CG(a))
is normal in G. Since N is A-invariant, we obtain that A acts on G/N in such a way
that CG(a) is nilpotent for any a ∈ A#. Thus G/N is nilpotent by [11]. Therefore
P =
∏

a∈A# γ∞(CG(a)). In particular, P = CP(A).
Now suppose that P is not abelian. Consider the action of A on G/Φ(P). By the

above, P/Φ(P) = CP(A)Φ(P)/Φ(P), which implies that P = CP(A).
Since P = CP(A) is a normal subgroup of G, by Lemma 2.4 we deduce that [H, A]

centralises P. Therefore P = [CP(A),CH(A)] since H = [H, A]CH(A). This completes
the proof for metanilpotent groups.

If G is soluble and has Fitting height h > 2, we consider the quotient group
G/γ∞(F2(G)), which has Fitting height h − 1. Clearly, γ∞(F2(G)) ≤ γ∞(G). Hence,
we deduce that γ∞(G) = γ∞(CG(A)). �

Recall that, under our assumptions, [G, A] is nilpotent and CG(A) has a normal
nilpotent subgroup of index at most m!. Let R be the soluble radical of G. Since
G = [G, A]CG(A), the index of R in G is at most m!. Lemma 4.2 shows that the order
of γ∞(R) is at most m. We pass to the quotient G/γ∞(R) and, without loss of generality,
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assume that R is nilpotent. If G = R, we have nothing to prove. Therefore assume that
R < G and use induction on the index of R in G. Since [G, A] ≤ R, it follows that each
subgroup of G containing R is A-invariant. If T is any proper normal subgroup of G
containing R, by induction the order of γ∞(T ) is m-bounded and the theorem follows.
Hence we can assume that G/R is a nonabelian simple group. We know that G/R is
isomorphic to a quotient of CG(A) and so, being simple, G/R has order at most m.

As usual, given a set of primes π, we write Oπ(U) to denote the maximal normal
π-subgroup of a finite group U. Let π = π(m!) be the set of primes at most m. Let
N = Oπ′(G). Our assumptions imply that G/N is a π-group and N ≤ F(G). Thus, by
the Schur–Zassenhaus theorem [5, Theorem 6.2.1], the group G has an A-invariant
π-subgroup K such that G = NK. Let K0 = Oπ(G).

Suppose that K0 = 1. Then G is a semidirect product of N by K = CK(A). For
an automorphism a ∈ A#, observe that [CN(a), K] ≤ γ∞(CG(a)) since CN(a) and K
have coprime order. On the one hand, being a subgroup of γ∞(CG(a)), the subgroup
[CN(a),K] must be a π-group. On the other hand, being a subgroup of N, the subgroup
[CN(a),K] must be a π′-group. We conclude that [CN(a),K] = 1 for each a ∈ A#. Since
N is a product of all such centralisers CN(a), it follows that [N,K] = 1. Since K0 = 1
and K is a π-group, we deduce that K = 1 and so G = N is a nilpotent group.

In general, K0 does not have to be trivial. However, considering the quotient G/K0
and taking into account the above paragraph, we deduce that G = N × K. In particular,
γ∞(G) = γ∞(K) and so, without loss of generality, we can assume that G is a π-group. It
follows that the number of prime divisors of |R| is m-bounded and we can use induction
on this number. It will be convenient to prove our theorem first under the additional
assumption that G = G′.

Suppose that R is an p-group for some prime p ∈ π. Note that if s is a prime that
is different from p and H is an A-invariant Sylow s-subgroup of G, then, in view of
Lemma 4.2, we have γ∞(RH) ≤ γ∞(CG(A)) because RH is soluble. We will require
the following observation about finite simple groups (for the proof, see, for example,
[2, Lemma 3.2]).

Lemma 4.3. Let D be a nonabelian finite simple group and let p be a prime. There
exists a prime s that is different from p such that D is generated by two Sylow s-
subgroups.

In view of Lemma 4.3 and the fact that G/R is simple, we deduce that G/R is
generated by the image of two Sylow s-subgroups H1 and H2, where s is a prime that
is different from p. Both subgroups RH1 and RH2 are soluble and A-invariant since
[G, A] ≤ R. Therefore both [R,H1] and [R,H2] are contained in γ∞(CG(A)).

Let H = 〈H1,H2〉. Thus G = RH. Since G = G′, it is clear that G = [R,H]H and
[R,G] = [R,H]. We have [R,H] = [R,H1][R,H2] and therefore the order of [R,H] is
m-bounded. Passing to the quotient G/[R,G], we can assume that R = Z(G). So we
are in the situation where G/Z(G) has order at most m. By a theorem of Schur, the
order of G′ is m-bounded as well (see, for example, [7, 2.4.1]). Taking into account
that G = G′, we conclude that the order of G is m-bounded.
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Now suppose that π(R) = {p1, . . . , pt}, where t ≥ 2. For each i = 1, . . . , t, consider
the quotient G/Op′i (G). The above paragraph shows that the order of G/Op′i (G) is
m-bounded. Since t also is m-bounded, the result follows.

Thus, in the case where G = G′, the theorem is proved. Let us now deal with the
case where G , G′. Let G(l) be the last term of the derived series of G. The previous
paragraph shows that |G(l)| is m-bounded. Consequently, |γ∞(G)| is m-bounded since
G/G(l) is soluble and G(l) ≤ γ∞(G). The proof is now complete.
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