
psychometrika—vol. 86, no. 1, 65–95
March 2021
https://doi.org/10.1007/s11336-021-09751-8

SINGLE- AND MULTIPLE-GROUP PENALIZED FACTOR ANALYSIS: A
TRUST-REGION ALGORITHM APPROACH WITH INTEGRATED AUTOMATIC

MULTIPLE TUNING PARAMETER SELECTION

Elena Geminiani

UNIVERSITY OF BOLOGNA

Giampiero Marra

UNIVERSITY COLLEGE LONDON

Irini Moustaki

LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Penalized factor analysis is an efficient technique that produces a factor loadingmatrix with many zero
elements thanks to the introduction of sparsity-inducing penalties within the estimation process. However,
sparse solutions and stable model selection procedures are only possible if the employed penalty is non-
differentiable, which poses certain theoretical and computational challenges. This article proposes a general
penalized likelihood-based estimation approach for single- and multiple-group factor analysis models.
The framework builds upon differentiable approximations of non-differentiable penalties, a theoretically
founded definition of degrees of freedom, and an algorithm with integrated automatic multiple tuning
parameter selection that exploits second-order analytical derivative information. The proposed approach
is evaluated in two simulation studies and illustrated using a real data set. All the necessary routines are
integrated into the R package penfa.

Key words: effective degrees of freedom, generalized information criterion, measurement invariance,
penalized likelihood, simple structure.

1. Introduction

Factor analysis has been extensively applied in the social, behavioral and natural sciences
as a data reduction method. For a given set of observed variables x1, . . . , xp one would like to
find a set of latent factors f1, . . . , fr , fewer in number than the observed variables (r < p),
that contain essentially the same information. Factor analysis can be conducted in an exploratory
(EFA;Mulaik, 2009) or confirmatory (CFA; Jöreskog, 1979) way. EFA analyzes a set of correlated
observed variables without knowing in advance either the number of factors that are required to
explain their interrelationships or their meaning. Depending on the r -factor model finally chosen
(based on goodness-of-fit criteria and fitmeasures) aswell as the rotation applied, an interpretation
and labelling of the factors are given. CFA postulates certain relationships among the observed
and latent variables by assuming a pre-specified pattern for the model parameters (factor loadings,
structural parameters, unique variances). It is mainly concerned with testing hypotheses about the
values of the factor loadings (usually, that some of them are zero).
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In data reduction techniques such as factor analysis, the interest is in obtaining factor solutions
that exhibit a “simple structure” (Thurstone, 1947), that is, with many zero loadings and pure
measures (i.e., each variable loads only on a single factor). In EFA this is accomplished with
orthogonal or oblique factor rotations. However, rotations often do not generate loadings precisely
equal to zero, so users have to manually set to zero those loadings that are smaller than a threshold
(e.g., 0.30; Hair et al., 2010). Secondly, because each rotation is based on a specific optimization
criterion, different rotations often lead to different factor structures which may all be far from
“simple”. In CFA, one usually resorts to modification indices (Chou & Huh, 2012) instead, but,
if used extensively, they can lead to higher risks of capitalization on chance (MacCallum et al.,
1992), and a lower probability of finding the best model specification (Chou & Bentler, 1990).

Penalized factor analysis is an alternative technique that produces parsimoniousmodels using
largely an automated procedure. The resultingmodels are less prone to instability in the estimation
process and are easier to interpret and generalize than their unpenalized counterparts. It is based
on the use of penalty functions that allow a subset of the model parameters (typically the factor
loadings) to be automatically set to zero. The penalty is usually non-differentiable (Fan & Li,
2001), so that it produces a sparse factor structure, that is, a loading matrix where the number
of nonzero entries is much smaller than the total number of its elements. This definition does
not impose any pattern on the nonzero entries, so a simple structure is not enforced if it is not
supported by the data. These sparsity-inducing penalties can reduce model complexity, enhance
the interpretability of the results, and produce more stable parameter estimates. These benefits
come, however, with a loss in model fit (i.e., a nonzero bias), so it is crucial to balance goodness
of fit and sparsity appropriately. This can be achieved via the selection of a tuning parameter,
which controls the amount of sparsity introduced in the model. A grid-search over a range of
tuning values is generally conducted, and the optimal model is picked on the basis of information
criteria or cross-validation.

In the last few years, several works have applied penalized estimation and regularization
methods to models with latent variables. Choi, Oehlert and Zou (2010) used lasso (“least absolute
shrinkage and selection operator”; Tibshirani, 1996) and adaptive lasso penalties in EFA. Since the
lasso leads to biased estimates and overly dense factor structures, Hirose and Yamamoto (2014a;
2014b) employed non-convex penalties, such as the scad (“smoothly clipped absolute deviation”)
and the mcp (“minimax concave penalty”). Trendafilov, Fontanella and Adachi (2017) penalized
a reparametrized loading matrix, whereas Jin, Moustaki and Yang-Wallentin (2018) considered a
quadratic approximation of the objective function. Regularized methods have also been applied to
structural equationmodels (SEM) forwhichCFA is a special case. Jacobucci,GrimmandMcArdle
(2016) developed the regularized SEM (RegSEM) using a reticular action model formulation and
coordinate descent or general optimization routines. Huang, Chen and Weng (2017) and Huang
(2020) examined the same problem of penalizing a SEM but employed a modification of the
quasi-Newton algorithm.

Penalized estimation can be also extended to multiple-group analyses, such as cross-national
surveys or cross-cultural assessments in psychological or educational testing. Recently, Huang
(2018) and Lindstrøm and Dahl (2020) developed a penalized approach for multiple-group SEM,
showing the benefits of using regularization techniques as alternatives to factorial invariance
testing procedures (Meredith, 1993) to ascertain the differences and similarities of the parameter
estimates across groups (see Bauer, Belzak&Cole, 2020 for a regularized approach formoderated
non-linear factor analysis).

In this paper, we propose a penalized-estimation strategy for single- andmultiple-group factor
analysismodels based on a carefully structured trust-region algorithm. The penalized optimization
problem requires the availability of second-order analytical derivative information and thus twice-
continuously differentiable functions. Because a sparse solution can be only achieved with non-
differentiable penalties,we employ differentiable approximations of them. In particular,we locally
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approximate several convex and non-convex penalties, including lasso, adaptive lasso, scad and
mcp. We also provide a theoretically founded definition of degrees of freedom (required when
performing model selection) and present an efficient automatic procedure for the estimation of
the tuning parameters, hence eliminating the need for computationally intensive grid searches as
done in the literature. The proposed methodology is integrated into the R package penfa (a short
form for PENalized Factor Analysis).

The paper is organized as follows. Sect. 2 briefly discusses the classical linear factor analysis
model. In Sect. 3 we review and develop penalized likelihood estimation via locally approximated
penalties. The extension of the model and the penalized approach for the case of multiple groups
are described in Sects. 4 and 5, respectively. The derivation of the model degrees of freedom is
presented in Sect. 6. Parameter estimation and the automatic selection of the tuning parameters
are detailed in Sect. 7. The performance of the model is evaluated in two simulation studies (Sect.
8) and an empirical application (Sect. 9). Lastly, Sect. 10 concludes the paper and gives directions
for future research. Additional details can be found in the Online Resources.

2. The Normal Linear Factor Analysis Model

The classical linear factor analysis model takes the form1:

x = � f + ε, (1)

where x is the p × 1 vector of observed variables, � is the p × r factor loading matrix, f is the
r × 1 vector of common factors, and ε is the p × 1 vector of unique factors. It is assumed that
f ∼ N (0,�), ε ∼ N (0,�), and f is independent of ε. The observed variables are assumed
to be conditionally independent (i.e., � is a diagonal matrix), although this assumption can be
relaxed if required. It then follows that x ∼ N (0,�), where the model-implied covariance matrix
is � = ���T + �.

It is possible to fix certain elements in�,� and� to zero based on a data generating hypoth-

esis. The remaining m ≤ min
(
N ,

p(p+1)
2

)
elements, with N the total sample size, constitute the

free parameters in vec(�), diag(�), and vech(�), and are collected in the vector θ , where the
vec(·) operator converts the enclosed matrix into a vector by stacking its columns, diag(·) extracts
the diagonal elements of the enclosed square matrix, and vech(·) vectorizes the lower-diagonal
part of the enclosed symmetric matrix. As it is common practice in these cases, we assume that the
observed variables are measured as deviations from their means, so that the parameters only strive
to reproduce the covariance matrix. As in Jöreskog (1979), we fix the variances of the common
factors to unity for scale setting, and r − 1 elements of �, in each column, to zero for uniqueness
under factor rotation.

For a random sample of size N the log-likelihood is written as

�(θ) = −N

2

{
log|�| + tr(S�−1) + p log(2π)

}
, (2)

where S is the sample covariance matrix. Since we are interested in introducing sparsity in
the factor loading matrix, the estimation of the factor model will involve penalized likelihood
procedures. The next section illustrates how such sparsity-inducing penalty functions can be
specified and suitably approximated.

1An alternative factor model formulation would include the intercepts of the observed variables and the factor means.
See the multiple-group extension in Sect. 4 for an example of a mean and covariance structure model.
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3. Sparsity-Inducing Penalties

Since the primary interest of factor analysis is a sparse loading matrix, penalization
is imposed on the factor loading matrix �. Let us write the parameter vector as θ =
(θ1, . . . , θq� , θq�+1, . . . , θm)T , where the sub-vector (θ1, . . . , θq� )T collects the penalized param-
eters (i.e., the factor loadings), whereas (θq�+1, . . . , θm)T the unpenalized parameters (i.e., the
free elements in � and �). Because of the presence of fixed elements in � (Sect. 2), the number
of penalized factor loadings q� is smaller than p × r . Define Rq = diag(0, 0, . . . , 0, 1, 0, . . . , 0)
a diagonal matrix where the 1 on the (q, q)th entry of the matrix corresponds to the q th parameter
in θ , for q = 1, . . . , q�, and Rq = Om×m for q = q� +1, . . . ,m. LetPη(θ) be a penalty function
on the parameter vector θ , where η ∈ [0,∞) is a positive tuning parameter which determines
the amount of shrinkage or penalization. The overall penalty is then given by the sum of the
penalty terms for each parameter, that is, Pη(θ) = ∑m

q=1 Pη,q(||Rqθ ||1), where ||Rqθ ||1 = |θq |
if q = 1, . . . , q�, and zero otherwise. An example clarifying the formulation of this penalty is
provided in Section B.1.1. One of the best-known penalties is the lasso (Tibshirani, 1996), which
is defined as

PL
η (θ) = η

q�∑
q=1

|θq |. (3)

The potential problem with this penalty is that it penalizes all parameters equally, and thus can
either select an overly complicatedmodel or over-shrink large parameters. An ideal penalty should
induce weak shrinkage on large effects and strong shrinkage on irrelevant effects (Tang, Shen,
Zhang & Yi, 2017). To address this issue, alternative penalties have been developed, the most
common ones being the adaptive lasso (alasso; Zou, 2006), scad (Fan & Li, 2001) and mcp
(Zhang, 2010). These penalties give different amounts of shrinkage to each parameter, so each
factor loading is weighted differently. Because of this, they lead to sparser solutions and enjoy
the so-called “oracle” property, that is, when the true parameters have some zero loadings, they
are estimated as zero with probability tending to one, and the nonzero loadings are estimated as
well as when the correct submodel is known (Fan & Li, 2001). The alasso is defined as

P A
η (θ) = η

q�∑
q=1

wq |θq | = η

q�∑
q=1

|θq |
|θ̂q |a

for a > 0. (4)

It uses an adaptive weighting scheme based on a set of available weights wq = 1

|θ̂q |a
(q =

1, . . . , q�), which are often taken to be the maximum likelihood estimates, that is,wq = 1

|θ̂MLE
q |a .

As the exponent a gets larger, the relative strength of the penalization increases for smaller
maximum likelihood estimates compared to larger maximum likelihood estimates.

Similarly, the scad and mcp use a varying weighting scheme. The scad is defined as

P S
η (θ) =

q�∑
q=1

{
η|θq |1(0 ≤ |θq | ≤ η) −

[
θ2q + η2 − 2ηa|θq |

2(a − 1)

]
1(η < |θq | ≤ aη)

+η2(a + 1)

2
1(|θq | > aη)

}
for a > 2, (5)

https://doi.org/10.1007/s11336-021-09751-8 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09751-8


ELENA GEMINIANI ET AL. 69

and the mcp as

PM
η (θ) =

q�∑
q=1

{(
η|θq | − θ2q

2a

)
1(0 ≤ |θ2q | ≤ aη) + η2a

2
1(|θq | > aη)

}
for a > 1, (6)

where a is an additional tuning parameter. The superscripts L , A, S, M in equations (3)-(6) refer
to the lasso, alasso, scad and mcp, respectively. The derivations of expressions (3)-(6) can be
found in Section B.1.2. While the lasso and alasso are convex penalties, the scad and mcp are
non-convex and can, therefore, make the optimization problem non-convex. In fact, a challenge
with non-convex penalties is to find a good balance between sparsity and stability. To this end,
both scad and mcp have an extra tuning parameter (a) which regulates their concavity so that,
when it exceeds a threshold, the optimization problem becomes convex.

The above penalties help to obtain sparse solutions, however, they are non-differentiable,
which is problematic for developing a coherent computational and theoretical inferential frame-
work. The next section addresses this issue by replacing the non-differentiable penalties with their
differentiable counterparts obtained via local approximations.

3.1. Locally Approximated Penalties

Ulbricht (2010) pointed out that a good penalty function should satisfy the following prop-
erties, for q = 1, . . . ,m: (P.1) Pη,q : R

+ → R
+ and Pη,q(0) = 0; (P.2) Pη,q(||Rqθ ||1)

continuous and strictly monotone in ||Rqθ ||1; (P.3) Pη,q(||Rqθ ||1) continuously differentiable

∀ ||Rqθ ||1 �= 0, such that
∂Pη,q(||Rqθ ||1)

∂||Rqθ ||1 > 0. We develop differentiable approximations of

the above penalties that satisfy these properties. These approximations make the objective func-
tion differentiable, which is an indispensable prerequisite for the theoretical derivation of the
degrees of freedom of the model, and a computationally and theoretically founded estimation
framework (Sects. 6–7). In the same spirit, as for instance, Filippou, Marra and Radice (2017),
we locally approximate the non-differentiable L1-norms in (3)-(6) at ||Rqθ ||1 = 0 and combine
this with ideas by Fan and Li (2001) and Ulbricht (2010). Let ||Rqθ ||1 = ||ξq ||1, where the q th
element in ξq = (0, . . . , 0, θq , 0, . . . , 0)T corresponds to the q th parameter in θ . Assume that an
approximation K1(ξq ,A) of the L1-norm ||·||1 exists such that

||ξq ||1 = K1(ξq ,B) = lim
A→B

K1(ξq ,A),

whereA represents a set of possible tuning parameters, B is the set of boundary values for ||ξq ||1
andK1(ξq ,A) is at least twice differentiable. We use ||ξq ||1 = K1(ξq ,A) = (ξTq ξq + c̄)

1
2 (Koch,

1996), with c̄ a small positive real number (e.g., 10−8) which controls the closeness between the

approximation and the exact function. For all ξq for which the derivative
∂||ξq ||1

∂ξq
is defined, we

assume that

∂||ξq ||1
∂ξq

= ∂K1(ξq ,B)

∂ξq
= lim

A→B
D1(ξq ,A),

whereD1(ξq ,A) = ∂K1(ξq ,A)

∂ξq
, and thatD1(0,A) = 0. Then, the first derivativeD1(ξq ,A) =

(ξ Tq ξq + c̄)− 1
2 ξq is a continuous approximation of the first-order derivative of the L1-norm. Notice
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thatK1(ξq ,A) deviates only slightly fromK1(ξq ,B): when ξq = 0 the deviation is
√
c̄, whereas

for any other value of ξq the deviation is less than c̄.

Penalty PT
η (θ) for T = {L , A, S, M} can be locally approximated by a quadratic function

as follows. Suppose that θ̃ is an initial value close to the true value of θ . Then, we approximate
PT

η (θ) by a Taylor expansion of order one at θ̃ , that is,

PT
η (θ) ≈ PT

η (θ̃) + ∇
θ̃
PT

η (θ̃)T (θ − θ̃), (7)

where ∇
θ̃
PT

η (θ̃) = ∂PT
η (θ̃)

∂ θ̃
. As proved in Section B.1.3, PT

η (θ) is approximated as

PT
η (θ) ≈ 1

2
θT

⎧
⎨
⎩

m∑
q=1

∂PT
η,q(||Rq θ̃ ||1)
∂||Rq θ̃ ||1

1√
(Rq θ̃)T Rq θ̃ + c̄

RT
q Rq

⎫
⎬
⎭ θ = 1

2
θTST

η (θ̃)θ .

The penalty matrix ST
η (θ̃) is an m × m block diagonal matrix of the form:

ST
η (θ̃) =

[MT
η (θ̃) O
O O

]
. (8)

The first block is composed of the q� × q� diagonal matrix MT
η (θ̃) and corresponds to the

parameters to penalize, whereas the second block is an (m − q�)-dimensional null matrix relative
to the parameters unaffected by the penalization. The matrixMT

η (θ̃) is in turn a diagonal matrix

whose entries mT
q = ∂PT

η,q(||Rq θ̃ ||1)
∂||Rq θ̃ ||1

1√
(Rq θ̃)T Rq θ̃ + c̄

(for q = 1, . . . , q�) determine the

amount of shrinkage on θ̃q controlled by the tuning η and required by penalty T . Their expressions
for the lasso, alasso, scad and mcp are (see Section B.1.3.1)

[
ML

η (θ̃)
]
qq

= mL
q = η√

θ̃2q + c̄
, (9)

[
MA

η (θ̃)
]
qq

= mA
q = η

|θ̂q |a
√

θ̃2q + c̄
, (10)

[
MS

η(θ̃)
]
qq

= mS
q =

η

[
1(|θ̃q | ≤ η) + max(aη − |θ̃q |, 0)

(a − 1)η
1(|θ̃q | > η)

]

√
θ̃2q + c̄

, (11)
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[
MM

η (θ̃)
]
qq

= mM
q =

(
η − |θ̃q |

a

)
1(|θ̃q | < ηa)

√
θ̃2q + c̄

. (12)

4. The Multiple-Group Factor Analysis Model

In studies ofmultiple groups of respondents, such as cross-national surveys and cross-cultural
assessments in psychological or educational testing, the interest often lies in the comparisons of
the groups with respect to their factor structures. In this case, the model becomes

xg = τ g + �g f g + εg for g = 1, . . . ,G, (13)

where the subscript g denotes the group, and τ g the intercept terms. It is assumed that f g ∼
N (κg,�g), εg ∼ N (0,�g), f g is independent of εg , and �g is a diagonal matrix. Then, it
follows that xg ∼ N (μg,�g), where the model-implied moments are μg = τ g + �gκg and
�g = �g�g�

T
g + �g .

We set the metric of the factors and the necessary identification restrictions through the
“marker-variable” approach (Little, Slegers & Card, 2006), which relies on the selection of a
representative variable (marker) for each factor in each group. Then, we fix the intercepts of the
markers to zero, the loadings on the “marked” factors to 1.0, and those on the remaining factors
to zero. All of the other parameters are estimated. The choice of the markers is crucial and should
be an accurate one (Millsap, 2001). Alternative identification methods are discussed in Millsap
(2012).

The free parameters of each group appearing in vec(�g), τ g , diag(�g), vech(�g), and κg

are collected in the mg-dimensional vector θ g , for g = 1, . . . ,G. Each group parameter vector is
collected in the overallm-dimensional vector θ = (θT1 , . . . , θTg , . . . , θT

G)T , wherem = ∑G
g=1 mg .

Assume for convenience that the same set of parameters is estimated in every group, which implies
that the number of observed variables p and factors r is the same across groups, the fixed elements
required for identification are placed in the samepositions across groups, and thatm1 = . . . = mG ,
so that m = m1G. Given random samples of sizes N1, . . . , NG , with N = ∑G

g=1 Ng the total
sample size across groups, the log-likelihood of the multiple-group factor model is

�(θ) = −
G∑

g=1

Ng

2
{log|�g| + tr(W g�

−1
g ) + p log(2π)}, (14)

where W g = Sg + (x̄g − μg)(x̄g − μg)
T .

In multiple-group analyses, an important methodological consideration is the establishment
of the comparability or “equivalence” of measurement across the groups (e.g., countries, socio-
economical groups). Measurement (or factorial) invariance occurs when the factors have the same
meaning in each group, which translates into equal measurement models (i.e., factor loadings,
intercepts and unique variances) across groups (Millsap 2012). If non-equivalence ofmeasurement
exists, substantively interesting group comparisons may become distorted. Testing for measure-
ment invariance in the parameters is, however, an intensive process. A sequence of nested tests
is progressively conducted to establish the equivalence in the factor loadings, the intercepts, and
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optionally the unique variances (Vandenberg & Lance, 2000). The next section describes the
penalty functions that can be incorporated into the multiple-group model to obtain a technique
that automatically detects parameter equivalence across groups.

5. Sparsity and Invariance-Inducing Penalties

As in the single-group factor model, we can penalize the factor loadings to automati-
cally obtain a sparse loading matrix in each of the groups. Define the diagonal matrix Rq =
diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 on the (q, q)th entry of the matrix corresponds to the
q th factor loading in θ , for q = (g − 1)m1 + 1, . . . , (g − 1)m1 + q� and g = 1, . . . ,G,
and Rq = Om×m for the remaining parameters. The quantity q� represents the number of
penalized loadings in each group. Then, the sparsity-inducing penalty on the factor loadings
is PT

η1
(θ) = ∑m

q=1 PT
η1,q(||Rqθ ||1), where η1 ∈ [0,∞) controls the overall amount of shrinkage.

In the same spirit as factorial invariance, we can specify a penalty encouraging the equal-
ity of the loadings across groups. Conveniently, this can be achieved by shrinking the pair-
wise absolute differences of every factor loading across groups. Let D�

q , for q = 1, . . . , q�,
be the matrix computing the differences of the factor loading pairs (θ(g−1)m1+q , θ(g′−1)m1+q)

for g < g′, whereas for the other parameters D�
q = Om1(

G
2)×m . Then, the penalty induc-

ing equal loadings across groups can be written as PT
η2

(θ) = ∑m
q=1 PT

η2,q(||D�
q θ ||1), where

||D�
q θ ||1 = ∑

g<g′ |θ(g−1)m1+q − θ(g′−1)m1+q | for q = 1, . . . , q�, and zero otherwise. If

G = 2, the absolute difference of the q th loading across the two groups is expressed as
||D�

q θ ||1 = |θq − θm1+q |, where D�
q = [Rq , −Rq ]. The expression of PT

η2
(θ) for lasso, alasso,

scad and mcp is given in Section B.2.1. The tuning parameter η2 ∈ [0,∞) controls the amount of
loading equality across groups. When the loadings are truly invariant and η2 is properly chosen,
the penalized group loading matrices “fuse”, and share the same values.

Lastly, we can encourage the equality of the intercepts across groups by specifying a penalty
shrinking their pairwise absolute group differences. Let k� be the number of estimated intercepts in
each group. Due to the presence of fixed elements in τ g for identification, k� is smaller than p. Let
Dτ
q , forq = (g−1)m1+q�+1, . . . , (g−1)m1+q�+k�, be amatrix of knownconstants computing

the differences of the intercepts across groups, whereas for all of the other parameters (i.e., the
loadings, the unique variances and the structural parameters) Dτ

q = Om1(
G
2)×m . The penalty

inducing equal intercepts across groups is then written as PT
η3

(θ) = ∑m
q=1 PT

η3,q(||Dτ
qθ ||1),

where η3 ∈ [0,∞) governs the amount of intercept invariance.
Optionally, one can encourage the invariance of the unique variances. However, as argued by

Little et al. (2012), these quantities contain both random sources of errors, for which there is no
theoretical reason to expect equality across groups, and item-specific components, which can vary
as a function of various measurement factors. In light of this, we do not introduce a penalty on
the unique variances, as their cross-group equivalence would not provide any additional evidence
of comparability of the constructs because the important measurement parameters (i.e., the factor
loadings and the intercepts) are already encouraged to be invariant by penalties PT

η2
and PT

η3
.

The three penalties can be easily combined into a single penalty that simultaneously generates
sparsity on the factor loading matrices and equivalent loadings and intercepts

PT
η (θ) = PT

η1
(θ) + PT

η2
(θ) + PT

η3
(θ)

=
m∑

q=1

{
PT

η1,q(||Rqθ ||1) + PT
η2,q(||D�

q θ ||1) + PT
η3,q(||Dτ

qθ ||1)
}

, (15)
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where η = (η1, η2, η3)
T is the vector of the tuning parameters. Each penalty is controlled by

its own tuning parameter, as we do not a priori expect these values to be equal. The penalties in
(15) can be any of the functions illustrated in Sect. 3, including lasso, alasso, scad and mcp, and
different penalty functions can be in principle combined. Suppose that the adaptive weights are
available for the intercepts but not for the full loading matrices, possibly due to some inadmissible
loading values. In this case, one can combine the alasso penalty for intercept similarity with the
lasso (which also supports the automatic procedure, contrarily to the scad and mcp) for sparsity
and loading equivalence. By following the rationale described in Sect. 3.1, we replace each non-
differentiable penalty in (15) with its differentiable local approximation:

PT
η1

(θ) ≈ 1

2
θT

⎧⎨
⎩

m∑
q=1

∂PT
η1,q(||Rq θ̃ ||1)
∂||Rq θ̃ ||1

1√
(Rq θ̃)T Rq θ̃ + c̄

RT
q Rq

⎫⎬
⎭ θ = 1

2
θTDT

η1
(θ̃)θ ,

PT
η2

(θ) ≈ 1

2
θT

⎧
⎨
⎩

m∑
q=1

∂PT
η2,q(||D�

q θ̃ ||1)
∂||D�

q θ̃ ||1
1√

(D�
q θ̃)T D�

q θ̃ + c̄
D�T

q D�
q

⎫
⎬
⎭ θ = 1

2
θTDT

η2
(θ̃)θ ,

PT
η3

(θ) ≈ 1

2
θT

⎧⎨
⎩

m∑
q=1

∂PT
η3,q(||Dτ

q θ̃ ||1)
∂||Dτ

q θ̃ ||1
1√

(Dτ
q θ̃)T Dτ

q θ̃ + c̄
Dτ T

q Dτ
q

⎫⎬
⎭ θ = 1

2
θTDT

η3
(θ̃)θ,

which leads to the following differentiable form of the combined penalty:

PT
η (θ) = 1

2
θT {DT

η1
(θ̃) + DT

η2
(θ̃) + DT

η3
(θ̃)}θ = 1

2
θTST

η (θ̃)θ . (16)

Additional details on the structure of thematrixDT
η2

(θ̃) are given in Section B.2.1. For an example
clarifying the formulation of these matrices for the multiple-group model, the reader is referred
to Section B.2.2.

6. Generalized Information Criterion

The previously illustrated penalties can be directly introduced within the estimation process
by means of penalized maximum likelihood estimation procedures. The penalized log-likelihood
is

�p(θ) :=
N∑

α=1

{
�(xα|θ) − PT

η (θ)

}
= �(θ) − N PT

η (θ). (17)

For the normal linear factor model, �(θ) is given in equation (2), PT
η (θ) is one of the penalties

of Sect. 3 generating a sparse factor solution, and the vector η reduces to the scalar η; for the
multiple-group model, �(θ) is given in equation (14), PT

η (θ) is one of the penalties of Sect. 5
inducing sparsity and invariant loadings and intercepts, and η is equal to the triplet (η1, η2, η3)T .

Simultaneous estimation of all parameters is achieved by maximizing the penalized log-
likelihood in (17) and using a local approximation of PT

η (θ), that is,

max
θ

�p(θ) = max
θ

{
�(θ) − N

2
θTST

η (θ̃)θ

}
, (18)
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where the function in brackets is now twice-continuously differentiable. The penalized maximum
likelihood estimator (PMLE) is then defined as θ̂ = argmaxθ �p(θ). Conveniently, the gradient of

the penalized log-likelihood can bewritten as g p(θ):=∂�p(θ)

∂θ
= g(θ)−NST

η (θ̃)θ , where g(θ) =
∂�(θ)

∂θ
, the Hessianmatrix of the second-order derivativesHp(θ):=∂2�p(θ)

∂θ∂θT
= H(θ)−NST

η (θ̃),

whereH(θ) = ∂2�(θ)

∂θ∂θT
, and the expected Fisher informationJp(θ):=−E

[
∂2�p(θ)

∂θ∂θT

]
= J (θ)+

NST
η (θ̃), where J (θ) = −E

[
∂2�(θ)

∂θ∂θT

]
.

A crucial aspect lies in the selection ofη, which controls the amount of penalization introduced
in the model. To select η, we elect to use the Generalized Information Criterion (GIC; Konishi
& Kitagawa, 1996), which is based on a theoretically founded definition of degrees of freedom.
Notice that this choice is possible because the quantitiesweare dealingwith are twice-continuously
differentiable. We resort to the general approach of the GIC because the penalized maximum
likelihood estimator cannot be ascribed to the ordinarymaximum likelihood framework postulated

by the AIC, and not for relaxing the assumption E

[
−∂2�(θ)

∂θ∂θT

]
= E

[
∂�(θ)

∂θ

∂�(θ)

∂θT

]
, which

does hold true for the normal linear factor models considered in this paper. Let G be the true
distribution function that generated the data xxx N = {x1, . . . , xN }, which are realizations of the
random vector XN = (X1, . . . , XN )T . Let us express the parameter vector as θ = T (G),
where T (G) is the m-dimensional functional vector of G defined as the solution of the implicit

equations
∫

ψ(x, T (G))dG(x) = 0, with ψ(x, T (G)) = ∂

∂θ
{�(x|θ) − 1

2θ
TST

η (θ̃)θ}
∣∣∣∣
θ=T (G)

.

The log-likelihood and the penalty matrix take different forms depending on whether we deal with
a single- or multiple-group factor model. The GIC evaluating the goodness of fit of the penalized
model, when used to predict independent future data z generated from the unknown distribution
G, is (see Online Resource C)

GIC(XN ;G) = −2
N∑

α=1

�(xα|θ) + 2tr{R(ψ,G)−1Q(G)},

where

R(ψ,G) = −
∫

∂2

∂θ∂θT

{
�(z|θ) − 1

2
θTST

η (θ̃)θ

} ∣∣∣∣
θ=T (G)

dG(z),

Q(G) = −
∫

∂2�(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z),

and η enters the penalty matrix ST
η (θ̃). By considering the PMLE θ̂ for θ , and replacing the

unknown distribution G with its empirical counterpart Ĝ based on the data, we have

GIC(XN ; Ĝ) = −2
N∑

α=1

�(xα|θ̂) + 2tr{R(ψ, Ĝ)−1Q(Ĝ)},
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where

R(ψ, Ĝ) = − 1

N

N∑
α=1

∂2

∂θ∂θT

{
�(xα|θ) − 1

2
θTST

η (θ)θ

} ∣∣∣∣
θ=θ̂

= − 1

N
{H(θ̂) − NST

η (θ̂)}

= − 1

N
Hp(θ̂),

Q(Ĝ) = − 1

N

N∑
α=1

∂2�(xα|θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

= − 1

N
H(θ̂).

The effective number or estimated degrees of freedom (edf) of the model is thus equal to edf =
tr
{
Hp(θ̂)−1H(θ̂)

}
. The formula for the edf is thus readily obtained by adapting the existing

results for general likelihoods (of which the differentiable function in (18) is an example) to the
penalized framework and assuming the usual regularity conditions. The GIC is an extension of
the Akaike Information Criterion (AIC; Akaike, 1974), and as such, it may inherit the tendency
of the latter to select overly complex models. To avoid this issue, we can change the constant 2
of the bias term to log(N ) (used in the Bayesian Information Criterion; Schwarz, 1978). Then,
given grid(s) of values, the optimal η̂ can be chosen using the following Generalized Bayesian
Information Criterion (GBIC)

GBIC(XN ; Ĝ) = −2
N∑

α=1

�(xα|θ̂) + log(N )tr{R(ψ, Ĝ)−1Q(Ĝ)}. (19)

The optimal penalized factor model is hence chosen to be the one with the lowest BIC, as this is
the information criterion routinely employed in sparse settings. However, if researchers are more
interested in accuracy and achieving minimum prediction error, then the AIC is to be preferred.
In the presence of moderate sample size and many variables, the extended BIC (EBIC; Chen &
Chen, 2008) may be more suitable.

The edf of an unpenalized model (ST
η = Om×m) coincide with the dimension of the

parameter vector θ , since tr
{
Hp(θ̂)−1H(θ̂)

}
= tr

{
H(θ̂)−1H(θ̂)

}
= tr(Im) = m, where

Im is the m × m identity matrix. For a penalized model edf = tr
{
Hp(θ̂)−1H(θ̂)

}
=

m−tr
{
[−H(θ̂) + NST

η (θ̂)]−1NST
η (θ̂)

}
. This shows that edf → m as η → 0, and edf → m−r�

as η → ∞, where r� is the number of penalized elements (equal to q� for the factor model, and
G(q� + k�) for the multiple-group extension). When 0 < η < ∞, the edf ∈ [m − r�,m]. The
overall edf of a fitted model is given by the sum of the edf for each parameter; each single edf
takes a value in the range [0, 1] and quantifies precisely the extent to which each coefficient is
penalized.

The existing penalized factor models (Choi et al., 2010; Hirose & Yamamoto, 2014a;
Jacobucci et al., 2016; Huang et al., 2017; Huang, 2018; Jin et al., 2018) compute the degrees of
freedom as the number of nonzero parameters (referred in the following as dof), by advocating the
fact that the number of nonzero coefficients in a lasso-penalized linear model gives an unbiased
estimate of the total degrees of freedom (Zou et al., 2007). This way of estimating the degrees
of freedom implies that each dof can be either 0 if its parameter has been shrunken to zero, or 1
otherwise. On the contrary, the edf can take any value in [0, 1]. This suggests that, while the defi-
nitions of dof and edf may produce equivalent results (for penalties enjoying the oracle property,
as the alasso, scad and mcp), in practical situations using edf is expected to yield better-calibrated
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degrees of freedom. The proposed method also treats the estimated edf as they are. Importantly,
the definition of edf directly stems from the estimated bias term of the GIC, which gives it a
theoretically founded basis.

7. Penalized Maximum Likelihood Estimation

For anygiven set of values ofη in the penaltymatrix,which is hencedenoted in the following as
ST

η̂
(θ̃), we minimize −�p(θ) via a trust-region algorithm (Nocedal &Wright, 2006). At iteration

t, a “model function” Q[t]
p is constructed, whose behavior near the current point θ [t] is similar to

that of the actual objective function. The model function is usually a quadratic approximation of
−�p at θ [t]:

Q[t]
p (s) = −

{
�p

(
θ [t])+ sT g p

(
θ [t])+ 1

2
sTHp

(
θ [t]) s

}
,

where s is the trial step vector aiming at reducing the model function, g p(θ
[t]) the penalized

score function, and Hp(θ
[t]) the penalized Hessian matrix. For the normal linear factor model,

the derivation of the second-order derivatives is a tedious and lengthy process; however, the
availability of these quantities guarantees a better accuracy of the algorithm since no numerical
approximation is employed. Because the Hessian requires computing many elements, we also
considered the Fisher information matrix. If the elements of (�̂ − S) are small and the second
derivatives not too large, which is often the case, the information matrix is very close to the
true Hessian. For the multiple-group model, due to the presence of the parameters for the mean
structure besides those for the covariance structure, we only considered the information matrix as
it exhibited similar numerical performances to the Hessian at a reduced computational cost. The
analytical expressions of these derivatives for the single- and multiple-group model are given in
Geminiani (2020, Appendices A, F, respectively).

The search for a minimizer of Q[t]
p is restricted to some region around θ [t], which is usually

the ball ||s||2 < 	[t], where ||·||2 is the Euclidean norm, and 	[t] > 0 the trust-region radius at
iteration t. The size of the trust region is critical to the effectiveness of each step: if it is too small,
the algorithm may miss the opportunity to take a step that moves it closer to the minimizer of the
objective function; if it is too large, the minimizer of the model may be far from the one of the
objective function in the region, so it may be necessary to reduce the region size and repeat the
process. Each iteration of the trust-region algorithm solves the subproblem:

s[t] = arg min
s∈Rm

Q[t]
p (s) subject to ||s||2 ≤ 	[t], (20)

θ [t+1] = θ [t] + s[t], (21)

where the current iteration θ [t] is updated with s[t] if this step produces an improvement over
the objective function. The size of the region is chosen by measuring the agreement between the
model function and the objective function at previous iterations through the ratio:

r [t] = − [�p(θ [t]) − �p(θ
[t] + s[t])

]

Q[t]
p (0) − Q[t]

p (s[t])
. (22)
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Algorithm 1
Trust-region algorithm

Require: 	max > 0, 	0 ∈ (0, 	max), θ
[0]

1: Compute �p(θ
[0]), g p(θ

[0]),Hp(θ
[0])

2: Set ε = .Machine$double.eps
1
2 = 1.490116 × 10−8

3: while t ≤ 1000 or
∣∣∣− [

�p(θ
[t]) − �p(θ

[t+1])
] ∣∣∣ < ε do

4: s[t] = argmins:||s||2≤	[t] Q[t]
p (s)

5: r [t] = − [�p(θ [t]) − �p(θ
[t] + s[t])

]

Q[t]
p (0) − Q[t]

p (s[t])
6: if r [t] < 1

4 then

7: θ [t+1] = θ [t]

8: 	[t+1] = ||s[t]||2
4

9: else

10: θ [t+1] = θ [t] + s[t]

11: if r [t] > 3
4 and ||s[t]||2 = 	[t] then

12: 	[t+1] = min(2	[t], 	max)

13: else

14: 	[t+1] = 	[t]

15: end if

16: end if

17: end while

The numerator quantifies the actual reduction, and the denominator the predicted reduction. If r [t]
is negative, the model is an inadequate representation of the objective function over the current
trust region, so the step s[t] is rejected, and the new problem is solved with a smaller region. If r [t]
is close to 1, there is good agreement betweenQ[t]

p and−�p over s[t], so the model can accurately
predict the behavior of the objective function along that step, and the trust region is enlarged for
the next iteration. If r [t] is positive, but not close to 1, the trust region is not altered, unless it is
close to zero or negative, in which case it is shrunken. Algorithm 1 describes the process. The term
	max represents an overall bound on the step lengths. Trust-region algorithms never run too far
from the current iteration as the points outside the trust region are not considered. For this reason,
they were shown to be more stable and faster than line search methods, particularly for functions
that are non-concave and/or exhibit regions close to flat (Radice, Marra & Wojtyś, 2016).

An alternative proposal to using a grid-search combined with GBIC is to estimate η automat-
ically and in a data-driven fashion, a development that has not been so far considered in penalized
factor analysis. To this end, we propose adapting to the current context the automatic multiple
tuning (a.k.a smoothing) parameter selection of Marra and Radice (2020, see also references
therein), which is based on an approximate AIC.
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Assume that, near the solution, the trust-region method behaves like a classic unconstrained
Newton-Raphson algorithm (Nocedal & Wright, 2006). Suppose also that θ [t+1] is the “true”
parameter value, and thus g p(θ

[t+1]) = 0. By using a first-order Taylor expansion of g p(θ
[t+1])

at θ [t] it follows that

0 = g p(θ
[t+1]) ≈ g p(θ

[t]) + Hp(θ
[t])(θ [t+1] − θ [t]).

Solving for θ [t] yields, after some manipulation (see Section D.1),

θ [t+1] =
[
I(θ [t]) + NST

η̂ (θ̃
[t]

)
]−1

√
I(θ [t])K [t], (23)

where I(θ [t]) = −H(θ [t]), K [t] = μ
[t]
K + ϑ [t] with μ

[t]
K =

√
I(θ [t])θ [t] and ϑ [t] =√

I(θ [t])
−1

g(θ [t]). The square root of I(θ [t]) and its inverse are obtained by eigenvalue
decomposition. If they are not positive-definite, they are corrected as described in Section D.2.
From standard likelihood theory, we have that ϑ ∼ N (0, Im) and K ∼ N (μK , Im), where
μK = √I(θ0)θ0, and θ0 the true parameter vector. Let μ̂K be the predicted value vector for K
defined as

μ̂K =
√
I(θ̂)θ̂ =

√
I(θ̂)

[
I(θ̂) + NST

η̂ (θ̂)
]−1

√
I(θ̂)K = AT

η̂ K ,

where AT
η̂

=
√
I(θ̂)

[
I(θ̂) + NST

η̂
(θ̂)
]−1

√
I(θ̂) is the influence (or hat) matrix of the fitting

problem and depends on the tuning parameters. The quantity θ̂ =
[
I(θ̂) + NST

η̂
(θ̂)
]−1

√
I(θ̂)K

denotes the PMLE. Ideally, the estimation of the tuning parameters should suppress the model
complexity unsupported by the data. This can be achieved by minimizing the expected mean
squared error of μ̂K from its expectation μK (Section D.3):

E

[
1

N
||μK − μ̂K ||22

]
= 1

N
E

[
||K − AT

η K ||22
]

+ 2

N
tr(AT

η ) − 1. (24)

The quantity tr(AT
η ) = tr

{[
I(θ̂) + NST

η (θ̂)
]−1 I(θ̂)

}
can be interpreted as the edf of the

penalized model, and is equivalent to the expression of the bias term of the GBIC. The right-hand
side of (24) depends on the tuning parameters through AT

η , whereas K is linked to the unpenalized
part of the model. The tuning parameters are estimated by minimizing an estimate of (24):

V(η) = 1

N
|| ̂μK − μ̂K ||22 = 1

N
||K − AT

η K ||22 + 2

N
tr(AT

η ) − 1. (25)

This is equivalent to the Un-Biased Risk Estimator (UBRE; Wood, 2017, Ch. 6) and an approxi-
mate AIC (Section D.4), which means that η is estimated by minimizing what is effectively the
AICwith number of parameters given by tr(AT

η ). In practice, given θ [t+1], the estimation problem
is expressed as

η[t+1] = argmin
η

V [t+1](η) = argmin
η

{
1

N
||K [t+1] − AT [t+1]

η K [t+1]||22 + 2

N
tr(AT [t+1]

η ) − 1

}
,
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and solved by adapting the approach by Wood (2004) to the current context. This approach is
based on Newton’s method and can evaluate in a stable and efficient way the components in V(η)

and their derivatives with respect to log(η) (since the tuning parameters can only take positive
values). The two steps, one for the estimation of θ and the other for η, are iterated until the

algorithm satisfies the stopping criterion
|�(θ [t+1]) − �(θ [t])|
0.1 + |�(θ [t+1])| < 10−7.

Sometimes the final model could be overly dense and sparser solutions may be desired. One
way to achieve this systematically is to increase the amount that each model edf counts, in the
UBRE score, by a factor γ ≥ 1, called “influence factor” (Wood, 2017). The slightly modified
tuning criterion then is

V(η) = 1

N
||K − AT

η K ||22 + 2

N
γ tr(AT

η ) − 1. (26)

For smoothing spline regression models, Kim and Gu (2004) found that γ = 1.4 can correct
the tendency to over-fitting of prediction error criteria. However, this work deals with different
models, and our focus is not only on fit but also on the recovery of sparse structures, thus higher
values may be more appropriate.

The automatic procedure described above is general and easy to implement, but it may
occasionally suffer at small sample sizes since it finds its justification asymptotically when the
dependence of the Hessian on the tuning parameter(s) vanishes. As argued by Wood (2017), at
small sample sizes, it would in principle be more reliable to select the tuning parameter(s) based
on a non-approximate function, such as the GBIC and grid-searches, although implementing such
an approach in the multiple-group context would introduce further complications and possibly
new computational problems and instabilities. Notice also that the automatic procedure relies on
the separability of the penalty matrix from the tuning parameter(s). This requirement is satisfied
by the lasso and alasso (thus, T = {L , A}), but not by the scad and mcp which are therefore
confined to the grid-search approach. However, this is not problematic because in our simulation
experiments and empirical application the alasso generally represented themost convenient choice
of penalty based on a number of criteria.

At convergence, the covariance matrix of θ̂ is V
θ̂

= Jp(θ̂)−1J (θ̂)Jp(θ̂)−1. However,
instead ofV

θ̂
, for practical purposes, it ismore convenient to employ at convergence the alternative

Bayesian result V θ = Jp(θ̂)−1 (Marra & Wood, 2012). The goodness of fit of the penalized
model can then be evaluated through confidence intervals, which are available for each model
parameter, obtained from the posterior distribution θ |{x1, . . . , xN }, η ∼ N (θ̂ , V θ ) (Section D.5).
Notice that the proposed approach can be regarded as aBayesianmethodwith the exponential prior

exp
{
− N

2 θTST
η (θ̃)θ

}
on the penalty function. The process of determining the optimal loading

pattern can indeed be formulated as a Bayesian variable selection problem (Lu, Chow & Loken,
2016). For instance, Bayesian Structural Equation Modeling (BSEM; Muthén & Asparouhov,
2012)—in which the elements that would be fixed to zero in a confirmatory analysis (usually
the cross-loadings) are replaced with approximate zeros based on informative, small-variance
priors—is a particular case where the shrinkage is achieved through an informative ridge prior.
With the proposed method, users can rely on the automatic procedure for recovering optimally
sparse factor solutions without manually specifying the variance of the Bayesian prior employed
in BSEM.

The presented modeling framework has been implemented in the freely available R package
penfa and we refer the reader to Online Resource F for a brief description of the software and
practical illustrations.
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8. Simulation Studies

The performances of the proposed PMLE were evaluated and compared to the penalized
methods by Jacobucci et al. (2016, R package regsem) and Huang (2018, R package lslx)
in two extensive simulation studies, one for the normal linear factor model and the other for
its multiple-group extension. Despite the presence of other penalized factor analysis techniques
(Choi et al., 2010; Hirose & Yamamoto 2014b, 2014a; Trendafilov et al., 2017; Jin et al., 2018),
our choice fell on regsem and lslx because they allow the specification of fixed, free and
penalized parameters, as well the estimation of the structural model.

8.1. Simulation Study I

The first simulation evaluates the performances of the proposed technique in a single-group
factor analysis model. We evaluate the impact of several conditions, including the sample size,
the penalty function, the type of second-order derivative information used in the trust-region
algorithm, the strategy for the choice of the tuning parameter, themagnitude of the influence factor
and—for some of the penalties—the value of the additional tuning parameter. The simulation was
partly inspired by the empirical application (Sect. 9), therefore the number of variables (p = 9)
and of factors (r = 3) exactly match those of the real data analysis. The conditions that were
varied are:

• Sample size: 300, 500, and 1000 observations. These values are in line with those inves-
tigated in similar simulation studies (Huang et al., 2017; Jacobucci et al., 2016; Jin et
al., 2018; Hirose & Yamamoto, 2014b) and include two moderate sample sizes (which
are commonly found in psychometric applications) and a large one (to mimic asymptotic
behavior). Note that 300 is close to the number of observations in the empirical example;

• Penalty function: lasso, alasso, scad, and mcp were examined in their ability to shrink to
zero small loadings without possibly affecting the remaining ones;

• Information matrix: either the Hessian or the Fisher information matrix was used in the
optimization process (see Sect. 7);

• Shrinkage parameter selection: this was achieved either by a grid-search or through the
automatic procedure. The grid-search was conducted over 200 distinct values of η and for
all four penalty types, with the optimal model being the one with the lowest GBIC. The
elements of the grid were adapted based on the specific combination of penalty type and
sample size. The automatic procedure was used with lasso and alasso;

• Influence factor: informed by the values that performed well in the application, we investi-
gated different values for the influence factor, namely, γ = {1, 1.4, 2, 2.5, 3, 3.5, 4, 4.5};

• Additional tuning parameter: we tested different values of the additional tuning parameter
of the alasso, scad and mcp. For the alasso a = {1, 2}, for the scad a = {2.5, 3, 3.7, 4.5}
(with 3.7 being the conventional level employed in the literature and suggested by Fan &
Li, 2001), and for the mcp a = {2.5, 3, 3.5}.

The population parameters complied to the following structure:

�T =
⎡
⎣
0.85 0.75 0.65 0 0 0 0 0 0.30
0 0 0.30 0.85 0.75 0.65 0 0 0
0 0 0 0 0 0.30 0.85 0.75 0.65

⎤
⎦

� =
⎡
⎣
1 0.3 0.3

1 0.3
1

⎤
⎦
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with � = I p − ���T , where I p is the p × p identity matrix. Elements in italic and underlined
were fixed for scale setting and identification purposes. The specific values of the factor loadings
were inspired by the numerical example in Huang et al. (2017). As it is common in many factor
analysis applications, a subset of the observed variables does not load only on one factor but also
presents a cross-loading.

All of the factor loadings were penalized for assessing the effectiveness of the proposed
method in recovering the underlying factor structure and not erroneously shrinking the small
cross-loadings to zero. Based on results from previous studies (see for instance Choi et al., 2010
for the alasso, and Hirose & Yamamoto, 2014b and Huang et al., 2017 for the mcp), the alasso
and the non-convex penalties are expected to outperform the lasso, which is known to be biased
due to its tendency to overly shrink nonzero parameters. Concerning the influence factor, higher
values favor sparsity at the expense of an increase in bias, whereas lower values favor goodness
of fit.

Data were simulated in R (R Core Team, 2018) according to the population parameters.
The resulting data matrix was then analyzed in penfa, regsem (Jacobucci et al., 2019) and
lslx (Huang & Hu, 2019) by estimating a factor model with the correct number of factors,
the specified fixed elements, and all of the free loadings were penalized. Common factors were
estimated to be correlated and with fixed unit variance. Whenever present, sign reversal of the
factors was accounted for to ensure that the sign of the primary loadings corresponded to that
of the corresponding population parameters. Based on the availability of the respective software
implementations,2 lasso, alasso, scad and mcp were tried for regsem, and lasso and mcp for
lslx. For each scenario, we generated L = 1000 replications for which the unpenalized factor
model produced admissible3 solutions.

We evaluated the performance of the methods according to the criteria illustrated in Huang
et al. (2017), which are briefly mentioned here. The overall estimation quality was assessed using
the estimated mean squared error (MSE):

M̂SE(θ̂) = 1

L

L∑
l=1

(θ̂
(l) − θ0)

T (θ̂
(l) − θ0), (27)

where θ̂
(l) = (θ̂

(l)
1 , . . . , θ̂

(l)
m )T denotes the vector of estimated parameters in replicate l, θ0 the

true parameter vector, and L the number of replications. The degree of bias of each estimator was
evaluated by the estimated squared bias (SB):

ŜB(θ̂) = (
¯̂
θ − θ0)

T (
¯̂
θ − θ0), (28)

where ¯̂
θ = 1

L

∑L
l=1 θ̂

(l)
represents the empirical mean of θ̂ . LetF = {q | θ0q �= 0& θ̂q penalized}

indicate the set of indices associated to the true nonzero parameters that have been penalized (i.e.,
the penalized nonzero factor loadings) and |F | the cardinality of F , which in the simulation is
equal to 12. The chance of correctly identifying the true nonzero parameters was evaluated via
the estimated true positive rate (TPR):

2For regsem, we used the default optimizer Rsolnp for lasso and alasso, and coordinate descent for scad and
mcp. The additional tuning parameters of the penalties were kept to the values specified in the package, that is, a = 1 for
alasso, and a = 3.7 for scad and mcp. For lslx, as per software implementations, the shape parameter of the mcp was
internally selected over a varying three-dimensional grid of values adapted for each replicate. Because of the specificities
of each package implementation, a customized and sensible grid of η values was considered for each technique.

3A solution is considered admissible if it does not present Heywood cases (negative unique variances), the covariance
matrices of the unique factors and common factors are positive-definite, the factor loading matrix is of full column rank
and does not contain any null rows (Jöreskog & Sörbom, 1996).
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T̂PR(θ̂) = 1

L

L∑
l=1

∑
q∈F 1

(
θ̂

(l)
q �= 0

)

|F | . (29)

Denote as Fc = {q | θ0q = 0& θ̂q penalized} the set collecting the indices of the true zero
parameters that have been penalized (i.e., the penalized zero factor loadings), with |Fc| equal to
9. The estimated false positive rate (FPR) examined the degree to which the true zero parameters
were incorrectly identified as nonzero:

F̂PR(θ̂) = 1

L

L∑
l=1

∑
q∈F c 1

(
θ̂

(l)
q �= 0

)

|Fc| . (30)

Lastly, selection consistencywas assessed via the proportion of times the truemodel—forwhich all
the true zero and nonzero factor loadings were correctly identified as equal to zero and different
from zero, respectively—was chosen over the replicates (proportion choosing the true model;
PCTM):

P̂CTM(θ̂) = 1

L

L∑
l=1

∑
q∈F 1

(
θ̂

(l)
q �= 0

)
+∑

q∈F c 1
(
θ̂

(l)
q = 0

)

|F | + |Fc| , (31)

where |F | + |Fc| = q�. For the computation of PCTM and FPR,4 the parameter estimates were
rounded to one decimal digit5 for all models. For the sake of clarity, we report a selection of the
most relevant results for the configurations of penfa-alasso (a = 2, γ = 4.5),penfa-scad
(a = 3) and penfa-mcp (a = 3) that produced the best models in terms of the aforementioned
performance criteria. Due to its generally higher numerical stability in comparison to the Hessian,
only penfa models estimated with the Fisher information matrix are presented. The results for
penfa-lasso are described in Online Resource A. In the same spirit, the results of regsem
and lslx are presented for their best performing models (i.e., with the mcp for both of them).
All other results can be requested from the corresponding author.

Overall, the low values for MSE, the bias, and FPR which are very close to zero, together
with high PCTM and excellent TPR show that the examined penalized techniques possess very
good empirical performances and outperform the unpenalized (MLE) model (Table 1). The MSE
of all penalized methods are very similar to each other and improve as the sample size increased.
The results with the lower bias were associated with the use of non-convex penalties, although
the bias of penfa-alasso very quickly converged to zero when the sample size increased,
and hence the impact of the penalty decreased. The true positive rates were always equal to 1.0,
which showed that the inspectedmethods never suppressed the nonzero penalized parameters (i.e.,
the primary loadings and the cross-loadings). In terms of both false positive rates and selection
consistency,penfa-alassowith automatic tuning parameter selection presented by far the best
performances for all the sample sizes. The coverage probabilities for the parameters of all fitted
models (Section A.1) were generally close to their true nominal level for all penalty functions.

4No rounding was necessary for TPR because, based on the simulation design, the estimates were never mistakenly
estimated close to zero.

5This choice was made on practical grounds, deeming estimates in absolute value below 0.05 to be “practically” and
“substantively” equal to zero. The use of tighter rounding thresholds may worsen FPR and PCTM. For penfa, numerical
experiments showed that this was the case when using the grid-search, whereas the models with the automatic procedure
exhibited fairly comparable FPR and PCTM even after two or three decimal digits roundings.
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The mean squared error and bias of penfa-alasso with automatic tuning parameter
selection were similar to those obtained with the same penalty and grid-search, but the false
positives and PCTM were markedly lower and higher, respectively. This is due to the way the
optimal penalized model is picked. With the automatic procedure, the optimal model is the one
whose tuning parameter minimizes the criterion in (26); with the grid-search, the optimal model
minimizes the GBIC in (19). However refined, a grid-search cannot compete with an approach
that looks for the optimal tuning parameter on the positive real line. In addition, the presence of
a sparsity-inducing quantity (the influence factor) in the optimization criterion helped the model
obtain a nicer tradeoff between goodness of fit and model complexity. With reference to the
exponent a in the expression of the alasso, as this quantity increased the weights became more
influential, and we observed a general improvement in all the performance measures. The best
results were obtained for a = 2.

By comparing the quality measures of the three methods for the same penalty function (i.e.,
the mcp), we notice that penfa outperformed lslx and was generally close to regsem for
MSE and SB and superior for FPR and PCTM. This might be due to several aspects, e.g., the
optimization algorithm, the internal software package implementations, the formulation of the
degrees of freedom, and possibly the approximation of the penalty.

The examined performance criteria explored different conflicting objectives. Ideally, one
desires a model with low bias and little complexity (i.e., a sparse solution), but the two measures
cannot be minimized simultaneously. This can be seen by looking at the performances of the
penfa-alasso model for extreme values of the influence factor (i.e., γ = 4.5 in Table 1 and
γ = 1 in Table A.2 in Section A.2). The higher value of γ produced sparser solutions (i.e., smaller
FPR and larger PCTM), at the cost of a larger bias. As the sample size increased, the discrepancies
in the performances of the models with different values of γ diminished though.

The models fitted through the automatic tuning parameter procedure exhibited markedly
shorter computational times6 than grid-search methods. Specifically, the average median elapsed
times were 17 sec for penfa-alasso with grid (1-dim. grid for η; a = 2) and 0.3 sec with
automatic procedure (a = 2; γ = 4.5), 21.1 sec for penfa-scad (1-dim. grid for η; a = 3),
20.7 sec for penfa-mcp (1-dim. grid for η; a = 3), 6.6 sec for lslx-mcp (2-dim. grid for η and
a) and 42.2 sec for regsem-mcp (1-dim grid for η, a = 3.7 as per default software implemen-
tations). The penfa models with the automatic procedure exhibited the lowest computational
times, which is also merit of the stability of the trust-region optimizer, whose parameter updates
only involve the points within a proper trust-region. The computational times of lslx are lower
than those of the other grid-search techniques because the underlying optimizer is implemented
in C++, which significantly boosts the computations with respect to base R routines.

8.2. Simulation Study II

The second simulation evaluates the ability of the proposed technique in identifying the
pattern of partial invariance in a multiple-group factor model as a function of the sample size, the
size of the generated difference in the group-specific loadings and intercepts, the magnitude of the
influence factor and the value of the additional tuning parameter. Since the current implementation
of regsem does not allow for multiple-group analyses, our method is only compared with lslx.

We consider a population multiple-group factor model with p = 12 variables, r = 3 fac-
tors and G = 2 groups. We explore a range of conditions, under which the factor loading
matrices and intercepts are either invariant or non-invariant, with the level of non-invariance
becoming progressively larger. Based on the findings from Simulation study I, we employ the
alasso penalty for inducing sparsity and invariant loadings and intercepts, that is, S A

η (θ̃) =
6All computations were carried out on a machine with Intel(R) Core(TM) i7-5600U 2.60GHz (quad-core) processor

and 16GB of RAM.
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Table 2.
The factor loading matrices and intercepts of the two groups under each difference scenario of simulation study II.

Group 1 Group 2
All conditions Small Medium Large
�1 τ1 �2 τ2 �2 τ2 �2 τ2

x1 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x2 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x3 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x4 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0
x5 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0
x6 0.75 0 0 0.65 0 −0.1 0.55 0 −0.2 0.45 0 −0.3
x7 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x8 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x9 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x10 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0
x11 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0
x12 0 0.75 0 0 0.65 −0.1 0 0.55 −0.2 0 0.45 −0.3

Elements fixed for origin and scale setting and identification purposes are italic and underlined. Under the
null condition, the parameters of Group 2 coincide with those of Group 1.

DA
η1

(θ̃)+DA
η2

(θ̃)+DA
η3

(θ̃). The three tuning parameters (η1, η2, η3)
T in η are estimated alongside

the model parameters through the automatic multiple tuning parameter procedure. For lslx we
used the mcp penalty, which had better performances than the lasso. The optimization technique
currently employed in lslx makes use of a single penalty for both shrinking the parameters
and their differences across groups. Therefore, there is only one shrinkage parameter η, whose
optimal value is determined through a grid-search. For lslx-mcp, we carried out a grid-search
over 200 values of the shrinkage parameter η and 4 of the shape parameter a. The conditions that
were varied are:

• Sample size: 300, 500, and 1000 observations evenly split between the two groups, with
300 being close to the number of observations in the empirical example;

• Difference size: either null, small, medium or large group differences in the primary load-
ings and the intercepts of two variables were created (details are given below). This con-
dition was partly inspired by the simulation conducted by Huang (2018);

• Influence factor: informed by the values that performed well in Simulation study I, we
investigated three values of the influence factor, namely, γ = {3.5, 4, 4.5};

• Additional tuning parameter: two values were tested for the exponent in the expression of
the alasso, namely a = {1, 2}.

The factor loading matrix and the vector of intercepts of Group 1 are reported on the left-hand
side of Table 2, and are the same under every difference scenario. Elements in italic and underlined
are fixed formetric setting and identification purposes. The factor loadings and intercepts ofGroup
2 are presented by difference scenario on the right-hand side of Table 2. In case of a null difference,
the two groups share the same parameter matrices. Under the small, medium and large scenarios,
the primary loadings and the intercepts of two variables (i.e., x6 and x12) in Group 1 differ from
the corresponding parameters in Group 2 by a size of 0.1, 0.2, and 0.3, respectively. Under all
conditions, the structural parameters are assumed to be invariant across groups, that is, vech(�1) =
vech(�2) = vech(�) = (1, 0.3, 1)T and κ1 = κ2 = (0, 0)T , whereas �g = I p − �g��T

g ,
for g = 1, 2. The factor loadings and the intercepts are penalized in the way described in Sect. 5
(i.e., shrinkage of the loadings and of the pairwise group differences of loadings and intercepts),
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whereas the remaining model parameters are estimated without penalization. For each scenario,
we generated L = 1000 replications for which the unpenalized multiple-group model produced
admissible solutions, and analyzed them as in simulation study I.

The performances of the penalized models are evaluated through the criteria (27)-(31) used
in simulation study I. For the sake of conciseness, we report the results for the penfa-alasso
model (a = 2, γ = 4.5) that produced the best solution in terms of these performance criteria.
All other results can be requested from the corresponding author. Overall, the low values of
MSE, SB, FPR, high PCTM and excellent TPR show that the penalized techniques possess very
good empirical performances, with all measures improving as the sample size increased (Table
3). Higher difference sizes were associated with higher MSE and squared bias, with the lower
values generally occurring for penfa-alasso. We separately computed these measures for
each parameter matrix (that is, �g , τ g , �g , �g , κg , for g = 1, 2) produced by penfa-alasso.
The largest MSE were observed for the factor variances and covariances, followed by the factor
loadings. The bias tended to increase for the penalized parameters (factor loadings and intercepts)
across the difference conditions,while remaining almost unaltered for the unique variances and the
structural parameters. The squared bias quickly converged towards zero in all difference scenarios
as the sample size increased. The TPR were always equal to 1.0, which showed that the examined
methods never suppressed the nonzero penalized parameters.

Whereas under the null and small scenarios the two methods produced similar measures,
penfa-alasso markedly outperformed lslx-mcp under the medium and large conditions,
especially in terms of selection consistency at the smallest sample size. On top of that, whereas
these performance measures for lslx noticeably degraded as the difference size increased, they
remained fairly stable forpenfa-alasso; evenwith the smallest sample size,penfa-alasso
identified the true heterogeneity pattern more than 90% of the times. Thanks to the use of the
automatic multiple tuning parameter procedure, the average median computational time to fit a
penfa-alasso model with 3 tuning parameters (3.2 seconds) was much lower than the one
necessary to fit an lslx-mcp model with a single shrinkage parameter η and the associated
shape parameter a selected through a grid-search (45 seconds).

9. Empirical Application

The Holzinger & Swineford data set (Holzinger & Swineford, 1939; Kelley, 2019) is a classi-
cal psychometric application containing the responses of N = 301 students on somepsychological
tests. This data set (or subsets of it) has been often used to demonstrate CFA (Jöreskog, 1979),
EFA (Browne, 2001; Jöreskog & Sörbom, 1993) and various penalized factor analysis techniques
(Trendafilov et al., 2017; Jacobucci et al., 2016; Huang et al., 2017; Jin et al., 2018). For space
constraints, the description of the data set is reported in Online Resource E.

9.1. Normal Linear Factor Model

Following Jacobucci et al. (2016) andHuang et al. (2017), to illustrate the proposedmethod in
the normal linear factor model, we use a subset of nine mental tests (VISUAL, CUBES, FLAGS,
PARAGRAP, SENTENCE, WORDM, ADDITION, COUNTING, and STRAIGHT) underlying
three latent factors. The data set was column-wise centered since the model in equation (1)
assumes that the observed variables have zero means and scaled as described in Yuan and Bentler
(2006). The inspection at the covariance matrix of the observed variables revealed the presence
of relationships between tests designed to measure distinct mental abilities. The CFA model
assuming a simple structure showed a poor fit to the data (p-value of the chi-square goodness
of fit test < 0.001), which suggested the multi-dimensionality of some of the tests. In these
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Table 4.
BIC of the best configurations of the fitted models.

Method Penalty BIC

penfa ALASSO 7558.03
penfa MCP 7561.57
penfa SCAD 7561.68
penfa LASSO 7562.94
CFA 7595.34
Unpenalized 7601.42

For penfa-alasso (automatic procedure) a = 1 and γ = 4.5, for penfa-scad a = 4.5, for
penfa-mcp a = 1.5, and for penfa-lasso (automatic procedure) γ = 4.5. For all models the Fisher
information was used.

circumstances where it may be difficult to specify the correct sparsity pattern of the loading
matrix in advance, it is beneficial to resort to penalized techniques to explore and unveil the
underlying loading pattern. We hence penalize all of the factor loadings and freely estimate the
remainingmodel parameters. Factor variances are fixed to one for scale setting and some elements
of the loading matrix to zero for identification purposes. Even if the proposed method does allow
us to obtain sparsity, we should acknowledge that its achievement also depends on the features
of the statistical model under investigation and the amount of information carried by the data.
Concerning the former, as pointed out by Trendafilov et al. (2017), inducing sparsity in a factor
model, and even more so one with correlated factors, is more complicated than for other types
of models (e.g. principal component analysis) due to the presence of other parameters (unique
variances and factor variances and covariances) affecting the overall model fit. As a result, if too
large a value for the tuning parameter is chosen, an excessive number of loadings is shrunken,
and the remaining parameters are forced to explode to compensate for this lack of fit. This issue
can be avoided if the appropriate amount of sparsity is introduced into the model, which in turn
is only possible if the tuning parameter governing the amount of sparsity is selected according to
a valid procedure, such as the one introduced in the paper.

We fitted a large number of models involving all four penalties. For grid-search, 200 models
corresponding to varying levels of the tuning parameterwere fitted.We also tried a sequence of val-
ues for the additional tuning parameter of the alasso (a = {1, 1.5, 2}), scad (a = {2.5, 3.7, 4.5}),
mcp (a = {1.5, 2, 2.5, 3, 3.5}), and for the influence factor (γ = {1, 1.4, 2, 2.5, 3, 3.5, 4, 4.5}).
The GBIC7 values were calculated for each of the fitted penfamodels and are ranked in Table 4
for the best model configurations. In particular, the alasso (automatic procedure, a = 1, γ = 4.5)
presented the lowest BIC, closely followed by the mcp (a = 1.5) and scad (a = 4.5). Inter-
estingly, the BIC of penfa-lasso with grid-search (7567.62) markedly decreased when the
model was fitted through the automatic procedure with an influence factor of 4.5 (7562.94). Notice
that both the CFA and the unpenalized solution (corresponding to the factor analysis model in
equation (1) with the minimum identification restrictions) resulted in worse fits than the ones
of the penalized models, probably because of the strict assumption of no cross-loadings of the
former, and the unnecessary complexity of the latter. This indicates that the analysis benefited
from the introduction of sparsity.

Table 5 (left-hand side) reports the parameter estimates of the unpenalized model and the best
penfa-alassomodel. A blank cell in the factor loadingmatrix indicates that the corresponding

7We used the BIC as a criterion for model comparisons due to its widespread use in sparse settings, but different
evaluation measures can be employed depending on the research question.
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estimate was zero after one decimal digit rounding.8 The unpenalized model presented various
cross-loadings, which resulted in a complex model. For penfa, only four secondary loadings
(λ̂51, λ̂81, λ̂91, λ̂32) were identified as nonzero. If a sparser loading matrix is desired, users can
increase the value of the exponent a of the alasso and/or the influence factor γ in the automatic
procedure. For instance, a penfa-alasso model (BIC = 7565.39) with a = 2 and γ = 5.5
(Table 5, right-hand side) produced a sparser factor solution with a single cross-loading (λ̂91). The
data analysis was also conducted for regsem and lslx using the available penalties (i.e., lasso,
alasso, scad, and mcp for the former, and lasso and mcp for the latter) and is presented in Online
Resource E. The factor structures of the penalizedmodels looked similar, but the proposedmethod
reported the lowest BIC values, showing the potential of the presented procedure. As argued by
Huang et al. (2017), this example shows that complex models do not necessarily outperform
simpler ones when model complexity is also taken into account in the model selection criterion.

9.2. Multiple-Group Factor Model

Besides considering the sample of the students as awhole,we divided it into twogroups (N1 =
156, N2 = 145) based on the attended school, and then conducted a multiple-group analysis. One
school (Pasteur) included students with parents who immigrated from Europe, whereas the other
(Grant-White) was composed of students coming from middle-income American white families.
Following Huang (2018), we considered the 19 mental tests and standardized the data to handle
the scaling effect.

The traditional approach consists of the estimation of an unpenalized multiple-group CFA
in which the tests are assumed to be pure measures, followed by factorial invariance testing
procedures. The model assuming equal loadings across groups shows an adequate fit to the data
(p-value of the chi-square goodness of fit test = 0.266), which, however, significantly worsens
when the intercepts are also equated across groups (p-value of the likelihood ratio test comparing
the model with invariant loadings and intercepts versus the one with only invariant loadings <

0.001). Model modifications are typically conducted to determine and freely estimate the non-
invariant elements.

Alternatively, the invariance pattern can be explored via penalized techniques employing
penalties that combine sparsity and cross-group equivalence of loadings and intercepts. In light
of its superior performance in the single-group analysis and simulation, we employed the alasso
with the automatic multiple tuning parameter procedure, and tested various values of the influence
factor (γ = {1, 2, 3, 3.5, 4, 4.5}) and the exponent (a = {1, 2}). The tests VISUAL, WORDM,
COUNTING and NUMBERR are assumed to be the markers, and thus have fixed loadings and
intercepts. The data analysis was also conducted in lslx with the mcp (see Table E.4), but not
in regsem as its current implementation does not allow for multiple-group analyses. Note that
lslx uses only one penalty for shrinking both the parameters and their differences, hence it has
a single tuning parameter η.

The parameter estimates of penfa-alasso are reported in Table 6. The better fit of
penfa-alasso (BIC = 14658) as compared to lslx-mcp (BIC = 14697.75) is also merit
of the greater flexibility of the former, which employs three distinct penalties having their own
tuning parameters, with respect to the latter, where a single tuning has to take care of the shrink-
age of the parameters as well as their cross-group differences. penfa-alasso produces sparse
loading matrices with many zero-entries, but the presence of a couple of nonzero cross-loadings
demonstrates that the structure hypothesized by a multiple-group CFA is too restrictive. The fac-
tor loading matrices of penfa-alasso are also fully equivalent, in agreement to the results of
invariance testing. Conversely, the intercepts are not fully invariant, which is again in line with

8This was done for a neater visual illustration; in the penfa package, no internal rounding is implemented, and the
estimates are shown as returned by the trust-region optimizer.
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Table 6.
Parameter estimates of the 19 mental tests from the Holzinger & Swineford data set for penfa-alasso (automatic
procedure, η̂ = (0.006, 16221.852, 0.013)T , a = 1, γ = 4)

Measurement model penfa - alasso
Pasteur School Grant- White School
τ1 Spatial Verbal Speed Memory �1 τ2 Spatial Verbal Speed Memory �2

VISUAL 0 1 0 0 0 0.44 0 1 0 0 0 0.43
CUBES 0.01 0.58 0.89 0.01 0.58 0.68
PAPER 0 0.62 0.81 0 0.62 0.71
FLAGS 0.14� 0.86 −0.09 0.61 −0.16� 0.86 −0.09 0.47
GENERAL −0.01 1.02 −0.11 0.26 −0.01 1.02 −0.11 0.31
PARAGRAP −0.01 0.96 0.35 −0.01 0.96 0.31
SENTENCE −0.01 −0.12 1.08 0.25 −0.01 −0.12 1.08 0.22
WORDC −0.08� 0.84 0.41 0.07� 0.84 0.45
WORDM 0 0 1 0 0 0.23 0 0 1 0 0 0.35
ADDITION 0.14� −0.40 0.14 0.99 0.15 0.52 −0.18� −0.40 0.14 0.99 0.15 0.34
CODE 0 0.17 0.74 0.27 0.44 0 0.17 0.74 0.27 0.61
COUNTING 0 0 0 1 0 0.54 0 0 0 1 0 0.44
STRAIGHT 0 0.40 0.68 0.62 0 0.40 0.68 0.44
WORDR 0 0 0 0 1 0.58 0 0 0 0 1 0.56
NUMBERR 0 −0.14 0.84 0.68 0 −0.14 0.84 0.67
FIGURER 0.02 0.37 0.63 0.73 0.02 0.37 0.63 0.47
OBJECT 0.16� −0.23 0.32 0.87 0.63 −0.19� −0.23 0.32 0.87 0.46
NUMBERF 0 0.25 0.65 0.78 0 0.25 0.65 0.65
FIGUREW −0.20� 0.06 0.09 0.53 0.85 0.24� 0.06 0.09 0.53 0.60
Spatial −0.02 0.59 0.28 0.16 0.17 0.02 0.60 0.36 0.29 0.24
Verbal −0.26 − 0.66 0.19 0.10 0.29 − 0.62 0.23 0.26
Speed 0.09 − − 0.44 0.07 −0.09 − − 0.63 0.16
Memory −0.05 − − − 0.52 0.05 − − − 0.42

Fixed parameters are italic and underlined. A blank cell in the factor loading matrix indicates that the
corresponding estimate is zero. Non-invariant parameters across groups are starred (�).

the findings from factorial invariance testing. This example clearly shows the benefits of using
properly designed penalized techniques to explore the non-equivalence pattern of the parameter
matrices in a multiple-group factor model.

10. Discussion

Penalized factor analysis is an efficient estimation technique that produces a factor loading
matrix with many zero elements thanks to the introduction of sparsity-inducing penalty functions
within the estimation process. In order to achieve sparse solutions and stable model selection
procedures, the penalty functions must be non-differentiable. In this work, we adopted suitable
local approximations of them. In this way, it was possible to employ in the optimization process a
trust-region algorithm, which required analytical information on the score vector and the Hessian
matrix (or a good approximation thereof). The use of differentiable penalties allowed us to recast
the problem in a theoretically founded framework, where a precise definition of effective degrees
of freedom was obtained, based on the bias term of the Generalized Information Criterion, or
equivalently, the influencematrix of the model. This represents a novelty, as the existing proposals
compute the degrees of freedom of a penalized factor model as the number of nonzero parameters.
As an alternative to the usually time-consuming grid-searches, we also illustrated an efficient
automatic technique for the estimation of the tuning parameter alongside the parameters of the
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factor model. The asymptotic properties of the penalized estimator can be established along the
lines of Filippou et al. (2017) and Fan and Li (2001).

The simulations showed that the proposed approach produced trustworthy models with high
accuracy, selection consistency, low bias and false positives. This indicates that the method is a
valuable alternative to the existing techniques. Furthermore, it often generated the best tradeoff
between goodness of fit andmodel complexity when compared to suchmodels, as in the empirical
application. As a result of this delicate balance, the proposed method may not necessarily provide
the sparsest factor solution. Numerical experiments, however, confirm that the proposed method
can produce very good results even if the penalized parameters are estimated just close enough to
zero. This is because the edf are also being estimated close to zero, and we would actually need
a considerable number of coefficients to see a substantive impact on the total edf and the GBIC.
Still, if researchers desire more sparsity, they can manually and subjectively increase the value of
the tuning parameter or the influence factor for the automatic procedure.

Notably,we extended the illustrated framework tomultiple-group factormodels by employing
a penalty that simultaneously induced sparsity and cross-group equality of loadings and intercepts.
As such, it revealed as a worthy alternative to invariance testing procedures. In this context, the
automatic procedure proved particularly useful as it allowed for the estimation of the multiple
tuning parameters composing the penalty term in a fast, stable and efficient way.

The presented framework allows one to easily and efficiently combine multiple penalty terms
(like in the multiple-group model), as the automatic procedure scales well with the number of
tuning parameters. In the empirical application, the alasso penalty was considered for all three
penalty terms, but different penalty functions can also be combined if desired.

Another interesting modification pertains to the type of parameters that are penalized. Given
the general estimation framework proposed in this work, also residual covariances (i.e., the off-
diagonal elements of the covariance matrix of the unique factors) can be penalized to examine the
assumption of conditional independence (that is, detect which pairs of variables are conditionally
dependent). This model is known in the econometric literature as “sparse approximate factor
model” (Bai & Liao, 2016).

We envisage several interesting lines of future research. Firstly, the proposed approach can be
applied to structural equation models in which, in addition to the measurement model, a structural
model (usually a mediation model for the factors) is tested. Secondly, the results described in this
work were derived under the N > p scenario, as it is the case for many applications from the
social and behavioral sciences. However, penalized techniques can also be extremely useful in
the high-dimensional case, where maximum likelihood estimation is not feasible. It would hence
be interesting to review the presented methodology in this demanding set-up. Future research
may also evaluate the impact of messy data and larger model sizes on the penalized estimation
framework. Finally, the observed variables were assumed to follow a multivariate normal distri-
bution. When this is not reasonable, one can resort to pseudo maximum likelihood (Arminger
& Schoenberg, 1989) or, for categorical data, pairwise maximum likelihood (Katsikatsou et al.,
2012). Further studies are needed to extend this work to the non-normal case, as this setting poses
additional challenges since the asymptotic covariance matrix of the PMLE is no longer consis-
tently estimated by the inverse Fisher information but by a “sandwich-type” covariance matrix
(Yuan & Bentler 1997).
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