Decomposition of complete graphs into stars ## Pauline Cain A star is a connected graph in which every vertex but one has valency 1. This paper concerns the question of when complete graphs can be decomposed into stars, all of the same order, which have pairwise disjoint edge-sets. It is shown that the complete graphs on rm and rm+1 vertices, r>1, can be decomposed into stars with m edges, if and only if r is even or m is odd. By a graph we shall mean a finite undirected graph without loops or multiple edges. In the complete graph K_p there are p vertices and an edge exists between every pair of vertices. The complete bipartite graph, $K_{p,n}$, has two sets of vertices, V_p and V_n , and two vertices are adjacent if and only if both endpoints do not belong to V_p or to V_n . An m-star is a complete bipartite graph, $K_{1,m}$. We shall write x-yztu... for a star with centre x and terminal vertices y, z, t, u, A decomposition or factorization of a graph into stars is a way of expressing the graph as the union of edge-disjoint stars. A uniform decomposition is one in which the stars are the same size. An m-star decomposition decomposes a graph uniformly into m-stars. The sum of graphs, G + H, consists of the union of the vertices and edges in G and H and all possible edges between every pair of vertices Received 20 August 1973. Communicated by W.D. Wallis. g and h where g belongs to G and h belongs to H . Examples of a 4-star and of a 4-star decomposition of K_8 are given in Figure 1. Figure 1 In [1] Ae, Yamamoto, Yoshida have shown that K_{3t} , for t greater than one, is 3-star decomposable. In this paper we shall show precisely when K_{pm} is m-star decomposable. **LEMMA** 1. If K is m-star decomposable then necessarily the number of stars, p(p-1)/2m, is integral. LEMMA 2. K_{2m} is m-star decomposable for all m ... Proof. K_2 is 1-star decomposable. (All graphs are trivially 1-star decomposable.) $K_{\rm h}$ is 2-star decomposable as is shown in Figure 2. Assume K_{2p} is p-star decomposable for all $p \le m$. K_{2m+2} may be formed from a $K_2 \cup K_{2m}$ by joining by edges, e_{ij} , each pair of vertices (v_i, w_j) , where v_i , for i = 1, 2, belongs to the K_2 and w_j , for $j = 1, \ldots, 2m$, belongs to the K_{2m} . (See Figure 3.) Figure 2 Figure 3 There are 2m-1 m-stars in K_{2m} . Since each vertex in K_{2m} has a valency of 2m-1, every vertex (of K_{2m}) except one is the centre of an m-star. Label the exception w_{2m} . For j = 1, ..., m , attach to the star with centre w_j , the edge $e_{1,j}$ to form an (m+1)-star. Then form an (m+1)-star, $v_1^{-v_2}, w_{m+1}, \ldots, w_{2m-1}, w_{2m}$, exhausting the remaining edges through v_1 . For $j=m+1,\ldots,2m-1$, add e_{2j} to the m-star with centre w_j , forming an (m+1)-star. The remaining (m+1)-star has v_2 as its centre and terminal vertices w_1,\ldots,w_m,w_{2m} . We have a total of 2m+1 edge-disjoint (m+1)-stars. So the result follows by induction. THEOREM 1. If K_x is m-star decomposable then $K_{x+2\alpha m}$ for all positive integral α , is m-star decomposable. Proof. $K_{x+2\alpha m}$ is $K_x + K_{2m} + \ldots + K_{2m}$. Consider $K_x + K_{2m}$. Let v_i be the vertices of K_x for $i=1,\ldots,x$ and w_j be the vertices of K_{2m} for $j=1,\ldots,2m$. Let e_{ij} be an edge between v_i and w_j . Both K_x and K_{2m} are m-star decomposable by assumption and Lemma 2 respectively. For $i=1,\ldots,x$, the graph, E_i , containing the edges $e_{i,j}$ where $j=1,\ldots,2m$, is decomposable into two m-stars, namely, v_i-v_1,\ldots,v_m and $v_i-v_{m+1},\ldots,v_{2m}$. So K_x+K_{2m} is decomposable for K_x and every K_{2m} . The result follows by repeated application. **LEMMA 3.** K_{pm} and K_{pm+1} are not m-star decomposable when r is odd and m is even. Proof. Lemma 1 implies that m will divide rm(rm-1)/2 and (rm+1)rm/2 if K_{rm} and K_{rm+1} are m-star decomposable. This does not happen in the case in question. LEMMA 4. K_{3m} is m-star decomposable when m is odd. Proof. Write m = 2n + 1. If K_{3m} is decomposable the number of m-stars will be 3(2n+1)(6n+3-1)/2(2n+1) which is an integer, 3(3n+1). So, for odd m it is conceivable that K_{2m} may be m-star decomposable. K_{3m} is $K_m + K_m + K_m$; let us write these K_m with vertices v_i , $i=1,\ldots,m$, w_j , $j=1,\ldots,m$ and x_k , $k=1,\ldots,m$ respectively. (See Figure 4.) Figure 4 For $1 \le i \le m-1$, form the m-star V_i with centre v_i and terminal vertices $w_1, \ldots, w_i, v_{i+1}, \ldots, w_m$; for $2 \le i \le m$, form the m-star X_i with centre x_i and terminal vertices $x_1, \ldots, x_{i-1}, w_i, \ldots, w_m$; for $1 \le i \le m$, form the m-star W_i with centre w_i and terminal vertices $v_1, \ldots, v_{i-1}, v_m, x_{i+1}, \ldots, x_m$; for $1 \leq i \leq m$, form the $m\text{-star}\ U_i$ with centre v_i and terminal vertices x_1 , ..., x_m . We have formed 4m-2 m-stars and we require a further $\frac{1}{2}(m+1)$ stars to be formed. We proceed as follows: for $1 \le i \le m$, the star Y_i is centred at w_i and has terminal vertices $w_{i+1}, \ldots, w_m, x_1 \ldots Y_i$ requires a further i-1 edges to become an m-star. Y_1 has centre w_1 and terminal vertices w_2, \ldots, w_m, x_1 . So Y_1 is an m-star already. In order to form a further $\frac{1}{2}(m-1)$ m-stars Y_k where $k=2,\ldots,\frac{1}{2}(m+1)$, we may use the following procedure to modify the V_i , X_i and W_i : - (1) For $2 \le k \le \frac{1}{2}(m+1)$: to Y_k add v_k ; to V_k delete w_k and add w_{m-k+2} ; to W_{m-k+2} delete v_k and add x_1 . - v_2 will now have m terminal vertices, namely, $v_3, \ldots, v_m, x_1, v_2$. - (2) (i) If k is less than $\frac{1}{2}(m+5-j)$, write $\theta=m-k+5-j$ and do the following for $3 \le j \le \frac{1}{2}(m+1)$ and $j \le k \le \frac{1}{2}(m+1)$: - to Y_k add v_{θ} ; - to v_{θ} add w_{m-j+3} and delete w_k ; - to W_{m-j+3} delete v_{θ} and add w_{m-k+2} . - (ii) If k is greater than or equal to $\frac{1}{2}(m+5-j)$, write j=m+5-2k and $\theta=m-k+5-j$. Do the following for $0 \le l \le k-j$: - to Y_k add $x_{\theta-1}$; - to $X_{\theta-l}$ add x_{m-l} and delete w_k ; - to X_{m-l} add $w_{m-j+3-l}$ and delete $x_{\theta-l}$; - to $W_{m-j+3-l}$ delete x_{m-l} and add w_{m-k+2} . Using this procedure Y_i gains one edge from (1) and (i-2) edges from (2), thus forming an m-star Y_i for $i=2,\ldots,\frac{1}{2}(m+1)$. V_i,X_i and W_i are still m-stars since an edge is always added when one is subtracted. The following situations need to be considered to ensure that the procedure does not break down for large m . In (1) the procedure may break down if $m-k+2 \le k$, but this implies that $m+2 \le 2k$. Since $2 \le k \le \frac{k}{2}(m+1)$, we have $m+2 \le m+1$, which is false. In (2) (i) the procedure may break down if $m-k+5-j \le k$, that is $k \ge \frac{1}{2}(m+5-j)$, but this situation is corrected in (2) (ii). Moreover, we are in trouble if $m-j+3 \le m-k+5-j$ (where $j \le k \le \frac{1}{2}(m+1)$ and $3 \le j \le \frac{1}{2}(m+1)$) but this implies $3 \le 5-k \le 5-j \le 5-3 = 2$. Further trouble arises when m-j+3=m-k+2, but this implies $k=j-1 \le k-1$. Problems could occur in (2) (ii), if any of the following situations arise: - (a) $\theta 1 < 1$: - (b) $\theta l > m l$; - (c) $\theta l > k$; - (d) $m-j+3-l \ge m-l$; - (e) $m-j+3 \ge m$; or - (f) m k + 2 = m j + 3 l. None of these ever occur. It is obvious that K_m is not m-star decomposable, not having enough vertices. So the following theorem completely characterizes m-star decomposability of K_{mm} . THEOREM 2. If $r \ge 2$ then K_{pm} can be decomposed into m-stars if and only if r is even or m is odd. Proof. The result follows from Lemmas 2, 3, and 4 and Theorem 1. We can use these results to determine when K_{pm+1} is m-star decomposable. LEMMA 5. If K_{rm} is m-star decomposable then K_{rm+1} is m-star decomposable. Proof. K_{2m+1} contains K_{2m} and a vertex, say v, with all possible edges between v and K_{2m} . These new edges form r edge-disjoint m-stars. Since K_{2m} is m-star decomposable, K_{2m+1} is m-star decomposable. COROLLARY. K_{m+1} is not m-star decomposable. When r>1 , K_{rm+1} is m-star decomposable if and only if r is even or m is odd. Finally we shall decompose K_{23} into 7-stars, as an example. ``` v_1 v_1 - w_1, v_2, v_3, v_4, v_5, v_6, v_7 W_4 w_4 - v_1, v_2, v_3, v_7, x_5, x_6, x_7 v_2 v_2 - w_1, w_7, v_3, v_4, v_5, v_6, v_7 W_5 w_5 - v_1, v_2, v_3, x_1, v_7, x_6, x_7 v_3 v_3 - w_1, w_2, w_6, v_4, v_5, v_6, v_7 W_6 \omega_6 - v_1, v_2, x_1, v_4, v_5, v_7, \omega_5 V_4 v_4 - w_1, w_2, w_3, w_5, v_5; v_6, v_7 W_7 w_7 - v_1, x_1, v_3, v_4, w_5, w_6, v_7 v_5 v_5 - w_1, w_2, w_3, w_7, w_5, v_6, v_7 U_1 v_1 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 v_6 v_6 - w_1, w_2, w_7, w_4, w_5, w_6, v_7 U_2 v_2 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 X_2 x_2 - x_1, w_2, w_3, w_4, w_5, w_6, w_7 v_3 v_3 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 X_3 x_3 - x_1, x_2, w_3, w_4, w_5, w_6, w_7 U_4 v_4 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 X_4 x_4 - x_1, x_2, x_3, x_7, w_5, w_6, w_7 v_5 v_5 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 x_5 x_5 - x_1, x_2, x_3, x_4, w_5, w_6, w_7 v_6 v_6 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 x_6 x_6 - x_1, x_2, x_3, x_4, x_5, w_6, w_7 v_7 v_7 - x_1, x_2, x_3, x_4, x_5, x_6, x_7 x_7 x_7 - x_1, x_2, x_3, w_6, x_5, x_6, w_7 Y_1 w_1 - w_2, w_3, w_4, w_5, w_6, w_7, x_1 Y_2 w_2 - w_3, w_4, w_5, w_6, w_7, x_1, v_2 W_1 w_1 - v_7, x_2, x_3, x_4, x_5, x_6, x_7 W_2 w_2 - v_1, v_7, x_3, x_4, x_5, x_6, x_7 Y_3 w_3 - w_4, w_5, w_6, w_7, x_1, v_3, v_6 W_3 W_3 - v_1, v_2, v_7, x_4, x_5, x_6, x_7 Y_4 w_4 - w_5, w_6, w_{7}, x_1, v_4, v_5, x_4 ``` ## Reference [1] Tadashi Ae, Seigo Yamamoto, Noriyoshi Yoshida, "Line-disjoint decomposition of complete graph into stars", J. Combinatorial Theory Ser. B (to appear). Department of Mathematics, University of Newcastle, Newcastle, New South Wales.