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ON THE DIOPHANTINE EQUATION x? —py*=-=+4q AND
THE CLASS NUMBER OF REAL SUBFIELDS
OF A CYCLOTOMIC FIELD*)
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Introduction

Let H(m) denote the class number of the field K = Q(¢,. + &), where
Q is the rational number field and {, is a primitive m-th root of unity
for a positive rational integer m.

It has been proved by Ankeny, Chowla and Hasse in [2] that if
p = (2ng)* + 1 is a prime, with prime g and integer n > 1, then H(p) > 1.
Later, S.-D. Lang proved in [5] that if p = (@n + 1)q)* + 4 is a prime,
with odd prime ¢ and integer n > 1, then H(p) > 1.

Both results are based on the fact that the diophantine equation
x* — py* = +4m has no solution (x, y) in integers unless m > ng (resp.
m > (2n + 1)q).

In this paper, we shall first consider the diophantine equation x* —
py* = +4q for distinct odd primes p, ¢, and give a necessary and suffi-
cient condition for its solvability (§ 1). Next, we shall show that for
distinct odd primes p, q satisfying p = ((2n + 1)¢)*+ 2 with integer n >0
the diophantine equation x* — py* = 4+¢ has no solution (x,y) in inte-
gers except for the case p =7 (n =0, g = 3) (§2).

Moreover, in Section 3, for a prime p of such type, we shall give a
sufficient condition for the class number A(p) of the real quadratic field
Q(Wp) to be greater than 1, and by applying this result to maximal real
subfield of a cyclotomic field we shall also give a sufficient condition for
H(4p) > 1.

Finally, we shall list up all primes p < 100,000 satisfying p = ((2n + 1)q)*
— 2 with prime ¢ = 1 or 3 (mod 4), (n > 0), and p = ((2n + 1)g)* + 2 with
prime ¢ =1 or 7 (mod 4), (n > 0), for which both A(p) and H(4p) are
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greater than 1.

§ 1. Solvability of the equation x* — py* = +4q

We consider, in this section, the diophantine equation x* — py* = +4q
for distinct odd primes p, g. However, the following fact is noteworthy:
When the equation x* — py* = 4+¢ has a solution (u, v) in integers, the
double of the solution (2u, 2v) is also a solution of the equation x* — py*
= 4+4q. Conversely, in the case p = 1 (mod 4) all the solutions of x* —
py* = +4q can be obtained from the solutions x* — py* = +¢q in such a
way, while in the case p = 1 (mod 4) not all the solutions can neces-
sarily be found from the solutions of x* — py* = +q.

The following fact, which gives a relation between the solvability
of the equation x* — py* = +4q and the class number of the real quad-
ratic field Q(+/p), is already known®, but is fundamental in our inves-
tigation. Therefore, we state it as a theorem and, for the sake of com-
pleteness, add a simple proof:

THEOREM 1. Let p and q be two distinct odd primes. Then, the di-
ophantine equation x* — py* = 4+4q has at least one solution (x,y)in in-
tegers if and only if the prime q splits completely in the real quadratic
field Q(v/ p) into the product of a principal prime ideal q with degree one
and its conjugate q': q = q-9, (0 # ¢, Ng = Ny = q, q = (0), ¢ = (o) with
0, @ in Q(/p)).

Proof. If there exists one solution (u,v) in integers of x* — py* =
+4q, then w* — pv* = +4q implies ©* = pv* (mod q). Hence 1 = (pv*/q)
= (p/q) holds, and so by the law of decomposition in quadratic fields ¢
splits completely in Q(+p). On the other hand, it follows from +q =
(w+ vVp)2 -(w— vV )2 that both

q = (J‘,i’i}/,z) and o = (jﬁflfz,)
2 2
are principal ideals in Q(y/ p) and Nq = q-q’ = q holds. Therefore q and
q’ are principal prime ideals in Q(v p) with degree one.

Conversely, if g splits completely in Q(v/ p) into the product of two

principal prime ideals g, ¢’ with degree one, then there exist two rational

1) Cf. e.q. [2], [3] etec.
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integers u, v such that both o = (u+ vV p)/2 and o = (u — vV p)/2
are integers in Q(Wp) and q = (0), ¢ = (/). Hence

g=4q-¢ = Nq=|N@)| = i:zl&ﬁ;

implies u* — pv* = +4q. Therefore x* — py* = 4-4q has the solution (u, v)
in integers, which completes the proof of Theorem 1.
For example, let p and q be two odd primes satisfying p = 4¢* + 1
or p = ¢* + 4. Then, the equation x* — py* = +4q has a solution (2q +
1,1) or (g + 2, 1) in integers respectively. On the other hand, the prime
q splits completely in Q(v p) such as
g=q-q; q= (Z‘I,%‘F_Q), q = (ﬂiriz.—_\/i)

or

q:(l_g:2+~/p ) q,=(_Qi2~~/ZJ;>
2 ’ 2
respectively.
From Theorem 1 we deduce easily:

CoroLLARY. Let p and g be two odd primes satisfying p = (nq)* + r*
for natural numbers n,r. Then, the class number h(p) of the real quad-
ratic field Q(+/ p) is not equal to one i.e. h(p) > 1 if x* — py* = +4q has
no solution (x,y) in integers.

Proof. Since the condition p = (ng)* + r* implies immediately (p/q)
= 1, prime q splits completely in Q(+/ p). Hence, if we suppose A(p) = 1,
then it follows from Theorem 1 that x* — py* = +4q has at least one
solution (x, y) in integers. This is a contradiction. Therefore A(p) =1
is impossible, which proves the assertion of Corollary.

§2. Solvability of the equation x* — py* = +q for p = (2n + 1)q)* + 2

After Ankeny-Chowla-Hasse and S.-D. Lang, H. Takeuchi proved
in [6] that if both 12m 4+ 7 and p = (3(8m + 5))* — 2 are primes or both
12m + 11 and p = (3(8m 4+ 7))* — 2 are primes with an integer m >0,
then the equation x* — py? = +3 has no solution (x, y) in integers.

Here, we prove more generally:

THEOREM 2. Let p and q be two odd primes satisfying p = ((2n + 1)g)*
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+ 2 with an integer n > 0, Then, the diophantine equation x* — py* = +q
has at least one solution (x,y) in integers if and only if p =7 and q = 3
(n = 0) i.e. only the equation x* — T7y* = —3 has a solution in integers,
for example (x, y) = (2, 1).

Proof. (1) Let p and g be two odd primes satisfying p = ((2n + 1)g)*
— 2 with an integer n > 0, and put [ = (2n + 1)q.

Assume first that x> — py* = ¢ has at least one solution in integers,
and let (u,v) (u > 0, v > 0) be the least such positive integral solution:
ut — pf =q.

In the case ¢ > 2v°, where ¢ = ©* — pv* = u® — PP1? + 20* implies easily
w—-—lWu+ly=qg—20">0, both a=u—lWw>0and b=u+Ww>0
are positive rational integers, and [ = (b — @)/2v, g = ab -+ 21* holds. On
the other hand, since ¢ > 1,6 >1and (¢ — Db +1)=ab+a—>b—1,
we know ab — 1 > b — a. Therefore

0_<_2nq:l—q=£__—a——ab—2v2= 17,(b—a—20ab—4v3)
2v 2v

< 1 ab—1—20ab—a®) = “L(@ + 1) + Qv — Dab) <0.
2v 2v
It is clear that this is a contradiction.
In the case ¢ < 21?, the norm form 1= Ne = N(I* — 1) + W =2)

of the fundamental unit® ¢ = (? — 1) + W — 2 of Q(~/ p) multiplied by
the norm form g = N(u — vV/'I' — 2) of u* — pv* = q yields

q=NH® - Du — W@ — 2} + {u — (& — D}E = 9]
= {( — Du — W@ — f — (& — {lu — @ — D).

Because of the minimal choice of v, we have |lu — (* — 1v] > v. Here,
if lu — (P — 1)v> v i.e. u > lv, we have

q=1t — (B — > P — (I — 20 = 207,

which contradicts g < 2v*. If (P —1Dv—Ilu>v ie. (I*!=2v>lu, we
have

Pg=1v -1 -2 <@ - 20— P(I*P— 2= -2 — 20* <0,
which is also a contradiction.

2) Cf. 1], [3].

https://doi.org/10.1017/50027763000020481 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020481

DICPHANTINE EQUATION 155

Therefore, it is impossible that for the prime p = ((2n 4+ 1)q)* — 2
the equation x* — py* = g has a solution in integers.

Next, assume that x* — py* = —q has at least one solution in inte-
gers, and let (u, v) (u > 0, v > 0) be the least such positive integral solu-
tion: u* — pv* = —q.

In the. case ¢ =3, v=1, where — 3= —g=uw'—pv*=u*— 1+ 2
implies ( — u)(l + u) =5, we have | —u=1, 1+ u=25, and so [ = 3,
u =2, p="171is only one possible case as asserted in the Theorem.

In the case ¢ = 3,v>2 or ¢ > 3, v > ¢, the norm form of the funda-
mental unit e of Q(+v p) multiplied by the norm form —g = N(u — vV — 2)
of the equation u* — pv* = —¢q, together with the minimal choice of v,
yields |lu — (I* — 1)v| > v. Here, if lu — (I* — 1)v > v, we have —q =
uw— (P — 2 > I — (P — 21 = 2v* > 0, which is a contradiction. If
(f — v — lu > v, we have

—Pq = Put — PP — 20 < (I — 2% — B — 2f = —2(F — 2)0*,

and hence ’q > 2(I* — 2)1®. Therefore, in the case of ¢ = 3 and v > 2,
32 > 2(I* — 2)v* > 8(I* — 2) implies 16 > 5/* > 45, which is a contradiction.
In the case of v>q > 3, l'v> I’)qg > 2I** — 41* implies 4v* > (2v* — v)I?
> v(2v — 1)¢%, and hence ¢* < 4v/Quv —1) =24 2/2v - 1) <2+ 2/5<3
holds. This is also a contradiction.

In the case ¢ > 3,v <gq, where —q = u® — pv* = v* — I** + 2* im-
plies lv—uw) (v +u)=q+20*>0,botha=lv—u>0and b=1Ilv+u
> 0 are positive rational integers, and [ = (a + b)/2v, ¢ = ab — 2. On
the other hand, sincea >1,6>1 and (¢ — 1)(b — 1) = ab — (a + b) + 1,
we know ab + 1> a + b. Therefore

Og2nq=l—q=‘Ltg——ab+202=—17(a—+—b—2vab+4v3)
2v 2v

< i(ab + 1 — 2vab + 40°) = ~L((4v3 + 1) — Qv — 1)abd)
2v 2v

implies 4v° + 1 > (2v — 1)ab, and so ab < (4v* 4+ 1)/(2v — 1). Hence

qg=ab— 20 < = : .
2v—1 2v—1 2v—1

Here, if v=1 or 2, then ¢ < v+ (v + 1)/(2v — 1) = 3, which is a contra-

diction. If v >3, then 0 < (v+ 1)/(2v — 1) < 1 implies ¢ < v + (v + 1)/
(2v — 1) <v + 1, which contradicts g > v.
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Therefore, it is impossible except for the case of p =7,9¢ =3 (n = 0)
that for p = ((2n + 1)q)* — 2 the equation x* — py* = —q has a solution
in integers.

(2) Let p and g be two odd primes satisfying p = ((2n + 1)q)* + 2
with an integer n > 0, and put ! = (2n + 1.

Assume first that x> — py* = ¢ has at least one solution in integers,
and let (z, v) (w > 0,v > 0) be the least such positive integral solution:
u* — pv* = q.

In the case g > v, where g = u? — I*v* — 2v* implies (v — lv)(u + lv)
=qg+ 28>0, botha=u—Ilw>0 and b = u + lv > 0 are positive ra-
tional integers, and [ = (b — @)/2v, ¢ = ab — 2v* holds. Hence, we get

0<2nq=1—-q= b—a —(ab—2v2)=i(b—a—2vab+4v3)
2v 2v

< 1 ab—1— 2vab+ 40 = 2 ((4* — 1) — Qv — 1)ab),
2v 2v

and so ab < (4v* — 1)/(2v — 1). Therefore, we get
403—]:__202__ 2v'—1 _

DI At PN

qg=ab— 200 < -
2v—1 2v—1 2v —1

This, however, contradicts g > v.

In the case g < v, the norm form 1= Ne = N((* + 1) + W + 2) of
the fundamental unit® ¢ = (* + 1) + WP + 2 of QW p) multiplied by the
norm form g = N(u — v/ + 2) of the equation u* — pv* = g, yields

g={ul+1) — W@+ 2} — &+ 2{lu — @+ Hvp.
Because of the minimum choice of v, we have |lu — (I* 4 1)v] > v. Here,
if lu — (I* + 1)v > v, we have
lq = IPu* — (I + 2v* > (I 4+ 20 — I(I* + 2)v* = 2(1* + 2v* > 2(I* + 2)¢?,

and hence q < I}/2(I* 4+ 2) < 1/2. This is a contradiction. If (I* + 1v —
lu>v,wehave g = > — (! + 20" < PPV* — (I + 21 = —20* < 0. This is
also a contradiction.

Assume next that x* — py* = —q has at least one solution in integers,
and let (w, v) (¥ > 0,v > 0) be the least such positive integral solution:

u —pvt= —q.

3) Cf. [1], 8]
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In the case ¢ > 2v%, where —q = u® — [*v* — 2v* implies (lv — w)(lv + w)
=q—20">0, both a=Iv—u>0and b= 1+ u>0 are positive ra-
tional integers, and [ = (a + b)/2v, ¢ = ab + 21* holds. Hence, we get

0<l—qg=

a+b
v

—(ab+ 209 = L (a + b — 2vab — &)
2 2v

< Lab+1—20ab— )= "1 — 1ab + @ — 1)) <0.
2v 2v

This is a contradiction.

In the case g < 2v?, the norm form of the fundamental unit ¢ of
Q(/ p) multiplied by the norm form —q = N(u — vv/I* + 2) of the equa-
tion u? — pv* = —q, together with the minimal choice of v, yields |lu —
(IF 4+ 1)v| > v. Here, if lu — (I* + 1)v > v, we have

—lIq = Pu? — I(I* 4 2)v* > (I* + 2)%* — B(I* + 2)v* = 2(F + 2)v* = 2pv* >0,
which is a contradiction. If (I* 4+ 1)v — lu > v, we have
—q=u— 4+ 2DV < W — (I* + 2V = —21°,

which contradicts g < 2v%
Therefore, it is impossible that for p = ((2n + 1)q)* + 2 the equation
x* — py* = £q has a solution in integers.

§3. The class number of real subfields of a cyclotomic field

In this section, we shall consider the class number A(p) of the real
quadratic subfield Q(v' p) and the class number H(4p) of the maximal
real subfield Q({,, + ¢3)) of the cyclotomic field Q(,,):

QCQWDp)CQC, + ;) Q).
From Theorems 1 and 2, we obtain first:

THEOREM 3. (1) If p= (2n + 1)q)* — 2 is a prime, where q is an
odd prime satisfying ¢ = 1 or 3 (mod 8) and n > 0 is an integer, then the
class number h(p) of the real quadratic field Q(v p) is not equal to one
except for the case of p =7 (n=0,q = 3).

@) If p=(2n + 1)9) + 2 is a prime, where q is an odd prime sa-
tisfying ¢ =1 or 7 (mod 8) and n > 0 is an integer, then the class number
h(p) of the real quadratic field Q(~' p) is not equal to one i.e. h(p) > 1.
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Proof. (1) It is evident that a prime p = ((2n + 1)¢)* — 2 with an
integer n > 0 and an odd prime g satisfies (p/q) = (—2/q), and so by the
law of decomposition in quadratic fields, the prime ¢ splits in Qv p)
completely if and only if (—2/g) =1 i.e. g=1 or 3 (mod 8). Hence,
moreover if A(p) = 1 is true, then by the Theorem 1 the equation x* —
py* = +q has at least one solution in integers x, y. This, however, con-
tradicts the Theorem 2 except for the case of p = 7(n =0, ¢ = 3). There-
fore h(p) = 1 is impossible except for the case of p =7 (n = 0, ¢ = 3).

(2) Since a prime p = ((2n + 1)¢)* + 2 with an integer n >0 and
an odd prime g satisfies (p/q) = (2/q), by the law of decomposition in
quadratic fields implies that the prime g splits in Qv p) completely if
and only if (2/¢g) = 1i.e. ¢ =1 or 7 (mod 8). Hence, moreover if i(p) = 1
is true, then by the Theorem 1 x* — py* = +q has at least one solution in
integers x, y. However, this contracts the Theorem 2. Therefore A(p) = 1
is impossible, which proves the assertion of Theorem 3.

In order to prove Theorem 5, we need the following theorem®:

THEOREM 4. For a positive integer m, let {, be a primitive m-th root
of unity and denote by H(m), h(m) the class number of the field K =
Q.. + &Y, Q(Wm) respectively. If a prime p satisfies p = 3 (mod 4), then
h(p)| H(4p) holds.

Proof. For a prime p = 3 (mod 4), we first know that the real quad-

ratic field Q(+/ p) and the imaginary quadratic field Q(v/ — p) are imbed-
ded respectively in the real cyclotomic field K = Q(,, + {3) and the
imaginary cyclotomic field Q(¢,) by means of the Gauss sum

Jd= am%;ldl (%) far »

where d is the discriminant of a quadratic field Q(v' d) and (d/a) means
the Kronecker symbol.

Next, we shall show Q((,) N QW p) = Q and Q(,,) = QKW p)-Q(,).

If we suppose Q(,) N Q(p) # Q, namely Q( p) C Q(,), then QW p)
C Q, + ¢, follows. This, however, contradicts p = 3 (mod 4), which

shows Q(¢,) N Q(v p) = Q. Moreover, this assertion implies the following
4) This theorem was already stated by Yamaguchi in [4], with an incomplete

proof, for any positive integer p satisfying ¢(p) > 4. But, the theorem is not true in
such a general form.
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relation between degrees:
QWD) Q&,): Q1 = [Q(WD): QlIQE,): Q1 = 2(p — 1).
On the other hand, since [Q(,): Q] = 2(p — 1) and Q(&,) D QW p)-Q(X,),

the assertion Q(&,,) = Qv p)-Q(,) is also true.

Furthermore, we can prove that no abelian unramified extension of
Q( p) is contained in Q(,, + ¢;). For, if we suppose that there exists
an abelian unramified extension field L of Q(v p) contained in Q(&,, + i),
then we have n = [L: Q(v p)] > 2 because [Q(,, + ¢:): QW p)l = (p — 1)/2
is odd. Hence, the ramification index e(p) of p in Q(,,)/Q, which is a
divisor of 2(p — 1)/n, is less than p — 11i.e. e(p) < p — 1. However, since
p is completely ramified in Q(£,)/Q, e(p) is not less than p — 1 i.e. e(p)
> p — 1. This is a contradiction, which proves our assertion. A

Finally, from this assertion, it follows immediately by Hasse-Cheval-
ley’s theorem® that the assertion of Theorem 4 h(p)|H(4p) is true.

TueoreM 5. (1) If p=(@2n + 1)q)* — 2 is a prime, where q is an
odd prime satisfying ¢ = 1 or 3 (mod 8) and n > 0 is an integer, then the
class number H(4p) of Q(,, + (i) is greater than one except for the case
of p=T(n=0,qg=3).

2) If p=(2n+ 1)q) + 2 is a prime, where g is an odd prime sat-
isfying ¢ = 1 or 7 (mod 8) and n > 0 is an integer, then the class number
H(4p) of Q&., + i) is greater than one: H(4p) > 1.

Proof. Since p = ((2n + 1)g)* + 2 = 3 (mod 4), the assertion of the
Theorem H(4p) > 1 follows immediately from Theorem 3 and 4.
Finally, we give the values of all primes p less than 10° satisfying

5) Cf. [2].
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the conditions in Theorem 3 and the class number A(p) of the corres-
ponding real quadratic fields Qv p)®.

p=(@n+ g2 —2

P n q h(p) P n q h(p)
74 0 3 14 357 0 19 3
79 1 3 3 1,087* 1 1 7
223 2 3 3 1,847 0 43 3
439 3 3 5 3,023 2 11 3
727 4 3 5 5,927 3 11 5
1,087 5 3 7 7,919 0 89 7
3,967 10 3 5 11,447 0 107 7
4,759 11 3 13 14,159 3 17 9
5,623 12 3 9 14,639 5 11 17
8,647 15 3 13 17,159 0 131 15
13,687 19 3 21 19,319 0 139 11
18,223 22 3 17 31,827% 1 59 27
31,327 29 3 27 42,023 2 41 15
33,487 30 3 19 44,519 0 211 11
53,359 38 3 37 53,359 10 1 37
56,167 39 3 27 54.287 0 233 15
71,287 “u 3 19 61,007 6 19 15
74,527 45 3 23 64,007 11 11 11
77,839 46 3 37 66,047 0 257 13
81,223 47 3 33 71,287+ 1 89 19
91,807 50 3 45 81,223% 7 19 33
95,479 51 3 33 ! 90,599 3 43 19
99,223 52 3 29 f 97,967 0 313 25
p=(@n+ DgP 42
P n q h(p) P n q h(p)
443 1 7 3 56,171 1 79 11
11,027 7 7 9 65,027 7 17 21
15,131 1 41 15 , 74,531 19 7 17
21,611 10 7 15 1 95,483 1 103 1
47,963 1 73 9 .

4 indicates only one exceptional case with class number h(p) =1.
* indicates that the prime has appeared in the case of ¢ =3

6) For this purpose we referred to Wada's table of class numbers of real quad-
ratic fields in [7].

https://doi.org/10.1017/50027763000020481 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020481

DIOPHANTINE EQUATION 161

REFERENCES

[1] G. Degert, Uber die Bestimmung der Grundeinheit gewisser reell-quadratischer
Zahlkorper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.

[2] N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real
subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.

[ 3] H. Hasse, Uber mehrklassige, aber eingeschlechtige reell-quadratische Zahlkorper,
Elemente der Mathematik, 20 (1965), 49-72.

[ 4] I. Yamaguchi, On the class-number of the maximal real subfield of a cyclotomic
field, J. reine angew. Math., 272 (1975), 217-220.

[ £] S.-D. Lang, Note on the class-number of the maximal real subfield of a cyclotomic
field, J. reine angew. Math., 290 (1977), 70-72.

[ 61 H. Takeuchi, On the class-number of the maximal real subfield of a cyclotomic
field, Canadian J. Math., 33 (1981), 55-58.

[7] H. Wada, A table of ideal class numbers of real quadratic fields, Kokytiroku in
Math., No. 10 (1981), Sophia Univ., Tokyo.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan

https://doi.org/10.1017/5S0027763000020481 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020481



