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We study the geometric particle-in-cell methods for an electrostatic hybrid plasma model.
In this model, ions are described by the fully kinetic equations, electron density is
determined by the Boltzmann relation and space-charge effects are incorporated through
the Poisson equation. By discretizing the action integral or the Poisson bracket of
the hybrid model, we obtain a finite dimensional Hamiltonian system, for which the
Hamiltonian splitting methods or the discrete gradient methods can be used to preserve the
geometric structure or energy. The global neutrality condition is conserved under suitable
boundary conditions. Moreover, the results are further developed for an electromagnetic
hybrid model proposed by Vu (J. Comput. Phys., vol. 124, issue 2, 1996, pp. 417–430).
Numerical experiments of finite grid instability, Landau damping and resonantly excited
nonlinear ion waves illustrate the behaviour of the numerical methods constructed.

Keywords: hybrid plasma simulations, laser plasma interaction, space-charge effects,
symplectic methods

1. Introduction

Hybrid plasma models with Boltzmann electrons and space-charge effects (Vu 1996;
Cartwright, Verboncoeur & Birdsall 2000; Tajima 2018) constitute an important class
of plasma models. In these models, the electron density is directly determined from the
potential via the Boltzmann relation, and space-charge effects are included via the Poisson
equation. The electrostatic hybrid model with Boltzmann electrons and space-charge
effects (HBS model) has many applications in plasma physics. The acceleration of light
and heavy ions in an expanding plasma slab with hot electrons produced by an intense
and short laser pulse is studied using the HBS model by Bychenkov et al. (2004). Hu &
Wang (2018), by numerical simulations of the HBS model, investigate the expansion of
a collisionless hypersonic plasma plume into a vacuum. Cohen et al. (1997) numerically
simulates resonantly excited nonlinear ion waves using the HBS model and it is noted that
the exponential term in the Poisson equation introduces sufficient nonlinearity, allowing us
to derive the dispersion relation for parametric instabilities and describe the generation of
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the second harmonic. Mathematically, a related model with Boltzmann electrons is derived
and proved to be well-posed globally by Bardos et al. (2018). To include electromagnetic
effects, an electromagnetic hybrid model with the self-consistent ponderomotive driving
potential is proposed by Vu (1996), and a more general fully kinetic, reduced-description
particle-in-cell model is presented by Vu, Bezzerides & DuBois (1999) for the ion-driven
parametric instabilities.

Different from the fully kinetic (for both ions and electrons) Vlasov–Poisson system,
there is no electron distribution function in the HBS model. The simulations using the
HBS model allow time step sizes on the scale of ions and are thus more efficient. By
taking the quasi-neutral limit of the HBS model, a simplified hybrid model without the
space-charge effects (Rambo 1995) can be derived. However, the space-charge effects are
important and need to be incorporated in some cases (Vu 1996), such as in the inertial
confined fusion regime where kλe = O(1), with λe the electron Debye length and k the
wavenumber. To achieve accurate resolution at the electron Debye scale, for example, to
recover numerically the k2λ2

e term in the dispersion relation of the ion acoustic waves, the
mesh size �x must satisfy �x < λe.

There have been numerous numerical methods developed for electrostatic plasma
models, such as Eulerian methods (Heath et al. 2012; Manzini et al. 2016), particle-in-
cell methods (Birdsall & Langdon 2018; Hockney & Eastwood 2021) and semi-Lagrangian
methods (Cheng & Knorr 1976; Sonnendrücker et al. 1999). Recently, some
structure-preserving methods have been proposed by Webb (2016) and Gu, He & Sun
(2022) for the fully kinetic Vlasov–Poisson system. Structure-preserving methods for the
hybrid model with quasi-neutrality and Boltzmann electrons have been developed based
on variational or Hamiltonian formulations (Xiao & Qin 2019a; Li et al. 2024a,b). The
nonlinear Poisson–Boltzmann equation in the HBS model appears in many electrostatic
models in biomolecular simulations. For a review about fast analytical methods, see Xu &
Cai (2011), and for numerical methods, see Lu et al. (2008). Many numerical methods have
been proposed for the Poisson–Boltzmann equation, such as the finite element method
(Chen, Holst & Xu 2007) and the iterative discontinuous Galerkin method (Yin, Huang &
Liu 2014, 2018).

In this work, our discretizations of the HBS model follow the structure-preserving
methods for models in plasma physics (Qin et al. 2015b; Xiao et al. 2015; He et al.
2016; Kraus et al. 2017; Morrison 2017), which preserve the geometric structures of the
systems and exhibit very good long-term behaviour (Hairer, Lubich & Wanner 2006;
Feng & Qin 2010). The numerical schemes constructed in this work complement existing
structure-preserving methods for other (hybrid) electrostatic models. Moreover, a more
complicated electromagnetic hybrid model proposed by Vu (1996) is investigated.

The action integral and Hamiltonian structure of the HBS model in this work are
derived based on the results of Low (1958), Morrison (1980) and Xiao & Qin (2019a).
By discretizing the action integral, as done by Xiao et al. (2015) and Xiao & Qin
(2019a), or the Poisson bracket, as done by Qin et al. (2015b) and Kraus et al. (2017)
with particle methods for the distribution function and finite difference methods for
the electrostatic potential, we obtain a finite dimensional Hamiltonian system. Time
discretizations are conducted using the Hamiltonian splitting methods (Hairer et al. 2006)
and the discrete gradient methods (Gonzalez 1996; McLachlan, Quispel & Robidoux
1999). In plasma physics simulations, Hamiltonian splitting methods have been used
by Crouseilles, Einkemmer & Faou (2015), Qin et al. (2015a), He et al. (2015) and
discrete gradient methods have been used by Kormann & Sonnendrücker (2021) as time
integrators. For the electromagnetic hybrid model (Vu 1996), a Poisson bracket is proposed
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as the sum of the Lie–Poisson bracket (Morrison 1980) and the canonical bracket of the
Schrödinger equation (Marsden & Ratiu 2013).

The neutrality condition is preserved by the discretizations of the HBS model
with appropriate boundary conditions. Moreover, we demonstrate that the quasi-neutral
limits of the schemes proposed are structure preserving for the hybrid model with
quasi-neutrality and Boltzmann electrons. The numerical methods are validated by the
good conservation of energy. We conduct the implementation in the Python package
STRUPHY (Holderied, Possanner & Wang 2021).

The paper is organized as follows. In § 2, the action integral and the Poisson bracket
are presented for the HBS model. In § 3, structure-preserving discretizations are given. In
§ 4, two asymptotic limits and the dispersion relation of the linear Landau damping of the
HBS model are discussed. Geometric structure and discretization of the electromagnetic
hybrid model proposed by Vu (1996) are presented in § 5. In § 6, numerical experiments
of finite grid instability, Landau damping and resonantly excited nonlinear ion waves are
conducted to validate the numerical schemes of the HBS model. In § 7, we conclude the
paper with a summary and an outlook for future works.

2. The electrostatic hybrid plasma model with Boltzmann electrons and space-charge
effects

In this section, we introduce the action integral and the Poisson bracket for the HBS
model (Tajima 2018), and formulate the model as a Hamiltonian system (Hairer et al.
2006). The electromagnetic hybrid model proposed by Vu (1996) is presented in § 5. The
HBS model with physical units is

∂f
∂t

+ v · ∇f + Ze
mi

E · ∇v f = 0,

E = −∇φ,

−ε0�φ = Ze
∫

f dv − en0 exp
(

e(φ − φ0)

kBTe

)
, Poisson−Boltzmann.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.1)

Here, f (t, x, v) represents the distribution function of ions, which depends on time t,
position x and velocity v. The symbol e denotes the unit charge, mi denotes the ion mass
and Z denotes the ion charge number. The electrostatic potential φ(t, x) is determined
by the Poisson–Boltzmann equation and electron density ne is related to φ through the
Boltzmann relation,

ne = n0 exp((φ − φ0)/Te), Boltzmann relation, (2.2)

where n0(t, x) is the reference electron number density, φ0(t, x) is the reference potential
or the low-frequency ponderomotive potential and Te(t, x) is the given temperature of
electrons.

The normalization is done as

x̃ = x
λD

, ṽ = v

C0
, t̃ = tωi, f̃ = C3

0

n̄
f ,

ñ0 = n0

n̄
, T̃e = Te

T̄i
, φ̃ = eφ

kBT̄i
, φ̃0 = eφ0

kBT̄i
, (2.3a–h)

where C0 =
√

kBT̄i/mi is the ion thermal speed, Zωi = √
n̄Z2e2/ε0mi is the ion plasma

frequency, λD = C0/ωi =
√

ε0kBT̄i/n̄e2, n̄ is the characteristic ion density and T̄i is the
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characteristic ion temperature. Then, we get the normalized HBS model (tilde symbol is
omitted for convenience)

∂f
∂t

+ v · ∇f + ZE · ∇v f = 0,

E = −∇φ,

−�φ = Z
∫

f dv − n0 exp((φ − φ0)/Te), Poisson−Boltzmann.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.4)

When a periodic or zero Neumann boundary condition is imposed, the HBS model
satisfies a neutrality condition given by

Z
∫

f dx dv =
∫

n0 exp((φ − φ0)/Te) dx. (2.5)

To construct structure-preserving methods for this model, the following action integral
and Poisson bracket are proposed. For convenience, we consider the case with time
independent n0, φ0, Te. The time dependent case can be addressed using the technique
of extending the dimension (Zhou et al. 2017).

Variational principle. By adding the term 1
2 |∇φ|2 in Low’s action principle (Low

1958) and combining it with the action principle proposed by Xiao & Qin (2019a), we
derive the following action integral:

A(x, φ) =
∫

f0(x0, v0)

( |ẋ|2
2

− Zφ(x)

)
dz0 +

∫ |∇φ|2
2

dx

+
∫

n0Te exp
(

φ − φ0

Te

)
dx, (2.6)

where dz0 := dx0 dv0, x = x(x0, v0, t), and ẋ = dx(x0, v0, t)/dt. We introduce v = ẋ and
f (t, x, v) = f0(x0, v0), and the Euler–Lagrangian equations δA/δx = 0, δA/δφ = 0 can
be written as

ẍ = −Z∇φ(x), −�φ = Z
∫

f (t, x, v) dv − n0 exp((φ − φ0)/Te), (2.7)

which yields the HBS model (2.4) by calculating df /dt = 0.
Poisson bracket. The Poisson bracket of this model is the same as the Vlasov–Poisson

system’s Poisson bracket proposed by Morrison (1980),

{F ,G}( f ) =
∫

f
[
δF
δf

,
δG
δf

]
xv

dx dv, (2.8)

where [g, h]xv = ∇xg · ∇vh − ∇xh · ∇vg. The Hamiltonian (total energy) of this model is

H =
∫

|v|2f dx dv − A

= −1
2

∫
|∇φ|2 dx + Z

∫
f φ dx dv −

∫
Ten0 exp

(
φ − φ0

Te

)
dx + 1

2

∫
|v|2f dx dv.

(2.9)
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Based on the bracket and Hamiltonian, the HBS model (2.4) can be formulated as

ḟ = {f ,H}. (2.10)

Here, we regard f as the only unknown of the HBS model (2.4) and φ is determined by f
from the Poisson–Boltzmann equation in (2.4).

3. Discretization

We use the particle-in-cell methods to discretize the distribution function f and
finite difference methods to discretize the electrostatic potential φ. Two equivalent
structure-preserving phase-space discretizations are obtained by discretizing the action
integral and the Poisson bracket. The Hamiltonian splitting method and the discrete
gradient method are used for time discretizations to preserve the geometric structure and
energy, respectively. In the following, an and an+1 represent the approximations of a at
times n�t and (n + 1)�t, respectively, and an+1/2 = (an + an+1)/2, where �t is the time
step size.

3.1. Discretization of f and φ

Here, we focus on the one-dimensional case with a periodic boundary condition, but higher
dimensional cases can be treated similarly. The distribution function f is approximated as

fh(x, v, t) =
Np∑

k=1

wkS(x − xk)δ(v − vk), (3.1)

where Np is the total particle number, and wk, xk and vk denote the weight, position and
velocity of the kth particle. Additionally, S is the shape function of the particle, typically
chosen as a B-spline. We use the vector X to denote (x1, . . . , xNp)

� and vector V to denote
(v1, . . . , vNp)

�.
The electrostatic potential φ is discretized using the finite difference method, i.e.

φj ≈ φ(xj), j = 1, . . . , N, (3.2)

with a set of uniform grids {xj}, N is the number of grids, (φ1, . . . , φN)� is denoted as φ
and (φ0(x1), . . . , φ0(xN))� is denoted as φ0.

3.2. Phase-space discretization
3.2.1. Discretization of action integral

We approximate the variational action integral (2.6) as

Ah(X ,φ) =
Np∑

k=1

wk

⎛⎝1
2

ẋ2
k − Z

N∑
j=1

�xS(xj − xk)φj

⎞⎠ + 1
2
φ�Aφ�x

+
N∑

j=1

�xn0(xj)Te(xj) exp
(

φj − φ0(xj)

Te(xj)

)
, (3.3)
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where the matrix A of size N × N is

A = 1
�x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 0 1
1 −2 1 0 · · · 0 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1 0
0 · · · 0 0 1 −2 1
1 0 0 · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4)

By calculating the variations about xk and φ, we have

ẍk = Z
∑

j

�x∂xS(xj − xk)φj, k = 1, . . . , Np,

− Z
Np∑

k=1

wkS(xj − xk) + (Aφ)j + n0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
= 0, j = 1, . . . , N.

(3.5)

REMARK 3.1. The fixed point iteration method of Cohen et al. (1997) is used for solving
the above discretized Poisson–Boltzmann equation, i.e. the second equation of (3.5),

Aφm+1 − cφm+1 = −ni − cφm + nm
e , (3.6)

where m is the iteration index, the linear system in iteration m → m + 1 is solved by the
conjugate gradient method Kelley (1995), ni is the ion density at grids and the electron
density at the j-grid is

nm
e,j = n0(xj) exp

(
φm

j

Te(xj)

)
and c = max

{
1

Te(xj)
exp

(
φm

j /Te(xj), j = 1, . . . , N
)}

.

(3.7a,b)

The initial value of the fixed point iteration is set as zero in § 6.

Equation (3.5) can be formulated as a Hamiltonian system by the Legendre
transformation (Marsden & Ratiu 2013). In the following, we present another way to derive
a finite dimensional Hamiltonian system.

3.2.2. Discretization of Poisson bracket
Here, we discretize the Poisson bracket (2.8) according to Qin et al. (2015b), Kraus et al.

(2017) and obtain

{F, G}h =
Np∑

k=1

1
wk

(
∂xk F∂vk G − ∂xk G∂vk F

)
. (3.8)

The discrete Hamiltonian is

H = −1
2
φ�Aφ�x + Z

N∑
j=1

�x
Np∑

k=1

wkS(xj − xk)φj + 1
2

Np∑
k=1

wkv
2
k

−
N∑

j=1

�xTe(xj)n0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
, (3.9)
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where the φ is determined by the particles via the second equation in (3.5). Then,
we can obtain the following finite dimensional Hamiltonian system after phase-space
discretization:

ẋk = 1
wk

∂vk H, v̇k = − 1
wk

∂xk H, k = 1, . . . , Np. (3.10)

The following theorem shows that the discretizations of the action principle and the
Poisson bracket as above are equivalent.

THEOREM 3.2. The Hamiltonian system (3.10) is equivalent to (3.5).

Proof. As we know that ∂vk H = wkvk, we have ẋk = vk. To obtain (3.5), the only thing
we need to prove is that ∂xk H = −Zwk

∑N
j=1 �x∂xS(xj − xk)φj, which is obtained by

calculating ∂xk H with the discrete Poisson–Boltzmann equation (the second equation in
(3.5)),

∂xk H = −Zwk

N∑
j=1

�x∂xS(xj − xk)φj − Aφ · ∂φ

∂xk
�x

+ Z
N∑

j=1

�x
Np∑

k′=1

wkS(xj − x′
k)

∂φj

∂xk
−

N∑
j=1

�xjn0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
· ∂φj

∂xk
,

(3.11)

�

where the sum of the last three terms is zero because of the discrete Poisson–Boltzmann
equation (the second equation in (3.5)).

THEOREM 3.3. The discrete neutrality is conserved by the discretizations (3.5) and (3.10).

Proof. Taking the sum over j in the discrete Poisson–Boltzmann equation (the second
equation in (3.5)) gives

− Z
N∑

j=1

Np∑
k=1

wkS(xj − xk)�x +
N∑

j=1

n0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
�x = 0, (3.12)

where we use that
∑

j(Aφ)j = 0. This proves the discrete neutrality. �

3.3. Time discretization
In this subsection, we introduce the time discretizations for (3.5) and (3.10). The first
method is the Hamiltonian splitting method (Hairer et al. 2006), which is explicit and
symplectic for (3.5) and (3.10). This method was applied by Crouseilles et al. (2015), Qin
et al. (2015a) and He et al. (2015) for the Vlasov–Maxwell equations, and was used by
Xiao et al. (2015), He et al. (2016) and Kraus et al. (2017) for the construction of the fully
discrete structure-preserving methods. The other time discretization is the implicit discrete
gradient method (McLachlan et al. 1999), which preserves the energy exactly.
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Hamiltonian splitting method. We split the Hamiltonian (3.9) as H = H1 + H2,
where

H1 = 1
2

Np∑
k=1

wkv
2
k ,

H2 = −1
2
φ�Aφ�x + Z

N∑
j=1

�x
Np∑

k=1

wkS(xj − xk)φj

−
N∑

j=1

�xTe(xj)n0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.13)

which give the following two corresponding subsystems,

sub-step I : ẋk = vk, v̇k = 0,

sub-step II : ẋk = 0, v̇k = Z
N∑

j=1

�x∂xS(xj − xk)φj,

⎫⎪⎪⎬⎪⎪⎭ (3.14)

where φj( j = 1, . . . , N) are given by the discrete Poisson–Boltzmann equation (the second
equation in (3.5)). Both sub-steps can be solved exactly. Here, we present the first- and
second-order methods by the composition method (Hairer et al. 2006),

First-order Lie splitting : Φ1
�t ◦ Φ2

�t,

Second-order Strang splitting : Φ2
�t/2 ◦ Φ1

�t ◦ Φ2
�t/2,

}
(3.15)

where Φ1
�t and Φ2

�t are solution maps of sub-steps I and II, respectively. Higher order
structure-preserving schemes can be constructed by composition methods (Hairer et al.
2006).

Discrete gradient method. We use the second-order discrete gradient method
proposed by Gonzalez (1996) to conserve energy exactly,

X n+1 − X n

�t
= W−1∇̄V H,

V n+1 − V n

�t
= −W−1∇̄X H, (3.16a,b)

where

W = diag(w1, . . . , wNp),

∇̄X H = ∇X H
(

X n + X n+1

2

)
+ dc

(
X n+1 − X n) ,

∇̄V H = ∇V H
(

V n + V n+1

2

)
+ dc

(
V n+1 − V n) ,

dc = Hd − ∇H(X n+1/2, V n+1/2) · ((X n+1 − X n)�, (V n+1 − V n)�)�

|X n+1 − X n|2 + |V n+1 − V n|2 ,

Hd = H(H n+1, V n+1) − H(X n, V n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

This discrete gradient method is implicit, for which the fixed-point iteration method is
used. The degree of shape function S is chosen to be at least two for the convergence of
iterations.
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4. Asymptotic limits

In this section, we discuss two asymptotic limits, quasi-neutral limit and large Te limit,
with corresponding suitable normalization.

4.1. Quasi-neutral limit
We do the normalization as

x̃ = x
x∗ , ṽ = v

C0
, t̃ = tωi, f̃ = C3

0

n̄
f ,

ñ0 = n0

n̄
, φ̃ = eφ

kBT̄e
, φ̃0 = eφ0

kBT̄e
, T̃e = Te

T̄e
, (4.1a–h)

where x∗ is the space scale of interest, Zωi = √
n̄Z2e2/ε0mi is the ion plasma frequency,

λD =
√

ε0kBT̄e/n̄e2 is the electron Debye length, C0 = λDωi =
√

kBT̄e/mi, n̄ is the
characteristic ion density and T̄e is the characteristic electron temperature. Then, we get
the normalized HBS model (tilde symbol is omitted for convenience)

∂f
∂t

+ v · ∇f + ZE · ∇vf = 0,

E = −∇φ,

−λ2�φ = Z
∫

f dv − n0 exp
(

φ − φ0

Te

)
, Poisson−Boltzmann,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.2)

where λ = λD/x∗.
When we take the quasi-neutral limit λ→ 0 for the normalized HBS model (4.2), we

get the following hybrid model with quasi-neutrality and Boltzmann electrons (Rambo
1995; Xiao & Qin 2019a):

∂f
∂t

+ v · ∇f + ZE · ∇vf = 0,

E = −∇φ,

0 = Z
∫

f dv − n0 exp
(

φ − φ0

Te

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.3)

By the similar calculations for the Vlasov–Poisson equation as Sonnendrücker (2017),
we get the dispersion relation of the linear Landau damping of (4.2) with Z = 1, n0 = 1,

φ0 = 0,

1 + λ2k2Te = Te

Ti
Z ′

(
ω

kvT

)
, (4.4)

where Z is the plasma dispersion function and Ti = v2
T/2. By λ→ 0, we get the dispersion

relation of (4.3) (Kunz, Stone & Bai 2014),

1 = Te

Ti
Z ′

(
ω

kvT

)
. (4.5)
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Under this normalization (4.1a–h), the discrete Poisson–Boltzmann equation in our
scheme (3.14) becomes

−Z
Np∑

k=1

wkS(xj − xk) + λ2(Aφ)j + n0(xj) exp
(

φj − φ0(xj)

Te(xj)

)
= 0, j = 1, . . . , N. (4.6)

When taking the quasi-neutral limit for the scheme (3.14) with (4.6), we get the following
structure-preserving scheme similar to the scheme proposed by Xiao & Qin (2019a)
derived using discrete exterior calculus and Whitney form,

sub-step I : ẋk = vk, v̇k = 0,

sub-step II : ẋk = 0, v̇k = Z
N∑

j=1

�x∂xS(xj − xk)φj,

⎫⎪⎪⎬⎪⎪⎭ (4.7)

where φj, j = 1, . . . , N are determined by the following discrete equation about φ,

− Z
Np∑

k=1

wkS(xj − xk) + n0(xj) exp
(

φj − φ0(xj)

Te

)
= 0, j = 1, . . . , N. (4.8)

Then the limiting scheme (4.7) is the Hamiltonian splitting method for the quasi-neutral
limit model (4.3), i.e. scheme (3.14), and is asymptotic preserving (Jin 1999) and
structure-preserving at the same time. Similarly, the discrete gradient method (3.16a,b)
for the HBS model becomes a discrete gradient method for the hybrid model
with quasi-neutrality and Boltzmann electrons. Note that quasi-neutral limit is not a
singular asymptotic limit as explained by Degond et al. (2012) for the case of the
Euler–Poisson–Boltzmann model.

4.2. Large Te limit
Here, we adopt the normalization (2.3a–h). By taking the Te → +∞ in (2.4), we get the
equations

∂f
∂t

+ v · ∇f + ZE · ∇vf = 0,

E = −∇φ,

−�φ = Z
∫

f dv − n0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.9)

Dividing by k2Te on both sides of the dispersion relation (4.4) of (2.4), we get the the
following dispersion relation with the current normalization:

1 + 1
k2Te

= 1
k2Ti

Z ′
(

ω

kvT

)
. (4.10)

By Te → +∞, we get the dispersion relation of model (4.9) (Sonnendrücker 2017),

1 = 1
k2Ti

Z ′
(

ω

kvT

)
. (4.11)

Similar to the quasi-neutral limit, when Te → +∞, the limiting schemes of the
Hamiltonian splitting method (3.14) and the discrete gradient method (3.16a,b) become
the Hamiltonian splitting method and the discrete gradient method for model (4.9).
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5. Electromagnetic hybrid model

Here, we extend the aforementioned structure-preserving methods to an electromagnetic
hybrid model with Boltzmann electrons and space charge effects proposed by Vu (1996).
This model is derived using a temporal WKB approximation when there is a laser with
high frequency w0 injected into the plasma, such that numerical simulations on the time
scale of the ions can be conducted. We assume the vector potential can be written as

1
2

(
a(x, t)e−iw0t + a∗(x, t)eiw0t

)
, (5.1)

where a = (a1, a2, a3)
� = ar + iai is complex-valued and is assumed to vary on a time

scale much longer than 2π/w0, and ∗ denotes the conjugate of the complex number. More
details of the derivation can be found from Vu (1996). After the following normalization:

t
t̃

= ω−1
i ,

x
x̃

= cω−1
i ,

v

ṽ
= c,

f

f̃
= nc

c3
,

a
ã

= cmi

e
,

φ

φ̃
= c2mi

e
,

Te

T̃e
= mic2, ωi =

√
nce2

miε0
, (5.2a–h)

where c is the speed of light and nc is the characteristic density, we have the normalized
hybrid model (Vu 1996),

∂f
∂t

+ v · ∂f
∂x

+
(

−Z∇φ − Z2

4
∇(a · a∗)

)
· ∂f

∂v
= 0,

iε
∂a
∂t

= −ε2

2
�a − 1

2

(
1 − ε2Z2

∫
f dv − ε2ne

mi

me

)
a, ω2

i = e2nc

miε0
, ε = ωi

w0

−�φ = Z
∫

f dv − ne,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.3)

where Z is the ion charge number, ε is very small due to high frequency w0 of the pump
wave, and ne is determined by the potential φ and a via the following relations with the
given functions n0 and C:

ne = n0 exp

⎛⎜⎝φ − mi

4me
a · a∗

Te

⎞⎟⎠ (isothermal electron case), (5.4)

ne =

⎛⎜⎝φ − mi

4me
a · a∗

Te

γ − 1
γ

− C

⎞⎟⎠
1/(γ−1)

, γ 	= 1, (adiabatic electron case). (5.5)

The equation satisfied by a is a Schrödinger-type equation in the form similar to the
semiclassical regime (Bao, Jin & Markowich 2002). Although the small parameter ε in
the Schrödinger equation introduces strong oscillations, the time step size larger than ε is
used by Vu (1996). The commonly used numerical scheme for the Schrödinger equation in
the semiclassical regime is the time splitting spectral method (Bao et al. 2002), which has
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the advantage of using large time step sizes and mesh sizes, especially for the computation
about the observables, such as the term a · a∗ in this hybrid model.

Regarding the geometric structure, we propose the following Poisson bracket, which is
the sum of the Poisson brackets of the HBS model (2.4) and the Schrödinger equation
(Marsden & Ratiu 2013) (scaled by ε):

{F ,G}( f , ar, ai) =
∫

f
[
δF
δf

,
δG
δf

]
xv

dx dv + ε

∫
δF
δar

· δG
δai

− δF
δai

· δG
δar

dx. (5.6)

The above model (5.3) can be derived with the above Poisson bracket (5.6) and the
following Hamiltonian for the isothermal and adiabatic electron cases, respectively:

H =
∫ |v|2

2
f dv dx +

∫ |Za|2
4

f dv dx + 1
4

∫
|∇a1|2 + |∇a2|2 + |∇a3|2 dx

−
∫ |a|2

4ε
dx −

∫
Ten0 exp

⎛⎜⎝φ − mi

4me
a · a∗

Te

⎞⎟⎠ dx −
∫ |∇φ|2

2
dx +

∫
Zf φ dx dv,

H =
∫ |v|2

2
f dv dx +

∫ |Za|2
4

f dv dx + 1
4

∫
|∇a1|2 + |∇a2|2 + |∇a3|2 dx −

∫ |a|2
4ε

dx

−
∫

Te

⎛⎜⎝φ − mi

4me
a · a∗

Te

γ − 1
γ

− C

⎞⎟⎠
γ /(γ−1)

dx −
∫ |∇φ|2

2
dx +

∫
Zf φ dx dv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)

The phase-space discretization can be conducted as above through the discretization of the
Poisson bracket as done by Qin et al. (2015b) and Kraus et al. (2017) or by Fourier particle
methods (Campos Pinto et al. 2024). The Hamiltonian splitting method (Crouseilles et al.
2015; Qin et al. 2015a; He et al. 2015) gives three explicitly solvable subsystems (or in
Fourier space), further details are presented in Appendix B.

6. Numerical experiments

In this section, three numerical experiments: finite grid instability (of an equilibrium),
Landau damping (of damping waves) and resonantly excited nolinear ion waves (with
non-zero φ0), are conducted using the normalization (2.3a–h) to illustrate the conservation
properties of the schemes (3.14)–(3.16a,b) of the HBS model (2.4). The reference density
n0 is set to 1 and the unit charge number Z = 1. The degree of the shape function is 2, the
tolerance for the fixed point iteration is 10−12 and periodic boundary conditions are used.

6.1. Finite grid instability
Finite grid instability in the context of hybrid simulations was first reported by Rambo
(1995) for the hybrid model with quasi-neutrality and Boltzmann electrons. This numerical
phenomenon typically arises in standard particle-in-cell methods when the temperature
ratio Te/Ti 
 1, and ions are heated until the ion thermal speed becomes comparable
to the ion acoustic speed (and therefore, Te/Ti ≈ 1). Rambo (1997) noted that finite
grid instability also occurs when using traditional particle-in-cell methods for the HBS
model, although it is weaker than the hybrid model with quasi-neutrality and Boltzmann
electrons. Stanier, Chacón & Chen (2019) and Li et al. (2024a,b) numerically reduced
the finite grid instability by using the conservative or bracket-based particle-in-cell
methods for the hybrid model with quasi-neutrality and massless electrons. The finite
grid instability of particle-in-cell methods has also been studied by Huang et al. (2016)
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FIGURE 1. Finite grid instability of the HBS model by Hamiltonian splitting method. Time
evolution of k(t)/k(0) with k denoting the ion kinetic energy, relative energy error and
momentum error.

and Xiao & Qin (2019b), which reveals that the aliased spatial modes are the major cause
of the finite grid instability in the particle-in-cell methods, and geometric particle-in-cell
methods are able to suppress the finite grid instability.

In this test, we investigate the finite grid instability using the following initial condition
(an equilibrium of (2.4)) by the numerical simulations conducted with schemes (3.14) and
(3.16a,b),

f = ni

π1/2v
1/2
T

exp
( |v − 0.1|2

v2
T

)
, Te = 0.08, vT = 0.1, ni = 1. (6.1)

Computational parameters include: domain [0, 5π], time step size �t = 0.05 and particle
number per cell 100. We run the simulations with the numerical methods (3.14) and
(3.16a,b) with different cell sizes, i.e. �x = 5π/12, 5π/25, 5π/50, 5π/100, and the
results are presented in figures 1 and 2. We can see k(t)/k(0) (k(t) = 1

2

∑Np

k=1 wkv
2
k the ion

kinetic energy) oscillates with time without exhibiting rapid linear growth, as observed
in figure 3(a) of Rambo (1997). This indicates that the finite grid instability is reduced
numerically. As the cell size decreases and the electron Debye length is resolved with
higher resolution, the oscillating level of k(t)/k(0) becomes closer to 1 and the momentum
error also becomes smaller. The momentum error also depends on the particle number.
When there are 100 cells and 2000 particles in each, the Hamiltonian splitting method
with quadratic weighting gives the momentum error at the level of 10−4.

As the derivatives of B-splines appear in the schemes (3.14) and (3.16a,b), second-order
at least B-spline shape functions should be used. As the Hamiltonian splitting method
(3.14) (Strang splitting) is symplectic, it has superior long-time numerical behaviour,
although energy is not conserved exactly (with a relative error of approximately 10−5)
with quadratic weighting. In figure 1, the relative energy error is also very small (10−4)
even when the first order B-spine is used (the derivative of the B-spine is taken as its right
derivative). Relative energy error of the discrete gradient method with quadratic weighting
is approximately 10−13.
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FIGURE 2. Finite grid instability of the HBS model by discrete gradient method with quadratic
weighting. Time evolution of k(t)/k(0) with k denoting the ion kinetic energy, relative energy
error and momentum error.

Here, we discuss the time step size of the Hamiltonian splitting methods. We consider
the case with 100 cells in space, time interval [0, 500] and quadratic weighting. To achieve
satisfying results, when ni = 1 and the number of particles per cell is 100, the maximum
time step size is 0.5 approximately with energy error at the level of 10−4. For higher initial
densities, such as ni = 4, 16 with 400, 1600 particles per cell, the maximum time step
sizes giving satisfying results are approximately 0.3, 0.3 with energy errors at the level of
10−4, 10−4, respectively.

6.2. Landau damping
First, we simulate the linear ion Landau damping by one-dimensional simulations. The
initial distribution function is

f = ni

π1/2v
1/2
T

(1 + 0.02 cos(0.25x)) exp
(

−v2

v2
T

)
. (6.2)

The computational parameters are as follows: grid number 64, domain size [0, 8π],
time step size �t = 0.05, final computation time 20, vT = 1.4142, ni = 1 and total
particle number 107. In this test, the quadratic weighting is used. See the numerical
results with Te = 5 in figure 3 by the Hamiltonian splitting method (3.14) and
discrete gradient method (3.16a,b). Solving the dispersion relation mentioned in § 4,
1 + k2Te = (Te/Ti)Z ′(ω/kvT), we find ω = 0.6986 − 0.0810i when k = 0.25. Methods
(3.14)–(3.16a,b) give an accurate damping rate of the electric energy 1

2

∫ |∇φ|2 dx.
The dispersion relation 1 = (Te/Ti)Z ′(ω/kvT) of the model with quasi-neutrality and
Boltzmann electrons (Xiao & Qin 2019a) in § 4 yields ω = 0.7528 − 0.05806i, i.e. a
slower damping rate. The energy errors of the schemes (3.14)–(3.16a,b) are approximately
10−4 and 10−13, respectively.

Then, we simulate nonlinear ion Landau damping. The initial distribution function is

f = ni

π1/2v
1/2
T

(1 + 0.5 cos(0.5x)) exp
(

−v2

v2
T

)
. (6.3)

The computational parameters are as follows: grid number 65, domain size [0, 4π], time
step size �t = 0.05, final computation time 40, vT = 1.4142, ni = 1 and total particle
number 105. In this test, the quadratic weighting is used. See the numerical results with
large Te = 100 in figure 4 by the Hamiltonian splitting method (3.14) and discrete gradient
method (3.16a,b). Due to the large Te, the term exp(φ/Te) approximates 1, making the
solution of the HBS model (2.4) approximate the solution of the Vlasov–Poisson system
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FIGURE 3. Linear Landau damping of the HBS model with Te = 5 by Hamiltonian splitting and
discrete gradient methods. Time evolution of the electric energy 1

2

∫ |∇φ|2 dx and total energy
error.

(with static electron density as 1). In figure 4, we observe the nonlinear Landau damping.
The time evolution of energy component 1

2

∫ |∇φ|2 dx decays exponentially initially, and
the decay rate is very close to the decay rate 0.2854 of the Vlasov–Poisson system (Kraus
et al. 2017) before time T = 10. Here, 1

2

∫ |∇φ|2 dx oscillates when t ∈ [10, 30], then grows
exponentially with time when t ∈ [30, 40] with a rate close to 0.086671 (Kraus et al. 2017)
of the Vlasov–Poisson system. For the Hamiltonian splitting method, the energy error
is approximately 10−2. The discrete gradient method gives a smaller total energy error of
approximately 10−12, and a similar behaviour of the electric energy is presented. The errors
of neutrality given by both numerical methods are at the level of iteration tolerance. For
the time step size of the Hamiltonian splitting methods, we consider the case with 65 cells
in space, time interval [0, 40], 105 particles and quadratic weighting. As Te = 100 is large,
exp(φ/Te) is close to 1, the numerical stability property is close to the result of Kormann
& Sonnendrücker (2021), i.e. the stability condition is approximately �tωi < 2. To get the
acceptable accuracy, the time step size is usually chosen smaller than 2. When ni = 1,
the maximum time step size yielding good numerical behaviour is �t = 0.4, resulting
in an energy error of approximately 0.45 after saturation; for ni = 4, �t = 0.2 gives an
energy error of approximately 0.4 after saturation, and for ni = 16, �t = 0.12 results in
an energy error of approximately 0.3 after saturation. We also consider the case with a
small electron temperature Te = 1. In this case, when ni = 1, �t = 0.5 gives an energy
error of approximately 0.05 after saturation; when ni = 4, �t = 0.2 gives an energy error
of approximately 0.002 after saturation; when ni = 16, �t = 0.1 gives an energy error of
approximately 0.004.

6.3. Simulations with the ponderomotive driving term
Cohen et al. (1997) numerically solved the HBS model with a ponderomotive driving term
to study nonlinear ion acoustic waves. Here, following Cohen et al. (1997), we conduct a
simulation with a non-zero given time-dependent function φ0 in (2.4). Specifically, the
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FIGURE 4. Nonlinear Landau damping of the HBS model with Te = 100 by Hamiltonian
splitting and discrete gradient methods. Time evolution of total energy error and electric energy
1
2

∫ |∇φ|2 dx.

initial condition and φ0 are given by

f = ni

π1/2v
1/2
T

exp
(

−v2

v2
T

)
, φ0 = φ̃0 cos(Ωt − kx), (6.4)

where ni = 1, vT =
√

2
10 , φ̃0 = 0.05Te, Ω = 0.4472, k = 1.49. Other computational

parameters are: grid number 64, domain size [0, 10π/k], time step size �t = 0.1, final
computation time 600, Te = 0.1125 and total particle number 106. In this test, the quadratic
weighting is used. Since φ0 is time dependent, the Hamiltonian system (3.10) is a
non-autonomous Hamiltonian system, for which we use the the technique of extending
the dimension (Zhou et al. 2017). From figures 5 and 6, we can see that the peak value of
the response function R(t) = maxx(φ/φ0) is approximately 5, which is consistent with the
result of Cohen et al. (1997). There are a rapid oscillation at 2.1Ω and a slow modulation
at 0.04Ω in the fourth figure obtained by the fast Fourier transformation of maxx(φ/φ0)
in time, which are close to the results of Cohen et al. (1997) with 1.85Ω (fast) and 0.15Ω
(slow). The Hamiltonian splitting method and discrete gradient method give the energy
errors of approximately 10−5 and 10−12, respectively. Additionally, when t = 400, both
methods give similar five vortices in phase-space contour plots, due to the driving force
being the fifth mode, i.e. k = 5(2π/L), where L is the domain size.

Regarding the time step size for the Hamiltonian splitting methods, we use the same
parameters as above but vary the initial density and time step size. When the initial
density ni = 1, the maximum step size for giving good numerical behaviour is �t = 1.5,
which gives an energy error of approximately 0.003; When the initial density ni = 4, the
maximum step size �t = 1 gives an energy error of approximately 0.02; when the initial
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FIGURE 5. Simulations with the ponderomotive driving term by Hamiltonian splitting method.
Time evolutions of R(t) = max(φ/φ̃0) and energy error, the contour plot of the distribution
function at time t = 400, and the fast Fourier transformation of R(t).

density ni = 16, the maximum step size �t = 0.5 gives an energy error of approximately
0.008.

7. Conclusion

In this paper, we explore the structure-preserving discretizations of the electrostatic
hybrid plasma model with Boltzmann electrons and space-charge effects. These
discretizations are derived by discretizing either the variational action integral or the
Poisson bracket combined with the Hamiltonian splitting methods (Crouseilles et al. 2015;
He et al. 2015; Qin et al. 2015a) in time. Discrete gradient methods (McLachlan et al.
1999) are employed to conserve energy exactly. The geometric structure and numerical
discretization of the electromagnetic hybrid model (Vu 1996) are detailed in § 5.

For discretizing the field functions, the finite element methods (Kraus et al. 2017)
or Fourier spectral methods (Campos Pinto et al. 2024) can be used, while the
distribution function can be discretized by the delta functions. Additional details can be
found in Appendix A. The cases with other kinds of boundary conditions and further
exploration (such as the physical application and the time and mesh size strategy) of the
electromagnetic hybrid model can be considered in future works.
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FIGURE 6. Simulations with the ponderomotive driving term by discrete gradient method. Time
evolutions of R(t) = max(φ/φ̃0) and energy error, the contour plot of the distribution function
at time t = 400, and the fast Fourier transformation of R(t).
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Appendix A. Discretization with finite element method

Distribution function f is approximated using δ functions, i.e.

f (x, v, t) ≈ fh(x, v, t) =
Np∑

k=1

wkδ(x − xk)δ(v − vk), (A1)

where Np is the total particle number, and wk, xk, and vk are the weight, position and
velocity for the kth particle. We discretize φ by the finite element method, i.e.

φh = Λ · φ, (A2)
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where the vectors Λ and φ contain all basis functions and finite element coefficients. The
Poisson–Boltzmann equation is discretized in a weak formulation as

∫
∂xφh∂xΛi dx +

∫
n0 exp

(
φh − φ0,h

Te

)
Λi dx︸ ︷︷ ︸

≈ ∑N
j=1 wjn0(xj) exp

⎛⎝φh(xj) − φ0,h(xj)

Te(xj)

⎞⎠Λi(xj)

= Z
Np∑

k=1

wkΛi(xk), (A3)

where xj is the jth quadrature point, and wj is the corresponding quadrature weight. We
define a matrix M, with Mij = ∫

∂xΛi∂xΛj dx.
We approximate variational action integral (2.6) as

Ah =
Np∑

k=1

wk

(
ẋ2

k

2
− Zφn(xk)

)
+ φ�Mφ +

N∑
j=1

wjn0(xj)Te(xj) exp
(

φh(xj) − φ0,h(xj)

Te(xj)

)
.

(A4)
Hamiltonian is discretized as

H =
Np∑

k=1

wk
v2

k

2
+ ZwkΛ(xk) · φ −

N∑
j=1

wjTe(xj)n0(xj) exp
(

φh(xj) − φ0,h(xj)

Te(xj)

)
− φ�Mφ

2
.

(A5)
As done by Qin et al. (2015b) and Kraus et al. (2017), the bracket is discretized as

{F, G}h =
Np∑

k=1

1
wk

(
∂xk F∂vk G − ∂xk G∂vk F

)
. (A6)

Both the variations of (A4) and the discrete Poisson bracket (A6) with Hamiltonian (A6)
give the following Hamiltonian ordinary differential equation:

ẋk = 1
wk

∂vk H, v̇k = − 1
wk

∂xk H. (A7a,b)

Similarly, for the cases with periodic boundary conditions, we can prove that the neutrality
condition holds in a weak sense, i.e.

N∑
j=1

wjn0(xj) exp
(

φh(xj) − φ0,h(xj)

Te(xj)

)
Λi(xj) = Z

Np∑
k=1

wkΛi(xk), ∀i = 1, . . . , N. (A8)
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Appendix B. Hamiltonian splitting method for the electromagnetic hybrid model
(Vu 1996)

We take the isothermal electron case with the following energy for an example:

H = 1
2

∫
|v|2f dv dx + 1

4

∫
|Za|2f dv dx + 1

4

∫
|∇a1|2 + |∇a2|2 + |∇a3|2 dx

− 1
4ε

∫
|a|2 dx −

∫
Ten0 exp

⎛⎜⎝φ − mi

4me
a · a∗

Te

⎞⎟⎠ dx

− 1
2

∫
|∇φ|2 dx +

∫
Zf φ dx dv. (B1)

We split the Hamiltonian into the following three parts and get the corresponding explicitly
solvable subsystems,

H = 1
2

∫
|v|2f dv dx + 1

4

∫
|∇a1|2 + |∇a2|2 + |∇a3|2 dx︸ ︷︷ ︸

H1

+ 1
4

∫
|Za|2f dv dx − 1

4ε

∫
|a|2 dx︸ ︷︷ ︸

H2

−
∫

Ten0 exp

⎛⎜⎝φ − mi

4me
a · a∗

Te

⎞⎟⎠ dx − 1
2

∫
|∇φ|2 dx +

∫
Zf φ dx dv

︸ ︷︷ ︸
H3

. (B2)

Subsystem H1. The corresponding subsystem is

∂f
∂t

+ v · ∂f
∂x

= 0, iε
∂a
∂t

= −ε2

2
�a, (B3a,b)

where the first equation is an explicitly solvable transport equation and the second equation
can be solved explicitly in Fourier space.

Subsystem H2. The corresponding subsystem is

∂f
∂t

− Z2

4
∇(a · a∗) · ∂f

∂v
= 0, iε

∂a
∂t

= −1
2

(
1 − ε2Z2

∫
f dv

)
a, (B4a,b)

where the a · a∗ is preserved by the second equation and
∫

f dv is preserved by the first
equation, which make the two equations explicitly solvable.

Subsystem H3. The corresponding subsystem is

∂f
∂t

− Z∇φ · ∂f
∂v

= 0, iε
∂a
∂t

= 1
2
ε2ne

mi

me
a, −�φ = Z

∫
f dv − ne, (B5a–c)

where a · a∗ is preserved by the second equation and the ion density
∫

f dv is preserved
by the first equation. As ne depends on φ and a · a∗, and a · a∗ and

∫
f dv are not changed
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in this sub-system, φ and ne are preserved by this subsystem. We only need to solve the
third equation for obtaining φ once in each time step, and the first and second equations
are explicitly solvable.
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