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Existence of Hilbert Cusp Forms with
Non-vanishing L-values

Shingo Sugiyama and Masao Tsuzuki

Abstract. We develop a derivative version of the relative trace formula on PGL(2) studied in our
previous work, and derive an asymptotic formula of an average of central values (derivatives) of
automorphic L-functions for Hilbert cusp forms. As an application, we prove the existence of Hilbert
cusp forms with non-vanishing central values (derivatives) such that the absolute degrees of their
Hecke fields are arbitrarily large.

1 Introduction

Let F be a totally real number field of degree dr, o the integer ring of F, and A the adele
ring of F. The set of non-archimedean places and the set of archimedean places of F
are denoted by X, and Z., respectively. The completion of F at a place v is denoted
by F,. When v € Zg,, 0, denotes the maximal order of the local field F,. Given a non-
zero ideal n c 0 and an even weight I = (I, )yex_ € (2N)Z=, let I (I, 1) be the set of
all those irreducible cuspidal automorphic representations 7 = ®, 7, of PGL(2, A)
such that 7, is a discrete series representation of PGL(2, F, ) of weight I, for all v €
Y and 7, has a non-zero vector invariant by the local Hecke congruence subgroup
Ko(no,) = {[?4] € GL(2,0,) | c € no,} forall v € Zg;,,. For 7 € Meys(I,n) and an
idele class character # of F* such that 5? = 1, the standard L-function L(s, 7 ® ) of
7 ® 7 is an entire function on C satisfying the self-dual functional equation

(L1) L(s,m@n)=¢e(s,nr®n)L(1-s,m®7n),
with e(s, 7 ® 1) being the e-factor; it is of the form

(s, m® 1) = =(NGf)DF) ",

where D is the absolute discriminant of F, and f, and §, are the conductors of
# and 7, respectively. The number €(1/2,7 ® ) € {+1,-1} is called the sign of
the functional equation. The central value L(1/2, 7)L(1/2, 7 ® 1) and the derivative
L(1/2,m)L'(1/2, m ® i) have important arithmetic meanings; there are many studies
that exploit the nature of these L-values in connection with the arithmetic algebraic
geometry of modular varieties ([1,13-17]).
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1.1 Main Results

For v € Zg,, we fix a prime element @, of 0, once and for all. Let p, = 0 n @,0,
be the corresponding maximal ideal of 0 and g, = #(0/p, ) its norm. In this article,
all (fractional) ideals in F are assumed to be non-zero. For any ideal a c o, the set
of places v € Zg, such that a c p, is denoted by S(a). Let a be an o-ideal relatively
prime to f,n and set S = S(a). We write the Satake parameter of 7 € Ilcy(l,n)
at v e S as diag(q,” (M2, q,7*("/2) with v, (7) belonging to the space X, =
C/4ri(logq,) ' Z. For m € Tys(I,n),let L5 (s, m; Ad) denote the adjoint L-function
of 7 without the local v-factors for v such that f, c p2. Given an even holomorphic
function «(s) on X = 1,5 X,, we are interested in the asymptotic of the average of
L-values over the set IT*, (I, n) = {m € Ty (L, n) | f =n},

v~ G L(1/2,m)L(1/2,m® 1)
(1.2) AL (n;a) = NO) ﬂengs:(lm) 15 (1, Ad) a(vs(m))

with vg(7r) = {v, () }yes and
2n(l, = 2)!

I e

Vel oo

(1.3) C

as the norm N(n) = #(o/n) grows under the following conditions.

(i) The number (-1)¢(7(n), the common value of e(s, 7)e(s, 7 ® 1)s=1/> for all
n € IT%, (I, n), equals 1, where e(7) is the number of v € 2, such that #,(-1) =
-1 and 7 denotes the character of the group of fractional ideals relatively prime
to f, defined by 77(p,) = 7, (@, ) for all v € Zgn, — S(f).

(i) #y(@y) =-1forallv e S(n).

In our previous paper [11], we studied a weighted L-value average AL" (n; ) defined
by (4.8), which is similar to but different from (1.2) in that the summation is taken
over a larger set TT.,s(/, n) with certain extra weighting factors w! (1) (see §2.3). One
of our aims in this paper is to derive an asymptotic formula for (1.2) from those for
ALY (m; ) with n c m by a special sieving technique. Moreover, imposing the same
condition (i) as above, but the opposite sign condition (1)< (n) = 1 to (i), we
investigate the asymptotic behavior of the following average involving the central de-
rivative of the L-function L(s, 7 ® 1),

C 3 L(1/2,m)L'(1/2, r® 1)
N®) et LS+(1, 75 Ad)
e(1/2,m1®n)=-1

(1.4) ADLY(m;a) =

oc(vs(n)).

To state our main result precisely, we need further notation. Let Js , be the monoid
of ideals n c o generated by prime ideals p, with v ¢ S U S(f,) such that 77(p, ) = -1,
and J5 , = {n € s,y | (-1)¢7(n) = £1}. For n € N, let X,,(x) be the Tchebyshev
polynomial X,,(x) defined by the relation

(1.5) Xn(x) =sin((n+1)0)/sinf for x =2cos 0,

and set

(L6) ao(v) = [T Xu, (@0 +4,7%), v ={}ves € Xs
ves
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in terms of the prime ideal decomposition a = [],s(q) py"- For such a, define

ay = [T »s di(a)= J] (ny+1), &a(a)= ] 27'{1+(-D)™}
veS(a) veS(a) veS(a)
7(py)=+1

We have an asymptotic formula of ADL* (n; &) with an error term whose depen-
denceonn € Jg " and a is made explicit. We also have a similar formula for AL* (n; )
withn e Jg .

Theorem 1.1  Setl = minyes_ I, and ¢ = dg'(1/2 - 1), and suppose | > 6. For an
integral ideal n, set Sy (n) = {v € S(n) | fz0, = @0, } for k e N and

v(n) = { [1 -a)H IT -(av-a)™}-

veS(n)—(S1(n)uSz(n)) veSy(n)
For any sufficiently small number € > 0, we have
(L7)  AL*(maq) = 4D Laa (L n)v(n) N(a) /265 (ay )dy (af)
n O(N(a)c+2+e N(n)_inf(c’l)+6), ne Jg,n’
(1.8)
ADL* (n; aq)
= 4D} Lin (1, 1) v(n) N(a)l/zdl(aﬁ){ do(ay) ( log(v/N(n) N(a)~'N(f, ) Dr)

log g, log g, L'(1,
%Ba: logay (L) +¢(l))
veS(n)—(Si(n)uS,(n)) gy —1 veSy(n) 9y —qv —1 L(l’ ’7)

- 6D<a;p;‘)log<q3”“>}

veS(ay)

+

+O(N(a)™2di(a;})8a(a,;) X (n) + N(a) 2 N(n) =™ @I+) - negg |
where Lein (5, 17) = [Tyezga-s(s,) (1 - 1v(@,)q,°) 7%, (Re(s) > 1) is the L-function of 1,
e I 1 1-1,(-1)
Q:(l) = Z ( kzzl % - Elogrt— ECEuler - flOgZ),

VeX oo

log q. log q.,
X(n)= > + oy 2
ueS(n) 4u ues(n) (qu —1)?

The constants implicit in Landau’s symbols O in both formulas are independent of n and
a, but dependent on e, I, and 1.

1.2 Applications

For a positive integer N, let J§¢¥(N) be the new part of the Jacobian variety of the
modular curve Xo(N) of level N. J.-P. Serre [7, Theorem 7] showed that the largest
dimension of Q-simple factors of J§¥(N) tends to infinity as N grows. This result
was refined in several ways by E. Royer [6], who obtained a quantitative version of
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Serre’s theorem giving a lower bound of the largest dimension of Q-simple factors
A of J§¢"(N) with or without rank conditions for the Mordell-Weil group of A. By
the correspondence between the Q-simple factors A of J§¢V(N) and the normalized
Hecke eigen cuspidal newforms f of level T (N) and weight 2, and by invoking the
progress toward the Birch and Swinnerton-Dyer conjecture, the lower bound for the
largest dim A is obtained from a lower bound of the maximum value of the absolute
degree of the Hecke field Q(f) with or without conditions on the order of L-series
L(s, f) at the center of symmetry. Thus, one of Royer’s results can be stated in the
language of modular forms.

Theorem 1.2 Let p be a prime. There exist constants C,, > 0 and N, > 0 with the
following properties.

(i)  Forany N > N, relatively prime to p, there exists a normalized Hecke eigen cus-
pidal newform f of level To(N) and weight 2 satisfying the conditions:

(1) L(1/2, f) # 0, where the functional equation of L(s, ) relates the values at s
and1-s.

@) [Q(f):Q] > Cpy/loglog N.
(ii) For any N > N, relatively prime to p, there exists a normalized Hecke eigen cus-
pidal newform f of level Ty(N) and weight 2 satisfying the following conditions.

(1) 'The sign of the functional equation of L(s, f;) is —1.
(2) L'(1/2, i) #£ 0.
(3) [Q(f1):Q] > Cp\/loglogN.

We derive an analogue of this theorem for higher weight Hilbert modular cusp-
forms from Theorem 1.1. For a cuspidal representation 7 € II7 (I, n), the field of
rationality of 7 (for definition, see §8.1) is denoted by Q(7).

Theorem 1.3  Let ] = (1,)yex.. be a weight such that I, = k for all v € Zo, with an

even integer k > 6 and n a quadratic idele class character of F*. Let S be a finite subset

of Zgin = S(f4) and] = {J, }ves a family of closed subintervals of (-2, 2). Given a prime

ideal q = p, with u ¢ S U S(f,), there exist constants Cq; > 0 and Ny 5.1,y > 0 with
+

the following properties. For any ideal n € Tsuguy.g with N(n) > Ng.s,1,,), there exists
m e I1%, (1, n) such that

(i) LQ/2,m)#0and L(1/2,m® 1) #0,
(i) [Q(m):Q] > Cq,1v/loglogN(n),

(iii) q,v,“(”)/2 + q;V”(”)/z €], forallves.

We should note that this can be regarded as a refinement of [11, Corollary 1.2].
As for derivatives, we have a conditional result.
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Theorem 1.4  Letl = (1,)yes., and n be the same as in Theorem 1.3. Suppose that for
any ideal n

a9 2L

dS\F%L(s,n)L(s,n@) n) 20

forall m e I1%,(1,n) such that e(1/2, m)e(1/2, m® ) = 1.

Let S be a finite subset of Zgin — S(f4) and J = {J, }ves a family of closed subintervals

of (=2,2). Given a prime ideal q = p, with u ¢ Su S(§,) and a constant M > 1,

there exist constants Cy; > 0 and Ny s,1,4.5,m > 0 with the following properties. For
sufuy,y With N(n) > Nos1q5.m and 3yes(n) loqu” < M, there exists

7€ IT1%, (1, n) such that

(i) e(1/2,m7®n)=-1

(i) L(1/2,m)#0andL'(1/2,m®n) #0,

(iii) [Q(m):Q] > Cq,11/loglogN(n),

(iv) qt“(”)/z + q;v”(”)/z €], forallves.

any ideal n € J

We should note that the assumption (1.9) is a consequence of the Riemann hypoth-
esis for the L-function L(s, 7)L(s, 7® 7). Theorem 1.3 (Theorem 1.4) yields a Hilbert
cuspform of arbitrarily large level with arbitrarily large degree of the field of rational-
ity such that the central value of the L-function and the central value (derivative) of
its prescribed quadratic twist are non-zero simultaneously. Although we can expect
a similar result for parallel weight 2 Hilbert cuspforms, our method does not work as
it is for such low weight cases. In order to treat these interesting cases, the technique
of Green’s function as in [10,12] may be useful.

1.3 Framework

Let us review the proofs of Theorems 1.1, 1.3, and 1.4, explaining the organization of
this paper. In our previous work [11], we constructed the renormalized smoothed au-
tomorphic Green’s function \I’rleg(n|oc) as the value at A = 0 of an entire extension of

some Poincaré series "17;; 1 (n|a) originally defined for Re(A) > 1. Then we computed

the period integral of "I7rleg (n|a) along the diagonal split torus H adelically in a very ex-
plicit form. In the present work, instead of the period integral, we introduce a certain
integral transform 8PZ,A((p) (see $3.2) for any cusp form ¢ on PGL(2, F)\ PGL(2, A)
and a quadratic idele class character  of F*, depending on a complex parameter A
and a test function f for renormalization, whose constant term at A = 0 yields the
derivative at s = 1/2 of the period integral of ¢| det \Kl/ ? along H. The main step to
have the formula (1.8) in Theorem 1.1 is to calculate BPg) 1 (‘/I\’rleg (n]a)) and its constant
term at A = 0 in two different ways; the process is completely parallel to that in [11]

for period integrals. In §3, after recalling the construction of ‘/{\’rleg(n|oc), we prove a
formula of CT) - an’ A ("I\’rleg(n|oc)) written in terms of the spectral data of cuspidal
representations in IT.ys (1, n) (Proposition 3.2). In §4, closely following [11], we com-
pute BPZ,A ("I7r’eg (n|a)) according to the ( H(F), H(F))-double coset decomposition
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of GL(2, F). By equating the two expressions of CT g an) N (@Zeg(n|a)) obtained in
§3 and §4, we get a kind of relative trace formula, which is stated in Theorem 4.8. The
formula is not for our ADL* (n), but for a similar average of L-values over all cusp-
idal representations 7 € I1.,s(1, n). We need to sieve out information on an average
of only those 7 € TI.ys(],n) with exact conductor n. For that purpose, we intro-
duce a certain operation (see Definition 5.2), which we call the N-transform, for any
arithmetic function defined on a set of ideals. The first subsection of §5 is devoted to
the study of the N-transform. By applying the N-transform of each term occurring
in the formula (4.9), we deduce yet another formula (5.3), which relates the average
ADL* (n) to the sum of the following terms: (i) the N-transforms of W{ (I, n|«) and
Wgyp(l ,n|a), both of them occurring in the geometric side of (4.9), (ii) the L-value
average AL*(n), and (iii) the N-transform of a certain term AL®" (n) arising from
the spectral side of (4.9). In §7, we analyze these terms separately and obtain an ex-
act evaluation of the N-transform of W{(I,n|a) and estimations of the remaining
terms, which lead us to the proof of (1.8). In §6, by applying the relative trace formula
[11, Theorem 9.1] to the test function «,, we deduce (1.7), which is necessary to prove
Theorem 1.3. In §8, we give the proof of Theorems 1.3 and 1.4. Actually, what we do
there is to confirm that the argument of [6] for the classical modular forms still works
with a minor modification in our setting. The analysis performed in §7 relies on ex-
plicit formulas of local orbital integrals arising from Wﬁyp(l, nja) and WY (1, n|a);
the aim of §9 is to provide them. In Appendix A, we study a certain lattice sum to be
used in the error term estimates in §6 and §9.

Notation and Convention

Given a condition P, §(P) is 1 if P is true and 0 otherwise. For any non-negative
functions f(x) and g(x) on a set X, we write f(x) = O(g(x)) (or f(x) « g(x)) if
there exists a constant C > 0 such that f(x) < Cg(x) for all x € X. The symbol N
denotes the set of positive integers and Ny = Nu{0}. For ¢ € R, L, denote the vertical
contour {o + it | t € R} directed from o — ioco to ¢ + ico. Set I'c(s) = 2(27)°T(s)
and Tg(s) = 775/2I(s/2). All ideals or fractional ideals appearing in this article are
assumed to be non-zero.

2 Preliminary

We prepare notation recalling basic ingredients necessary in this paper.

2.1 Totally Real Number Fields

Let F be a totally real number field of absolute degree dr = [F:Q], o the integer
ring of F, and A the ring of adeles of F. The subring of finite adeles in A is denoted
by Afin. Let 0 be the different of F/Q and set D = #(0/0F). Let o, and Zg, be
the set of archimedean places of F and the set of finite places of F, respectively. Set
Yp = Zoo U Zgin. For v € Zp, let F, denote the completion of F at v and |-|, the
normalized valuation of the local field F,. If dx is a Haar measure of the additive
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group F,, then d(ax) = |a|,dx for all a € F\. When v € 3, the maximal order of
the non-archimedean local field F, is denoted by o0,. We fix a prime element @, of o,
once and for all, and set p,, = 0n®, 0, and g, = #(0/p, ). For any non-zero idealm c o
and v € Zgy, let ord, (m) denote the exponent of p, in the prime factorization of m.
Set S(m) = {v € Zg, | ord,(m) > 1} and Sx(m) = {v € S(m) | ord, (m) = k} for
k € N. The absolute norm of an ideal m c o is denoted by N(m), i.e., N(m) = #(o/m).

2.1.1 Real Valued Characters

For an idele class character 1 = [, 7, of F* such that #* = 1, let f, be the conductor
of 7 and set f(#,) = ord, (f,) for all v € Zg,. The idele class character # gives rise to
a character 7 of the group of fractional ideals prime to f, such that 77(p,) = 1, (@,)
forall v € Zgin — S(fy)-

2.1.2 Cuspidal Representations of PGL(2)

Let G = GL(2), viewed as an F-algebraic group, and let Z be the center of G. The
adelizations of G and of Z are denoted by G, and Z,, respectively. For v € Zp, the
F,-points of G are denoted by G,. We fix a Haar measure dx, on the additive group
F, by requiring fov dx, = #(0,/0p0,) V% if v € g, and fol dx, =1ifv € Zo. On the
adele group A, we take the product measure dx = &, dx,. For all v € X, we define
a Haar measure on F by setting d*t, = (g, (1)|t|,'dt,, where (g, (s) is the local v-
factor of the Dedekind zeta function of F. On the idele group A, we take the product
measure d*t = ®, d*t,. For  as in §2.1.1 and a cusp form ¢ on Gy, define

ey zame)= [ o1 Daol a sec

with x,’; = ((D;f("”))vegﬁn € A%, and x, € A such that x,,, = 0 forall v € X, and
Xy fin = x; ([12,2.6.2], [9, $4], [10, §2.1], [11, §6.3]). For any irreducible automorphic
representation 7 of G, we fix a family {7, },c5, of irreducible smooth representa-
tions of G, having non-zero G(o,)-invariant vectors for almost all v’s such that 7 is
isomorphic to the restricted tensor product ®, 7,. For a non-zero ideal n c o0 and
I = {I,}yes. € (2N)*= which we call an even weight, let IT.,s(/, 1) be the set of
all the irreducible cuspidal automorphic representations 7 = ®,, m, of G4 with triv-
ial central character such that 7, is a discrete series representation of PGL(2,R) of
weight [, for all v € £, and 7, contains non-zero vectors invariant by the group

Ko(no,) ={[24] €K, |ceno,}

for all v € Zg,, where we set K, = G(o0,). For v € Zg, and an irreducible generic
smooth representation 7, of G, with trivial central character, the conductor of 7, is
defined to be the unique integer c(7,) € Ny such that

K, c(my) Y
m, o(@; ™ 0y)
is one-dimensional. Recall that the conductor §, of an irreducible cuspidal automor-

phic representation 7 of Zy\G4 = PGL(2, A) is an ideal of o such that ord, (f,) =
c(m,) forallv € Egy. Set I1%, (I,n) = {m € [ys(I,m) | fr = n}.
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2.1.3 Compact Subgroups

For v € X2, let K, denote the group of orthogonal matrices in G, and let Ko, =
I1,cx_ K,. For a unitary representation (7, V) of Gy, let V,[7;]%(") be the space
of vectors & € V,, such that 71(kookfin )€ = 7/ (koo ) & for all ko, € K%, and kg, € Ko(n),
where 7; is the character of K%, defined by 7;(keo) = [T,cx_ €% for

_ cos B, —sin6,
k°° - {[ sinf, cos6, ]}vezw’
and Ko(n) = [l,cx,, Ko(no,) viewed as an open compact subgroup of Kg, =

HveEﬁn Kv~

For v € X, the group G, is endowed with a Haar measure dg, such that dg, =
|ty /t,]; dx,d*t,d*t,dk, in terms of the Iwasawa decomposition g, = [ § %' ][ tOV tO; 1k,
(xy € Fy, t,, 1, € FS, k, € K,), where dk, is the probability Haar measure on K,. We

fix a Haar measure on G, defined as the product of the Haar measures on G,.

2.2 Local Factors

Let v € Zgyp, 7, an irreducible generic smooth representation of PGL(2, F, ), and #,
a character of F such that #2 = 1. Recall that the polynomials Q;’j,(m, X)(jeN)

of an indeterminate X [9, Corollary 19] and the local L-factors L(s, 7, ), L(s, 71,; Ad)
(s € C) are defined in the following manner.

* When ¢(m,) =0,
Q;T,Z/(YIWX) =

HV((D‘V)X_Q(T[V)S j:l)
_ H i 1/2 -1 .1/2 .
4,1 (@,) 2 X7 (ay g0 (@)X ~ 1) (a0 o (@,)X - 1), j>2,

L(s,my) = (1-a,q,°) ' (1-a,'q,*)",
L(s,m;Ad) = (1-a2q,") ' (1-¢,°) ' (1- a,%q,°) 7",

where Q(7,) = (a, + a;l)/(q},/2 + q;l/z) with diag(a,, a;') being the Satake pa-

rameter of 7,.
e When ¢(m,) =1,

QZ:/(”V’X) = WV(‘DV)FIX]A(’?V(‘DV)X - ‘J;IXV(‘DV)AX

L(s,m) = (1- xo(@y)g," "*) " and L(s, m,3Ad) = (1- q,“™), where y, is
the unramified character of F such that y2 = 1 and 7, is isomorphic to the special
representation o ( | |},/2, v ;1/2) ([3, $3]).

* When ¢(m,) > 2, we set Q;r (v X) = 1y(@,)’ X7 and L(s, m,) = 1. (We omit the

v

formula for L(s, 7,; Ad), which is unnecessary for our purpose.)
We set Q;.” (7v,X) =1if j = 0. For m € Iys(l,n), let Az(n) denote the set of

WV

mappings p: Zfin — Ny such that 0 < p(v) < ord, (nf,') for all v € Zg,. An explicit
orthogonal basis {¢, } pea,(n) Of the finite dimensional Hilbert space Vie[1,]%0 (™)
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was constructed in [9] (see also [11, §6.2]). Let # = ], #, be an idele class character
of F* such that n* = 1and S(f,) N S(n) = @. For 7 € Iy (I, 1), we set

Qup,p(s) = H Qp(v) v(’7V>ql/2 ), peAg(n),

veS(nfz')

and define the completed L-function L(s, 7) on Re(s) > 1as the absolutely convergent
infinite product L(s, ) = [1,cx, L(s, 7, ), where L(s,7,) = Tc(s + (I, —1)/2) for
v € 2oo. The modified zeta integrals (2.1) for the basis { ¢ , } are calculated as

(22) Z*(s, 1, 9np)
= D;_l/z(‘l)e(q)S('?)Qn,q,p (s)L(s,m®1n), mel(l,n),peAy(n)

for Re(s) > 1, where G(#) is the Gauss sum of # defined in [12, §2.4] and e(%) =
#{v € Zoo|f1y(-1) = —1}; for the proof, we refer to [9, Proposition 20] and [11, Propo-
sition 6.1]. The function ¢ ,, with po such that py(v) = 0 for all v € 2, is denoted
by ¢2*" and is called the new vector of 7. For this particular vector, (2.2) is simplified

to the well-known identity Z* (s, 77, %) = DSF_I/Z(—I)e(”)S(n)L(S, 7 ® 1), which
yields a holomorphic continuation of L(s, 7 ® #) to the whole complex s-plane. The
L?-norm of ¢2¥ is computed in [11, Lemma 6.4] as

(2.3) I 1% =2{ TT 27" ) NG [Kin Ko (1) 'L (1, 1 Ad),

VEX oo

where L5 (s, 7; Ad) is the adjoint L-function of 7 without the local v-factors over the
set Sy = {v € Zgin|c(my) > 2}, which is defined as an analytic continuation of the Euler
product [T,5, s, L(s,m,; Ad) (Re(s) > 1) with L(s, m,; Ad) = Te(s + I, —1)Tr(s +1)
forveXy,

2.3 Weight Functions

In this subsection, using a fine local structure of cuspidal representations, we define
weight functions for them, which appear in the averages of L-values to be defined in
§4.2. Let 7 = [T, 17, be an idele class character of F* such that #* = 1and S(§,)nS(n) =
@. Letm = ®, m, € Heys(I,n) and p € A, (n). For a complex parameter z, we set

(2.4) wl(mz) = Z H Qp(v)v(l I)QP(V)V(ﬂV,ql/2 Z)/Tm(p(v),p(v))

pea(n) veS(nf;")

= H r(z)(ﬂmm)

veS(nfz;')

with

ord, (nf;")

rO(m.ny) = Z Q7 (LDQ, (1. 4> ) 72, () ).
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Here Q;.T’j,(m, X)) is the polynomial recalled in §2.2, and

L j=0orc(m)>2,

RN B e c(m)=1j>1,
Tn, (J, J) = ) _0 i
1-Q(m)?, m)=0,j=1,

c(
(1-Q(m)*)(1-q,%), c(m)=0,j>2.
Lemma 2.1 We have

lompl? /0717 = TT 7w (p(¥)p(v),  peAx(n).
veS(nfz')

Proof From [9, §4] and [11, $6], ¢ , is the automorphic realization of the global
Whittaker function ez o,y ® ®yex,,, Pp(v),v» considered in the restricted tensor
product of the Whittaker model W(r,) of 7,, where {¢,,;|0 < j < ord, (nf;')} is the
orthogonal basis of W(m)K"(“"“) constructed in [9]. With respect to any G, -invar-
iant inner product of W(r, ), it is shown that the ratio |[¢;,, |*/[¢o,v||* is 75, (j, j) by
[9, Proposition 10 and Corollary 12 | for ¢(7,) = 0, by [9, Proposition 13 and Lemma
3] for ¢(m,) > 2, and by [9, Propositions 15 and Corollary 16] for ¢(m,) = 1. [ |

Lemma 2.2 Letv e S(nf;!) and set k, = ord, (nf;!), X = q/* . If n,(@,) = -1,

1-X (1+avqi/2X)(1+uvlqy2X) 1-(-Xx)*v1

FQ(m) T (a-D(1rQ(m) rx > <m) =0,
) _ X+q, xv(@y) 1-(-1)" X _
& (my,my) = {1- 1:;;1%((%3 b c(m) =1,
_ v v+1
%, c(my) 2 2.
Ifn (@) =1
X, (1-0,0/°X)(1-a,'9)7X) <k yrj-2 -
) DN o D) Ljta X7 elm) =0,
z — X—q, xv(@y ky j _
r(my,ny) = 1+%(ZFIXJ), c(m,) =1,
Z;(lo X/, c(m,) > 2.
Here a, and y,, are the same as in the definition of Q;.f;(m, X).
Proof This is obtained by a direct computation. ]

Define w)l(7) = w{l(m;1/2), and ow/!(n) = %w:{(ﬂ;zﬂzzl/z. Lemma 2.2 yields
explicit formulas of w;! (1) and ow,!(7); by the Leibniz rule, the formula of ow,! (1)

involves or(m,,1,) = lo;qv ( %) z=1/2r(Z) (7y, 1y ), which is given as in the following

corollary.

Corollary 2.3  Ifn,(@,) = -1,

-1 1+(-D* 29, +(q,+1)Q(m) | (D (2k,=3)-1 g, +1 _
1+Q(nv)k+ 2 (e-D0Q(m)) + 2 -1’ c(my) =0,
_ 1-(-1)"" 1+(-1)" (2k,-1
ar(ﬂv) 711/) =3\ (2) 1+q;1;v(‘3v) (=) 4( ), C(T[V) =1,
(—1)"V<ikv+1)—1, c(my) > 2.
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Ifny(@y) =1,
+ (k, - )2qr(qv+1)Q("v)

1+Q( ) (gv-1)(14Q(my))
" " () @0 (ry g
or(my,ny) = i 2 (,-D)(1+Q(m))° v ’
vs Hy k, " 1-q, xv(@y) ky(k,+1) C(7T ) =1
}f?il’iﬁm g, (@) 2 7 Y ’
Bt c(my) > 2.

3 Spectral Average of Derivatives of L-series: The Spectral Side

For a finite subset S ¢ g, we set Xs = [1,c5(C/4mi(logq,)'Z) and As = ®,c5 Ay,
where for v € Zg,, A, denotes the space of holomorphic functions a(s) in

s € C/4ami(logq,)'Z

such that a(-s) = a(s).

Throughout this paper we fix a quadratic idele class character # of F*, an ideal
n c o, an even weight I = (I,),ex.., and a finite subset S ¢ X, in such a way that
S(n), S(§,), and S are mutually disjoint, and [, > 6 forall v € £o.. Set [ = inf s [,.
We also fix a function « € Ag until §5.

3.1 The Regularized Smoothed Kernel

Let B be the space of even entire functions 3(z) on C such that for any finite interval
IcRandforany N > 0, |B(0 + it)| <rn (1+]t])7N for ¢ + it € I + iR. Depending
on the data (7,1, 1, S, a), we have constructed a cusp form ¥, reg(n|oc) in [11], which
plays a pivotal role in the deduction of the relative trace formula in §3 and §4. Let
us review its definition briefly. For € B and (s,1) € X5 x C such that g(s) > 1,
Re(1) > 1-g(s) with g(s) = inf,cs(Re(s,) +1)/4, we first set

) (nlsi g) = 9)} dz,

2mi Ji, z+ 4
where the contour is taken so that —inf(q(s) — 1,Re(1)) < o < g(s) — 1, and
‘I’l(z) (n|s; g) is Green’s function defined as

¥ (nlssg) = [T 2 (sg) [T (i) [T @i0(s0),

el veS veXgin—S

for g = (gv)vex, € Ga, where ‘Pﬁz)(lv; —) for v € X is the holomorphic Shintani
function on G, 2 GL(2,R) defined in [11, Proposition 3.1], ‘I’ﬁz)(sv;—) forv e Sis
Green’s function studied in [12, Chapter 5], and for any v € g, — S, q>$f£ is a function
on G, defined as

O ([ 211 %1k) = |t/t228(x € 0,)8(k € Ko(no,))
for ), t, € F), x € F,, and k € K,. Set

#S

s8)a(s) dus(s),

P, (nlasg) = (-
ﬁ,A(n|“ g) (27”. Ls(o)
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where Re(1) > 0, with ¢ € RS such that g(c) > sup(Re(1) + 1,2), and where
I (¢) f(s) dps(s) means the multidimensional contour integral along

Ls(c) = Il{cv +it|t e R/4n(logq,)'Z}

(oriented naturally) with respect to dus(s) = [T,es dpv (s,) with
duy(sy) = 27 (log g,) (g% — =) ds,.

The Poincaré series "I\’é,l(n|a;g) = X yeH(F)\G(F) "I\’;}’A(nm; yg), g € Gu is shown
to be absolutely convergent on the half plane Re(1) > 0 [11, Lemma 5.5] and has a
holomorphic continuation to the whole complex A-plane defining a smooth function
in g € Gy that is a cusp form on G belonging to the space L*(Z,G(F)\Ga)[ 7] (™
for all A [11, §6.6]. By taking the constant term of the Taylor series of ‘/I\’;; 1(nla; g) at
A =0, we define @rleg(nhx) independently of f8 as

CTazo Pp 1 (n]as 8) = Preq(nlas g)B(0).
For 7 € I oys(l,n) and v € g, — S(f), the Satake parameter of 7 at v is denoted by
A,(m) = diag(qt”(")/z, q;"”(")/z) with v, () € C/4mi(logq,) 'Z. From [11, §6.6],
‘/I\’rleg(n|oc) has the spectral expansion
(-1 {Tex. 251} Ci(0) D52
[Kein: Ko(n)]
YY) Sl eme)

reTTo (L) pen(n) l9m.pl?

B F(nag) =

for all g € Gy, where vg(m) = {v,(7) },es € X5 and
Ci(0) = ] 27'r((L, -1)/2)*0(l, -1) ™.

veX oo

3.2 The Periods Related to the Derivative

Given f € B, t > 0, and A € C, we set ﬁgl)(t) = ﬁfL (ffi))z t* dz, where 0 >
—Re(A). The integral is independent of the choice of o, and the resulting function

A ﬁgl) () is entire on C. We easily have

(3.2) CTao{B" (1) - B (1)} = B(0) log ¢

by the residue theorem, and obtain the estimate

(3.3) B (1)] <o inf{t7, 7MY logt,  £>0,0 > -Re())

in the same way as [12, Lemma 7.1].
Definition 3.1 For a cusp form ¢ on PGL(2, A), set

aPg ,(9) = fFX\AX o (L801[ L5 ) n(ex) (B (Itla) - B (It d*t, A eC.
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By (3.3), the integral BPZ’ 1 (¢) is absolutely convergent for A € C and the function
A an’ 1 (@) is entire on C. Moreover, (3.2) gives us the formula

(34)  CTigoPl, ()= fFXW ¢ ([491[ 1% ]) n(tx;)logltla d*tp(0)

= diZ*(s, 1, ¢) |s=1/2 p0).

As we recalled in §3.1, the function ‘{’rleg(n|oc) is a cusp form on Gy invariant by

the center Z4. Thus we have an entire function A — BPZ A ( ‘/{\’rleg(nhx) ). The following
is the main result of this section.

Proposition 3.2  We have
(35)  CTi=9P} ) (Freg(nla))
= (- { T 2"71C1(0) D5 [Kgin Ko (m)] ! (-1)*" S ()

x o L2 mL/2mn8n)
nenmzs:(z,n)(l gDP)W ( ) HS"';}eWHZ (Vs( ))
! (o L(1/2,7r)L(1/2,n®,1)“ e
+nen§(l,n)a n( ) HQDIﬁeWHZ ( ( ))
’ Z(l )WZ(H)L(I/Z’ﬂl);S/Ii,ﬂ®’1)“(”5(”)) B(0).

Proof Since the spectral expansion (3.1) is a finite sum, from (3.4), we have
CTo0 9P, (Fleg(nla)) = (-1)* []2"7'C1(0) D;* [Kin Ko ()]

Z 2,1,¢x,
XY alus(n) EUEEE) d 7 (s g )] o B0).
melleus(1,n) peAz(n)

From (2.2) by the Leibniz rule, the inner sum

Z7(1/2,1,¢5,) d
— i 3.2 (5 Pl
pernmy  ompl?  ds mp )ls=1/

is the sum of the following three quantities.

3.6 >

ZD_I/ZQn 1p(1/2)L(1/2, 7)(log D£) G (1) Qn,n.p (1/2)
peA(n) H P PH

xL(1/2,r®7),

k7)) T np‘|2D_l/2Qn1p(1/2)L(1/2 m)5(1)(Qun.p) (1/2)L(/2,m @ 1),

peAq(n)

3.8) >

peAr(n) H Pr.p H2

Dil/an 1 p(l/Z)L(l/Z 77)9(’7)Q71 1 p(l/z)L (1/2,7® ’7)
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Since w)! (1) = w)l(7;1/2) and ow]! () = Wn(T[, 2)|;-1/2, by Lemma 2.1 and the first
expression in (2.4),

wi(m)/| o2V * = 3 le,p(l/Z)Qn;n,p(l/z))
penL(n) (|
Quap(1/2)Qy, (1/2)

wa(m/lex™* = X

peAn(n) HgDTTPHZ

Using these relations, we easily see that (3.6), (3.7), and (3.8) equal the first, second,
and third terms of (3.5), respectively. [ |

4 Spectral Average of Derivatives of L-series: The Geometric Side

We continue to work with the setting of §3. From [11, §7], the function ¥, (n|a)

reg

has the expression coming from the ( H(F), H(F))-double coset decomposition of

G(F):

@) Pl (nas[§0[L %)) = (1+i76(n = 0)) Ja(as 1)
+Ju(ast) + Ja(ast) + Jnyp(ast), teA”,
where | = Yveso, b
(4.2)
Ta(a) =Gy =0)(52)" [ TTa-a;2) 7 (1-q ) als) dus(s),

Ls(c) yes

(43 Julest) = (2%')#3 2 fLs(o
< L (s [ o 100 )+ (nlss[ 1 01024, $wo) Ya(s) dps(s),

(44) Ja(ast) = (2 — #SZfL

acpx JLs(¢)
A (s L 9100 7D+ 90” (nlss (5 D0, Vo) ba(s) dpss(5)
with wg = [ 9 '] and x, is the adele defined in §2.1.2, and
Twpe) = 3 B T (e[ ][40 7))
beFx—{-1} acF*
with
1

(4.5) T (nas g) = (=— S

)" fL o ¥ (nfs; g)a(s) dus(s).

The convergence of the integrals and series was fully discussed in [11, §7].

https://doi.org/10.4153/CJM-2015-048-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-048-4

922 S. Sugiyama and M. Tsuzuki
4.1 Orbital Integrals
For e € {id, u, @, hyp}, set
WI(B, A ) = [F Te(as B (1ela) - B () In(txy) d7t, Re(A) > 1.

In this subsection, we shall show that these integrals converge absolutely when
Re(A) > 1and admit an analytic continuation in a neighborhood of A = 0.

X\Ax

Lemma 4.1  The integral W, (B, A; a) converges absolutely and W, (B, A; ) = 0 for
Re(1) > 0.

Proof Let A and w be complex numbers such that Re(w) < Re(1), and & an idele
class character of F*. Then in the same way as [12, Lemma 7.6], we have

1) w X X 1 ﬁ(—W)
t |t d t=4 [(F\A") ——=.
S B GBIz = by vol(F\AY P05
From this combined with (4.2), we have the conclusion because our # is non-trivial.
|
Set
. ~ . ~Re(s,)+1 B
L= inf I, 1= Dol q(s) = inf ——=— (8= (sv)ves € Xs)

veXoo

ande, =27'(1-1#,(-1)) forallv € .. For s € Xg and z € C, set
Y{(z8) = [T(1 -y (@,)g, & D2) (1 - gf++D72) 7,

veS
! (z8) = D72 {#(o /) } !

) { 2L (-2)I (L2 +2) .,
i Te(—z + eI (1)2)"

cos( g(—z +é€)) }Yg(z; s).

Lemma 4.2 Fors € X5 and A € C such that q(Re(s)) > Re(A) > o > 1 and
1< 0 < 1/2, the integrals

" 1 z iz -1 X *\ g%
VO»W(A;S):[X(% ' (zﬁi)l))zm dz) ¥ (nls; [ 17 100 1) n(txy)dt,

" 1 B(z) | ez
;8) = tx*d
Vig(Ais) Ax( 2mi JLg, (Z+A)2| i°dz)

x W (nfs; [ L OI[E, Qwo) nex;)d¥t

converge absolutely as double integrals and

1 Fz €
vof,,()t;s):% 5 (Zﬁfa))zN(f”) L(*z, 1) (- MY (+2:5) dz,

Vi, (Ass) = 2%” L (Zﬁfz/\))zN(fn)”N(n)*Zﬁ(n)(?(n =0)L(Fz, n)iTYg,l(iz;s) dz.
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Proof As in [1], Lemma 8.2], we change the order of integrals and compute the
t-integrals first. Since 7 # 1, the integrands in the remaining contour integrals in
z are holomorphic on |Re(z)| < o3 thus we can shift the contour L_, to L, for Vg,
and V', [ |

Lemma 4.3  The integral Wi (B, A;a) has an analytic continuation to the region

Re(A) > —1/2 as a function in A. The constant term of W (B, ;) at A = 0 equals
Wi (1, nja) B(0) with

Wi(Lnla) = (DG DL (1+ (DTS = 0)) (5-)
[ DI a(lnfs)a(s) dus(s),
where Y (s) = Y{(0;s) and

L'(1,n)
L(1, 1)

ta(Lnls) = Y] (s)L(L )

—

logDg +

Lol ]
+ Z( Z E_ilogﬂ_ECEuler_aev,llogz)

VEY oo k=1 2
log g, }
+ .
; 1- Wv(@v)ql(/SVH)/z

Proof From (4.3) and Lemma 4.2, we have

WE(B A )

) (i)#s [LS(C)WJM(A;S) _ Vo_,n()“s) + Vlfn(/l;s) - \Gjn(l;s)}a(s)d!is(s)
~ 1 \#S
= ((-1)°™ 1+ i'§(n = 0)) (7)

" /ILs(c) 2mi [ (zﬁfz,l))z{ (F)~"L(- Z:'l)Ys 1(z8)
- N(f,)*L(z, 1) S’l(—z,s)}dzoc(s)dﬂs(s),

which is holomorphic on Re(1) > —o¢. Since 1 < ¢ < /2 is arbitrary, this gives an
analytic continuation of W{l(3, A; @) to the region Re(1) > —1/2 and yields the first
equality of

CTy_o W1(B, ;)

-Ge)” [ G B2 0@ - A2 de)aoydnsts)

2mi

= (-1 +i78(n = 0) ) Res,—o( ﬁif)fu(z))
= ((-1)° +i78(n = 0)) {CTZ:O@/s(o) + % Res,—o fu(2)"(0)},
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where fu(z) = N(f,)*L(-z, n)Yg’l(z;s). Since # is non-trivial, by the functional
equation L(s,77) = i€ DS N(f,)#((0/f,)* )S(n)L(l -5,1), fu(z) is holomor-
phic at z = 0. Thus, Res,—o f4(z) = 0, and CT,- f“ = f1(0); the derivative f;/(0) is
computed as

~(log N (5, ))L(0, ) YZ (0;8) = L' (0, 1) Y7, (058) + L(0, 1) (Y7 )/ (05)
= €DG(n) DY (058){~L(1, 1) logN(f,)
+ L(1,7) log(DeN(Fy))L (1, 7) + L(1, ) & log Y51 (28) |20}
= §(n)D>n* Y (s){L(1, 1) log Df + L'(1, )

d ~
+ L(1 ) 1og Vo1 (z8) zwo},

where Y” s (z8) = Dl/z#((o/fn) )Y, l(z, s), whose logarithmic derivative at z = 0 is
computed as

> (v )—flogﬂ+ ‘/’( Z+ev)_W(_z)+gtang(_z+6”)) [

VEZ oo
log gy
ves 1— m((DV)q‘(,Sv

+ +1)/2°

Here, by ¥(1) = —Cguler> ¥(1/2) = —Cgyler — 210g2, and %(tcot £)|t=0 = 0, we have

%W( _ZT"LGV) —y(-z) + gtan g(—z +e€,) |z:0

_ CEuler €y =0,
Ly(3) - (1) = 1 Cruter —log2 €, =1.

In the same way as Lemma 4.2, we obtain the following.

Lemma 4.4 Fors € Xg and A € C such that q(Re(s)) > Re(A) > ¢ > 1 and
1< 0 < 1/2, the integrals

7 (ss) = [ J%ﬂi (ffza))zmr dz) ¥ (nlss [191[ 3 % Din(exy) dt,

7 1 (Z) z * x
Voahs) = | (5 ), (fﬂ)zm dz) ¥ (nls; [ 3 110 -%, $wo)n(tay) d*¢

converge absolutely as double integrals, and

i, (hss) = % LN G N )L )Y (59
Vi q(Ass) = Bz) N(f,)™8(n = 0)L(zz, 1) (- 1)6(’7)11Y"l(¥z s)dz.

2mi Ji, (z+A)?

https://doi.org/10.4153/CJM-2015-048-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-048-4

Existence of Hilbert Cusp Forms with Non-vanishing L-values 925

Lemma 4.5 The integral W (B, A; &) converges absolutely on Re(1) > 1 and has an
analytic continuation to the region Re(1) > —1/2 as a function in . The constant term
of WI(B, A; ) at A = 0 equals W (1,n|a)B(0) with

W) = (DG DY () (@) + T =) ()

7 (1, d ,
[ WL nis)a(s) dps(s)

where

W . (I,nfs) = ~a* MY (s)L(1, ) log(N(n)N(f,)?) - W (I,ns).
Proof By (4.4) and Lemma 4.4, we see that W[ (B, A; &) equals
1 \#s ~ ~_ ~ ~
()" [ o Ty ) = Vi (hs9) + 22, () = Vi (s ) e(s) s ()
7 1 \#s
— (7 -1 5(’1)'15 _ il
(i) + ()P To(n=0)( 1)

1 ﬂ(z) -z -z 1
— N N L(z,n)Y.!,(~z;
. fw) — [L s 2y NG N L)Y ()
= N(fy) " N(n)*L(=2, 1), (z:) } dza(s)dps(s),
which gives an analytic continuation of W (B, A; &) to the region Re(1) > ~1/2. We

set fa(z) = -N(f,)**N(n)*fu(z). Since f,(z) is holomorphic at z = 0, so is f;(2).
Thus

CTaco WI(B, A5 ) = (7(n) + (1) 8(n = 0))

% ( CTz=ofﬁ(Z)ﬁ(0) " %Resz=0fﬁ(z)/3"(0))

= (7i(m) + () i3(n = 0)) (£ (0)B(0)).
The derivative f;(0) is computed as —log(N(n)N(f7)) fu(0) - £, (0), which becomes

() DY {~n* DY (s)L(L 1) log(N(m)N(f2)) — 207 (I, nls)}. n

Lemma 4.6  The integral Wﬁyp(ﬂ, As ) converges absolutely for Re(1) > 1 and has

an analytic continuation to the region Re(1) > —e for some € > 0. The constant term of
Wzyp(ﬁ, Asa) at A = 0 equals Wzyp(l,n|oc)/5(0). Here
1

W (bwle) = (5™ [ 8 (L nis)a(s)dus(s)

withc = (¢)yes.. € RS such that1< c < 1/2-1and

gk = S [ O ls [ 11169 [ Do) logldls d

beF-{0,-1}
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Proof In the same way as [11, Lemma 8.5], we see that there exists ¢ > 0 such that,
for 0 < |p| < € the integral

18(2)]

a(s)||dus(s f f
fw' @lidus®)| [ 75 bepr_{_l} .
x {|t|f'A + |t|X’} d™t|dz]

0 -1
¥ (nfs; [0 ][5 070 5 )]

is convergent. The analytic continuation of W;’YP (B,A;a) to Re(A) > —¢ is obtained
1

from this. The absolute convergence of Whyp(l ,nja) follows by the majorization
[log x| << xP + x7P (x > 0). We obtain the last assertion with the aid of (3.2). [ |

From (4.1) combined with Lemmas 4.1, 4.3, 4.5, and 4.6, we get the formula

46) 9P (Vreg(na)) = WI(B, As ) + WI(B, As ) + WL (B, hsx),

which is valid on a half plane Re(1) > —€ containing A = 0.

4.2 The Relative Trace Formula

For any ideal m c o, set

(47) (m) = (Ko Ko(m)] = [T (1+g)q0r ™,
veS(m)

Let Js,, be the monoid of ideals generated by prime ideals p, (v € Zg, — S U S(fy)).
We shall introduce several functionals in & € Ag depending on m € J

Wi g) = weh (1)1(f ) L(I/Z,H)L(I/Z,T[@ﬂ)a el
(4.8) AL"(m;a) = C; nenmzs%l’m) NGm) L (L Ad) (vs(m)),

oweh (m)1(f2) L(1/2, m)L(1/2, m ® 1) »
nenc§z,m) N(fz)1(m) LS+ (1, m; Ad) (vs(m)),

D Wan (1)1(Fx) L(/2,1)L'(1/2, 7 ® 1)

retton(m)  N(fr)i(m) LS#(1, m;Ad)
€(1/2,n®@n)=+1

AL (m; ) = C;

ADL" (m; ) = C a(vs(m)),

where C; is defined as (1.3), wy, () and ow;, (1) are the weight functions defined in
§2.3, and L7 (s, m; Ad) is the partial adjoint L-function of 7 (see the sentence below
(2.3)). The derivative of L-functions in ADLY (m; «) is eliminated by the functional
equation (1.1).

Proposition 4.7  We have

ADLY(mia)=C Y log{N(i )0}y e Lm(Al)
" nelleys (I,m) 1 F N(fﬂ)l(m)
L(1/2,7)L(1/2,®® 1)
L5+(L, 75 Ad) a(vs(m)-
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Proof By differentiating (1.1), L'(1/2, 7 ® 1) = <UD [(1/2, 5 ® 5) if e(1/2, 7 ®
1) = 1. Then from (s, 7 ® 1) = €(1/2, 7 ® 1) {N(f,)N(f,)2D%}/*~*, we obtain the
assertion immediately. ]

The following is the main result of §3 and $4.

Theorem 4.8 Let 1 be a quadratic idele class character of F* and S a finite subset of
Zfin — S(fy)- Let I = (1,)vex.. be an even weight such that 1, > 6 for all v € £o.. Set

e(n) = #{v € Soolny(-1) = 1} and [ = Yves. ly. For any ideal n € Js , and for any
o € .As,
(4.9) 2—1(_1)#S+e(;1)9(,7)D1—:1

x {ADL" (n;a) + ADL” (n; ) + (log Dr) AL" (n; &) + AL?" (n; &) }

= Wil nfa) + Wi (1 nla).

Here Wgyp(l, n|a) is defined in Lemma 4.6,

(410) W1(I,n|a)

= (1= (D) 77(0)) (-1 DG DY {1+ (-) D7)’ 8(n = 0) )}
1 \#s ~
<(5-) fm) 307 (1, nls)a(s)dps s)
with dus(s) = [1,es 27" log qv(ql(,lﬂ”)/2 - qsl_S”)/z)dsv and Lg(c) being the multidi-
mensional contour [],.s{c, + it |t e R/4n(logq,) 'Z} directed as usual, and

41 (L) = 7O (5120 1) (e VDN + 2

log g,
+€()+ ,
1;8 1- ﬂv(@v)qssv+l)/2 }

Y{(s) = [T - no(@,) g, H72) 7 (1 = g {0/,

veS
L1 ]
e(l) = — — —logm — = Cgyler — Oc,,110g2 ).
;w( X573 - Ceuter ~ 86,1 log2)

Proof From Proposition 3.2 together with (2.3),

CTi0 0P], (P (nfa)) = 27 (-1)*S (0 G() D
x {ADLZ”(n;oc) +ADLY () + (log Dp) ALY (n; ) + ALaW(n;oc)}.

On the other hand, from the formula (4.6), the same CT_¢ an 3 (‘/{\’rleg (n]ar)) is com-
puted by Lemmas 4.3, 4.5, and 4.6. ]
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5 Extraction of the New Part: The Totally Inert Case

Let Js,,; be the monoid of ideals generated by prime ideals p, such that v € Zg, — S U
S(f4) and 7(p,) = 1. Note that Js ,, is a submonoid of Js , defined in §4.2.

In this section, we separate the contribution of those 7 with f, = n from the total
average ADL” (n; «) under the condition n € Jg ,. For that purpose, we introduce
the notion of N-transform for arithmetic functions on a set of ideals and study its
properties in the first place.

5.1 The N-transform

For any ideal ¢ and a place v € Zgy, set w,(c) = 1if v € S(¢) and w,(c) = 2“—2 if

v ¢ S(¢). For any pair of integral ideals m and b, define

w(m,b)=8(mcb) [] w,(mb™).
veS(b)

Given an ideal n, let ny denote the smallest square free integral ideal such that n c n;
thus, there exists the unique integral ideal n; such that n = non?. Let J be a set of
integral ideals such that if n € J, then all ideals m c o dividing n are elements of J.

Proposition 5.1 Let B(m) and A(m) be two arithmetic functions defined for ideals
m € J. Then, the following two conditions are equivalent:

(i) Foranyned, B(n) = Ly, @(n, b*)A(nb™?).
(ii) For anyn € J, A(n) = ZICS(H[)(_1)#1{1_[1/61051(111) wv(nO)}B(n Hvel p;Z)

Proof We show that (i) implies (ii). By substituting (i), the right-hand side of (ii)
becomes

> N I e ¥ enlls%e)ame?[In*)}

IcS(ny) velnSi(ny) bing ITyer Pyt vel vel

=3 X Ye(nInrmerIn?) [T wno)f

bilny " IcS(nib;t) vel vel velnSi(n)nS(nib;?t)

X A(nob%)

To get the equality here, we made the substitution by = n 6™ [T,; p; " If by = ny, the
term inside the bracket is 1 obviously; otherwise it equals

> (= I w5 I1 =

IcS(mb:t) yeS(mb e p1)=S(nob2) © velnS(mb1)s:(n)=S(ng)

_ #1 qv+l qv+tl

- z (_1) H qv—1 H —1
IcS(n byt ve[(I-S1(mb;1))u(S(n1b;1)-I)]-S(neb?) veInS;(nb71)—S(ngb?)

_ #1 qvtl qv+l

- Z (_1) H qy-1 H qy-1
IcS(nib7h) ve(S(nby)-I)-S(nob?) vel-S(ngb?)

= [I (w(nob?) - wy(nobi)),
veS(nibt)
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which is zero by S(n;b;') # @. The assertion that (ii) implies (i) is proved similarly.
|

Definition 5.2  For an arithmetic function B:J — C, we define its N-transform
N[B]:J — C by the formula

NI = Y (0 T () O ).

IcS(ny) velnS;(ny) ( ) vel

Lemma 5.3 Fort € C, let N* be the arithmetic function n — N(n)' on J. For any
ideal n, we have

NN =Nm{ I @-¢ "D IT a-0-49"¢ ")}

veS(ny)—S2(n) veSz(n)

Proof By (4.7), we have % = e 4, Iyerns,(n) (1 + q,") ' forany I c
S(n). Therefore,

Z (_1)#1{ H wv(nO)} l(nl?vdp; ) N(an;Z)t

IcS(m) velnSi(ng) (n) vel
v +1 _
Nt Y (0T TT T T g TTe M)

IcS(ny) velnS;(n) 4v ~ 17 velnS,(n) vel

=Nm)" > D" [ (-4 I{Hq;z'}
IcS(m) velnS,(n)

=N'{ I - [T a-0-¢H"¢"7)}. =
veS(n)-Sz2(n) veSz(n)

Corollary 5.4  The N-transform of n — logN(n) on J is given by
NiogNj(m) =[] (-4 [] 0-(e5-4)7)

veS(n1)-Sz2(n) veS,(n)

2logq, 2logq,
x (logN(n) + > + oy =),
( veS(ny)-S,(n) q; —1 veSy(n) 95— qv —1)

Proof Take the derivative at ¢t = 0 of the formula in Lemma 5.3. [ |

For any arithmetic function B:J — C, we define another function N*[ B] by setting

NBIm= Y {1 wnm)) O g 7p2)

IcS(nl) velnSi(ny) (n) vel

for n = ngn{ € J. In a similar way to Lemma 5.3, we have

G)NINT=NW{ [T g2 T 0+0-q") g2 )}

veS(n1)-S2(n) veSy(n)

forany t € C.
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Lemma 5.5 Let ¢ > 0. Then for any sufficiently small € > 0, we have
N*[N"](n) < N(n)~ @D eg
Proof From N(n)~¢*¢ < N(n)~nf(eD+¢ we have
N[N (n) < N* [N (D] ()

obviously. Let us set # = —inf(c,1) + € and examine the right-hand side of formula
(5.1). We note that t+1 = 1-inf(c,1)+€ > € > 0. The set P(€) = {v € Zgall-q;" < q,¢}

is a finite set. For v € S,(n) — P(e), we have (1-¢;')™! < g¢ and q;z(m) < g,%; by
these, the factor 1+ (1 - q;l)q;z(m) is bounded by 1+ g;¢. For v € S(n;) — S,(n) or

v € Sp(n) n P(€), we simply apply q;z(m) < q,%. Thus,

(52)  NYINJ(m) <Nm){ [T a+0-4,")"9,")}

veP(e)
<{ T a+gO{ [I +g™)}
veS,(n)—P(e) veS(n1)-Sz2(n)

In the right-hand side, the second factor is independent of n. The last two factors
combined are majorized by {TT,es(n)(1+4;°)}* <e {TTyesn) 45 }> < N(n)?. Hence

there exists a constant C(e) > 0 such that (5.2) is less than C(e) N(n)~f(e:D)+3¢ for
anyneJ. ]

5.2 The Totally Inert Case Over n

Set J = Js,,. Fixing a test function & € Ag for a while, we study the arithmetic func-
tions AL*:J - C and ADL”:J — C defined by (1.2) and (1.4), respectively. We relate
these functions to the N-transforms of arithmetic functions AL”, ADLY defined in
§4.2.

Any ideal n € J satisfies the condition 7, (®@,) = -1 for all v € S(n), under which
the quantities wy () and dw,! (7r) turn out to be written explicitly in terms of w(m, b).

Lemma 5.6 Letn € J. Then for any m € Tcys(I,n), we have wil(7) = 0 unless
nf,! = b2 for some integral ideal b, in which case w (1) = w(n,nf,").

Proof From (2.4), wil() is the product of r4/?)(m,,7,) over v € S(nf;!). By
Lemma 2.2, we see that r1/2) (71,,, 11, ) is zero unless ord, (nf;!) is even, in which case

it equals w, (f)- [ |

Lemma 5.7 LetneJ. Foranym = Q, m, € ey (1, 1), we have the following.
(i)  Ifnf,;! = b* with an integral ideal b, then

owi(m) = w(n,nf,") > (-logg,)ord,(b).
veS(b)
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(i) Ifnf;' = b>p, with an integral ideal b and a place u € S(n), then

qu=l —
,1 -1 ordu (b) + (+auq)?)(1+a;'q)%)’ e(ma) =0,
own (1) = w(n,nf, ) (log q4) Ofdu(b)+m) c(m) =1,

ord,(b) +1, c(m,) 22,

where diag(ay, a;') is the Satake parameter of m, if c(m,) = 0 and y, denotes
the unramified character of F,; such that , = o (x| |L/2, Xul \;1/2) ife(my) =1

Except for the two cases (i) and (ii), we have ow,! (m) = 0.

Lemma 5.8 Foranynel,

AL () = o, bz)’(:‘(:) AL* (nb % ),

ADL"(n;a) = Zb: w(n, b?) ’(:1([:)2)
((nb?)
1(n)

where b runs through all the integral ideals such that n c b2,

ADL* (nb % ),

log(N(nb—Z)—l/Z N(f”)—ngl) ALY (nh—Z; “))

ADLY (n;ar) = ) w(n, b?)
b

Proof This follows immediately from Lemma 5.6. To have the last formula, we also
need Proposition 4.7. ]

Lemma 5.9 Foranynel,
AL*(n;a) = N[AL"](n),
ADL? (n;a) = N[ADLY ](n),

~log(v/N(m) N(f,)Dr) AL* (n; @) = N[ADL](n).

Proof By Lemma 5.8, we obtain the first formula by applying Proposition 5.1 with
B(m) = 1(m) ALY (m; ) and A(m) = ((m) AL* (m; «) both defined for m € J. The
remaining two formulas are proved in the same way. |

Formula (4.9) can be applied to an arbitrary ideal m € J. In the right-hand side of

the formula, we have two terms W{ (I, m|a) and Wﬂyp(l, m|a), which we regard as

arithmetic functions in m for a while and consider their N-transforms N[W{] and

N[Wgyp]. The following is the main result of this section.

Proposition 5.10  For any n € J, we have the identity among linear functionals in
@ € .As.'

(53)  ADLZ(ma) =2(-1)** DG (1) Dp{N[W](n) + N[W} 1(n)}
+1og(N(n)2N(f,))AL* (n;&) - N[AL?"](n).
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Proof We take the N-transform of both sides of the formula (4.9), regarding it as an
identity among arithmetic functions on J. Then apply Lemma 5.9. ]

SetJ5, ={ne I|(-1)DF(n) = £1}.

Lemma 511 We have AL*(n;a) = 0 for alln € Jg ,, and ADLZ(n; ) = 0 for all
neld .
¥

Proof By the sign of the functional equation, L(1/2, 7)L(1/2,m ® ) = 0 for 7 €
1%, (I,n) with n € Jg . This shows the first assertion. To prove the second claim,
letn € Jg . Then €(1/2,m)e(1/2,m ® 1) = +1for all w € I1{, (I, n), which means

€(1/2,7m) = -1and hence L(1/2, 7) = 0 for all r occurring in the sum ADL* (n; ). W

6 An Error Term Estimate for Averaged L-values
In this section we shall prove (1.7) in Theorem 1.1, starting with the following asymp-

totic formula of AL” (m; aq).

Proposition 6.1  Suppose | = inf,cs_ I, > 6. For any ideal a c o prime to f, and for
anym € Jg o) .. we have

(61)  ALY(m;aq) = 4D}/ {1+ D(m)} L (L 1) N(a) 285 (a; ) du(a})
+ Oe,l,n (N(a)c+2+e N(m)_”e),

where we set ¢ = di*(1/2 - 1) and D(m) = iT(S(m =0) with | = Yves b

To derive (1.7) from this, we apply the first formula of Lemma 5.9 substituting (6.1).
The main term of (1.7) is computed by Lemma 5.3. The error term of (1.7) stems from
the remainder term of (6.1) whose N-transform is estimated by Lemma 5.5, and from
the terms D(m) whose N-transform amounts at most to O(N(n)™'*¢) as seen by the
formula

6.2) NIDI(n) = 8(S(n) = Sx(m){ [T &)

veS(n) qv — l(n)

iT(—l)#S(n)

combined with ((n)™" < N(n)~". The rest of this section is devoted to proving Propo-
sition 6.1. Set S = S(a). Let a = ®,cs &ty € Agand m € Jg,q. From (4.5), the function
‘I’,(O) (m|a, g) in adele points g = {g, } is a product of functions ¥, (g, ) on groups G,
such that ¥, (g,) = g0 (Iy;8y) forv e Zeo,

1
Y (gv)=— \P(O) v Qv )0y (sy) dpy (sy
(8)= 57 J, o) B0 (g5 dpa(s)

for v € S, where L, (o) denotes the contour {o + it | t € R/4r(log q,)'Z} with usual

direction, and ¥, (g,) = CD,(,?,)V (gv) forv € Zg,—S. We apply the relative trace formula

[11, Theorem 9.1], which asserts
ALY (msa) = 2(=1)" G () {TI(1, mla) + I}, (1, mlax) },

https://doi.org/10.4153/CJM-2015-048-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-048-4

Existence of Hilbert Cusp Forms with Non-vanishing L-values 933

where

T1(1,mla) = 2(-1)G(n)DY*(1+ D(m)) Len (1, 1) [T U (),

veS(a)
no(mlay= Y [T (),

beF-{0,-1} veZp

1
Mo =
(63) Uy’ (ar) = 2mi fL @) (1-1,(@ )q—(s+1)/2)(1_q(s+1)/z)“"(s) duy(s),

©4)  Jy(b) = f v ([ ]G 1][1xﬂv])’7"(txr1v)dx
We apply this formula to the function aq = ®,cs(a) @, , noting the relation

—(n+1)

(6.5) apn(v) = % = Z (" 2'”) (v) = 8(n € 2Ny),

with a{™ (v)=z"+z",z= qt/z, which is proved by (1.5).

Lemma 6.2 SetY,"(s)=(1-1n,(®, )q_(1+s)/2) (1- ql(,lﬁ)/z)_l. For n € Ny,

1 ~ —n/2 d(ne2Ny), n,(@,)=-1,
i ooy Y () (5) () - { L ) =l

(ot (s
logqv[L Y, (s)apn (s) dias(s)

2mi ,(0) 1— nv(@v)qgsﬂ)/z

" logg {(—1)"[";1], 1(@,) = -1,

masl) fy(@y) = +1.

Proof The second formula, whose left-hand side is U,” (apn) defined by (9.8), fol-

lows from Lemma 9.13 by (6.5). The first formula, whose left-hand side is U} (atpn)
defined by (6.3), is shown similarly. ]

By the first formula of Lemma 6.2, we get

T1(Lmla) = 2(-D)“PG(n) DY (1 + i'8(m = 0))
x Lein (1, 7) (=1)*$(®) N(a)-l/zag(a;)dl(a;).

This completes the evaluation of J{ (1, m|a ). To estimate J]Zyp(l, m|ag), let us recall

results on local orbital integrals from [11]. For any place v € Z¢,, we define a function
A,:F,—{0,-1} > Zbysetting A, (b) = 8(b € 0,){ord, (b(b+1))+1}. Let w, € S(m),
w3 € S(f,), and w4 € Zgy — S(afy,). Then

(6.6)  |Jw,(b)| < (b € moy,)A,,(b),
(67) |]W3(b)| < 48(17 € f;lows)’ |]W4(b)| < 6(1:7 € 0W4)AW4(b)
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for any b € F — {0, -1}. Indeed, the estimate (6.6) and both estimates of (6.7) follow
immediately from [11, Lemmas 10.5, 10.10, and 10.4]. For an integer k > 4 and a real
valued character ¢ of R, define J°(k;b) in b € R - {0,-1} as

(1+ b) M22EEBY By (k/2, k/2;K; (b + 1)), b(b+1) >0,
J (ks b) = {21og|(b +1)/b|Py /1 (2b +1)

- S ) Py am (26 +1),  b(b+1) <0,

0, b(b+1) >0,
]sgn(k;b) — . ( + ) >
27iPy/p (20 +1), b(b+1) <0,

where P, (x) is the Legendre polynomial of degree n and we put sgn(7) = 7/|7| for
7e R

Lemma 6.3 Forany €' >0, we have the estimate

Ib(b+ 1) |J5 (ki b)| <ok (1+ b)) 522 beR-{0,-1}.

Proof For J*¢"(k;b) the estimate is obvious. As for J'(k; b), the estimate for -1 <
b < 0 is also obvious. For b > 0, the estimate follows from , F; (k/2, k/2; k; (b+1)7!) =
O(]logbl|),b — +0 by [4, p. 49]. For b < -1, we only have to consider the estimate
as above and the functional equation J'(k; b) = (-1)¥/2J(k; b — 1) (b < -1), which
is easily confirmed by the formula ,Fi(a, b;¢;z) = (1-2)"*3Fi(a, c - b;¢; 5) ([24,

p- 47]). [ |

Given relatively prime o-ideals n and b and for € > 0, we set

N(hno)y= 3 PFOW@ING@D) T I Gsb)l,

benb~1-{0,-1} V€S oo

where

“O@)={ ] A} ] 8(bebo,), beF-{0,-1}.

veZan—S(b) veS(b)

Proposition 6.4 Supposel > 6 and set | = inf,ex_ I,. Let b and n be relatively prime
ideals. For any € > 0 and €' > 0 such that [/4 — 1> € + 2€’, we have

jg(l’ n, b) Ke,er,l N(b)““’el N(n)—c+2€+e'
with the implied constant independent of b and n.

Proof Lete > 0ande’ > 0. By [11, Lemma 12.3] and Lemma 6.3, we have

jg(l,n, b) Keerl N(b)4e’ Z H (1 " ‘bv|)—l.,/2+26+45’ _ N(b)4e’9(nb—l)’
benb1-{0} veZoo

where we regard the fractional ideal A = nb™" as a Z-lattice in the Euclidean space
Foo = F®gRand 0(A) = Lber—{0} f(b) with f(x) = [Tyes., (1 + |xv|)_(l"_4e_8€’)/2
(see Appendix A). If 1/4—1> e+2¢, then I’ = {I, —4€ — 8¢’} 5, satisfies I’ > 4. The
desired estimate follows if we apply Theorem A.1 with A = nb™' and A = b™! noting
D(nb™) =N(n)N(b)™%, D(b™!) =N(b), and r(b7!) < r(0). ]
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Proposition 6.5 Suppose | > 6. Given o-idealsnand a = [],cs(a) Py relatively prime

to each other, for any € > 0, we have |ngp(l,n|oca)| Ke,ly N(a) P27 N(n) ™ with

the implied constant independent of a and n.
Proof Letv e S(a)and n € Ny. By [11, Lemma 10.3], we have

0 (b, af™)| << (L+ m)*8(bl, < gy)ge ™ O {1+ A, (b)), be F*—{-1}

with the implied constant independent of m € Ny and v. Let n > 0. From (6.5),

I ()] << 301 < a2 3 e mal ™2} 10 4,0))
< 8(lbly < a")au 20(1 )2 2) (14 Ay (b)),

Thus we have a constant C independent of v € S(a) and n € Ny such that
(6.8) IV (byapy)| < Cqp8(|bl, < ) {1+ Ay (b)), beF*—{0,-1}.

Let ws € 2. Then from [11, Lemma 10.15], we have the equality J,,. (b) = Js (1,,;; b).
Combining (6.8) with Lemma 6.3, Proposition 6.4, (6.6), and (6.7), we obtain

|ngp(l,n\oca)\ SC#S(C‘){ H qf("”>°)}
veS(a)

x ) > ST () TT |Jus (b))

IcS(a) ben (T, py" ) 'y Ws€Z oo

<C™ON(@) S (g, [TpM)

IcS(a) vel
el C#S(a)N(a) Z N(fnnp;tv)1+c+eN(n)—c+e

IcS(a) vel

Kl C#S(a) N(a) x 2*S(a) N(a)1+C+€ N(n)*C‘FE.

By the estimate (2C)*5(®) «, N(a)¢, we are done. [ |

7 An Error Term Estimate for Averaged Derivative of L-values

The aim of this section is to prove the formula (1.8) in Theorem 1.1. Starting from the
formula (5.3) with « specialized to a, for a = [T,cg(q) by"> we examine the four terms
in the right-hand side separately. Here are the highlights in the analysis for each term.

(i) We compute the term N[W{](n) explicitly by using Lemma 9.13, Lemma 5.3
and Corollary 5.4, which yields the main term of the formula (modulo a part of
the error term); see §7.1 for detail.

(ii) We prove N[Wﬂyp](n) = Oc,1,y(N(a) 2 N(n)~nf(L)*¢) by using the ex-
plicit formula of local terms given in §9; see §7.2 for detail.

(iii) Sincen € Jg,) . the term AL”(n) vanishes by the reason of the sign of the
functional equations.
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(iv) We prove N[AL](n) = O,,(N(a) /2 X (n) + N(a)**2N(n)~inf(L)re),
This part is most subtle and the term X (n) arises from this stage; see §7.3 for
detail.

Combining these, we obtain (1.8) immediately.

7.1 Computation of N[W](n)

Let us describe the procedure (i). We take « to be the function «,. Set S = S(a). From
(4.10), noting (~1)*(M7(n) = -1, we have that N[W](n) is the sum of the following
two integrals:

) A D (5)" [ NI I m)esa(s) s (),
) =20 5D (5)™ [ NPT els))(w)as(s) dus(s),

~ S,l’]’
and D is an arithmetic function defined as D(n) = i'8(n = 0) (cf. §6). By for-
mula (4.11),

where 237 (1, o|s) is the quantity (4.11) viewed as an arithmetic function in n € J

N[ (1, ofs)](n) = 7Y ()L (1, 11){ 2""N[logN](n) + (log(Dr N(fy))

AL log gy
" L(1> 77) ! Q:(l) " 1;9 1- ﬂv(@v)ql(,sV+1)/2)N[1](n)} .

By Lemma 5.3 and Corollary 5.4, we have formulas of N[logN](n) and of N[1](n);
substituting these, and by using Lemma 6.2, we complete the evaluation of the integral
(7.1).

The evaluation of the integral (7.2) is similar; instead of N[log N] and N[1], we need
N[DlogN] and N[D]. The former one is 0 because D1ogN = 0; as in §6, the latter
one is given by (6.2) and estimated as [N[D](n)| <. N(n)™'*¢. Hence the integral
(7.2) amounts at most to N(n) "¢ N(a)~"/2*¢,

7.2 Estimation of the Term N[W} ](n)

Let us describe the procedure (ii). We need the following estimation, which we prove
in §9.4.

Proposition 71  For any small e > 0,

|Wzyp(l,n|oca)| Ky N(@) " N(n) ™", ne Ts(ayn>

where the implied constant is independent of the ideal a.

By this proposition and Lemma 5.5,
INTW () < NF[WY[1(n) ey N(a) 2N [N"€] (n)

hyp hyp
« N(a)c+2+e N(n)—inf(c,l)+3e
€ .
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7.3 Estimation of the Term N[AL’"](n)

Let us describe the procedure (iv).

Lemma 72  Let a € As. Then for anywe Ty ., we have the inequality
((nb~2p,! _
AL (sl < 3 (o) B AL (b2 )
(b,u)

where (b, u) runs through all the pairs of an integral ideal b and a place u such that
n c b2p,,. For such (b, u), we set

D(n;b,u) = w(n, bzpu)(logqu)(ord (b) + ql/z 1)‘

Proof By Lemma 5.7, the m-summand of ALaw(n; ) vanishes unless f, satisfies
either (i) nf,' = b* with some n c b, or (i) nf;! = b’p, with some n c b and
u € S(n). In the case (i), the 7-summand vanishes. Indeed, from f, € jg(u),n’ it
turns out L(1/2,7)L(1/2,m ® n) = 0 by the functional equation. In the case (ii),
from Lemma 5.7, noting the Ramanujan bound |a,| = 1 and the obvious relation
lxv(@,)] =1, we have

ord, (b) + 17 1/2)2, c(my,) =0,
|lown (7)] < w(n, b%p,,) (log qu) { ord, (b) + o clm) =1,
ord, (b) +1, c(my) 22

< w(n, b%p,)(logq.)( l/;i +ord, (b)) = D(n; b, u).

qu-1 _ g1
a-q*2  gl—1

Here, we used 17% <

a to have the second inequality. ]

Lemma 7.3 Foranye € (0,1), we have

1
(73) Z N(bzp )El(ﬂb( I)Ju )N( b 2 71) inf(c,1)+e <, N(n)finf(c,l)JrZe)
(b,u)

74) Y N(b)* ( ) (logq) 2P iy,
(b,u) 1(n)

where (b, u) runs through the same range as in Lemma 7.2.

Proof Let us show (7.4). By the inequality ((nb~2p;!)/i(n) < N(b72p;),

oo ) (0P
—2ve( qut1y2logqu
S(%)N(b) (Qu—l) qu

<(ZNO Y (fetoyloea)

ueS(n) qu
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log g, 4lo
={ran(2-e){ X 284 | > iuz} < X(n).
ueS(n) Qu ueS(n) (qu - 1)

The first estimate (7.3) is proved similarly. ]
Proposition 74  For any € > 0, we have

| AL (15 00)| et N(a)™?di (a) 85 (a ) X (n) + N(@) 7€ N(n) 7 PFCeD e,
wheren € Jg .y .

Proof Lete > 0. From % «, x€ for x > 2, we first have
x-1

qv+1\ qu +1 equt1
w(mbp,) <( [T ) — < N(b)*—,
(ves(b)qv_l)qu_l qu—1

and then D(n;b,u) <. N(b)¢(log qu)( Z“—“) : <«<¢ N(b?p)¢ with the implied con-

=
stant independent of n and (b, u). Using this, we have the desired bound with the aid
of (1.7) and Lemmas 7.2 and 7.3. [ |
Proposition 7.5  For any € > 0, we have

INTAL®] (1 )| <<e,1,y N(a)™V2di(a;)85(a; ) X (n) + N(a) 2+ N(n) b+,

wheren e Jg(a)’n.
Proof From Proposition 7.4, we have

INTAL?™ (5 t0)| <., N(@)2d ()3 )N [X] ()
4 N(a)c+2+eN+ [N— inf(l,c)+e] (‘ﬂ)
forallneJg ., . Since X(m) < X(n) ifncmc o, we have
NT[X](n) < X(n)NT[1](n)
=xm{ I  a+a)HH I1 a+0-4H7"g"}

veS(ny)-S2(n) veSy(n)
<Xm{ [T a+g,)}H{ IT a+0-4,)7"9,)}.
veZfin VE€ZLfin

By the convergence of the Euler products, this yields N*[X](n) <« X(n). Therefore,
with the aid of Lemma 5.5, we obtain the estimate

INTAL? (05 00| <<ty N(a) 2y (a] )8 (ay ) X () + N(@)*27€ N()~inf (b 3¢

for any sufficiently small € € (0,1) with the implied constant independent of n and a.
|
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8 An Estimation of Number of Cusp Forms

Recall ¢ = d'(1/2-1). Suppose that for each ideal a c 0, we are given a set J, of ideals
prime to f,a in such a way that J, ¢ J. for any a c o', and a family of real numbers
{wn ()| e T1%,,(1,n) } for each n € J, which satisfies the following estimate for any
€>0:

(8.1) | Z wn () H X”v(A'V(T[))_ H P‘v,m(Xnv)

el (1,n) veS(a) veS(a)
« N(a)—1/2+e
" “JogN(n)

4 N(a)c+2+e N(n)—inf(c,1)+e,

with the implied constant independent of a and n € J,, where A, () is the trace of
the Satake parameter of 77 at v. Moreover we assume the non-negativity condition

(8.2) wa(m) 20 forallmeIll,(I,n)andneJ,.

Let g be a prime ideal relatively prime to f,. In what follows, we abuse the symbol
q to denote the corresponding place v, of F; for example, we write 774, Aq(7) in place
of y,5 Ay, (1), etc. Let S = {vy,...,v,} be a finite subset of X, — S(f,q) and set
as = [Tyes pv. Let] = {J;}7_, a family of closed subintervals of (-2,2). For each J;,
we choose an open interval J; such that ]7 c J; together with a C*-function y;: R -
[0, 00) such that x;(x) # 0 for all x € J%, supp(x;) c J; and [_22 xj(x)dpy,,, (x) =1,
where

g~ 1 dP‘ST(x)7 1y (@) = +1,

1/2 | -1/2

+ -x)?
Qo ()= O 7
(ql/z N q—l/z)2 2 dp*(x), nv(@y)=-L
v v

Here dy’"(x) = (2m)™'/4 - x2dx. Fixing such a family of functions {x;}, we set
Qu (1) = wn(m) Tz xj(Av,; (), for any 7 € T1¢, (1, n) and n € Jqq;-

Lemma 8.1 For any sufficiently small € > 0, there exists N s, > 0 such that

83) | Y Qu(m)Xu(Ag(7)) = gy, (Xn)]

melliys (1)

n\-1/2+e
n+1 . N(q")

N(a" 2+c+eN —inf(c,1)+e
ogN(m) * TogN(m) V") (n)

<<e,l,11,S,] (

forn € Ng and n € Jqq, with N(n) > N s,;. Here the implied constant is independent
of n and n. Moreover, Q,(7) > 0 for all m € I1% (I, n) and n € Jqq.

Proof Given an integer M > 1, define Xj-"(x) = Y % (m) X, (x) for x € [-2,2]
with () = [2 x;(%) Xn(x) du’T (x) and set

X0 = [TuG) 260 =TT ()
j=1 j=1
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for x = {x;}7_, in the product space [-2,2]". Let n € Jqq,. By the triangle inequality,
the left-hand side of (8.3) is no greater than the sum of the following three terms :

B4 | Y eaMXaQg(m){x(As(m) =y (As(m))

”EH:us(l’n)

®5) | Y en(mXa(a(m)xM(As(m) = an,

nellf (1,n)
8.6)  Kusn(X™) =ty (X) Htquny (X))l

where Ag(7) = (A, (7))ves and ps,y = ®ves fy,y,- Note s ,(x) = 1. We shall esti-
mate these quantities. Since [X;(n)| <, n~> for any n > 0 by integration by parts and
by max(_, »1|X,| < 1 + 1, we have

G Ol < X G(mIXa ()] < 30 n7 <4(4)

n<M n<M

and

() = x5 (Ol < X [x5(n) | ax %] <<y, 2ot M,

E[ 2 2] n>M n>M

By these,

—

rooj-
(8.7) max [x(x)-x XM ()] | < o ,(ZI X o)l () = x5 (xy)]) <<s,0 M2
7’ j=1 h=1

From (8.1) for a = 0, noting n € Jqq, © o, we have the estimate

Y wa(m) —1 <,y (logN(n)) ™ + N(n)~inf(ebre,

ﬂen:us(l’n)

Hence (8.4) is majorized by

{maXIX H{_max [x()-x"®)} Y walm)

xe[-2.2) nellyy (1)

Leps,y (M D)M > (1+ N(n)~inf(eDre).

By (8.7), the quantity (8.6) is majorized by pq,y, (X»)M~>, which amounts at most
to (n +1)M™>. Let us estimate (8.5). By expanding the product, y™(x) is expressed
as a sum of the terms [1}_; ¥j(n;) [T} Xn;(x;) overalln = (n;)7_, € {0,..., M}".
Hence by using (8.1), we can majorize (8.5) from above by

ne{0,,M}"

Z wn(”)/"q:ﬂq (Aq(”)) H an(/lv,-(”)) ~ Uq.nq (Xn)e“S,n(H an)
mell} (I,n) j=1 j=1
N(aé\/lqn)—l/ZJre

< —e -
ebmSx logN(n)

" N(ag/lqn)2+c+e N(n)—inf(c,l)-#e.

https://doi.org/10.4153/CJM-2015-048-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-048-4

Existence of Hilbert Cusp Forms with Non-vanishing L-values 941

Combining the estimations made so far, we have that the left-hand side of (8.3) is
majorized by

N(ag/lqn)—l/2+e
logN(n)
4 N(ag/lqn)2+c+e N(n)—inf(c,l)+e.

(8.8) (n+1)M(1+ N(n)—inf(c,1)+e) N

Now take

M—[ e  logN(n) ]
L2+ c+elogN(ag) !

Then N(as)M2*¢*€) < N(n)¢, and also N(as)M(1/2+€) <1 evidently. By these, (8.8)
is majorized by

(n+1)(logN(n)) > log N(as)* (1+ N(n)~ nf(eD+e)

Nl(qnlz]_(lliz;e " N(qn)2+c+e N(n)—inf(c,l)+2€
08

Kes (1’1+1)(10gN(I‘1))_3 + N(qn)—1/2+e +N(qn)2+c+eN(n)—inf(c,1)+25
© logN(n) ‘

Lemma 8.2 Let I c [-2,2] be an open interval disjoint from the set
Aa(m)lm e TMeys (L), Qu(n) # 0}

Then for any small € > 0, there exists a constant N j 5,4 > 0 such that for any ideal
n € Jqas with N(n) > Ne i y.s,00 Haung (I) <et,s5 N(q)(logN(n))~*€ with the
implied constant independent of I, n, and q.

Proof The proof of [6, Proposition 5.1 and Lemma 5.2] goes through as it is with a
small modification. We reproduce the argument for convenience.

Let A > 0 be a parameter to be specified below and K a closed subinterval of I such
that

(i) pqp,(I-K) <A

Depending on A and K, we choose a C*°-function f on R such that

(ii) supp(f) <1,

(iii) f(x)=1lifxeKand0< f(x) <1lforx eR,

(iv) |f®)(x)| «x A7F for k € Ny.

Since I does not contain the relevant A4 (7)’s, from (ii) we have Q, () f(Aq(7)) = 0

for all 7w € IT%, (I, n). Using this, from (i) and (iii), we have the inequalities

2
(8.9) g (I) < g,y (K) + A< [2 fdpqn, +A

T amiOg ) - [ fdu,

el (I,n)

+ A.
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Ifwe set fa(x) = XM, F(n) X, (x), then the first term of (8.9) is bounded by the sum
of the following three terms

(8.10) (> 10a(ml) - max|f - ful

el (1,n)

2
8.11 - d S
(8.11) f [mzaéc] If = fulduq,y,

2 [-

(5.12) | a0~ [ fuditan,

mell} (I,n)

We remark that by the non-negativity of Q, (7), the absolute value in (8.10) can be
deleted. Then by the estimate |f(1)| <x n~%* A~ which follows from (iv) by integra-
tion by parts, and by max[_; ,1[X,| < n +1, we have

max |f - fu| < Z |_f(f’l)| max | X,| < Z 1 AR « MERAK
[-2:2] n>M [-2,2] nSM

with k > 3. From (8.3) applied with n = 0, noting pq,,, (Xo) = 1, we have the estimate
| Ymettz,, (1,n) Qu(7) = 1| <e,1,n,8,) (logN(n))™" + N(n)~inf(eD+e Hence the sum of
(8.10) and (8.11) is majorized by

AT MPF(1+ (logN(n)) ™ + N(n) ~f(eD%e) o« A=k pp>k

with the implied constant independent of A, M, q and n. By (8.3) and by |f(n)| < 1,
the term (8.12) is majorized by

;lf(n)l\ > (M) Xa (g (1)) ~ g, (Xn)

el (1,n)

M n+1 N(qn)—1/2+e
Sebn.s) ,2,( (logN(n))? ~ logN(n)

M2 1 ’M —inf
. N M in (c,1)+e’
< TogN(m)? " logN(ny * W TN)

where ¢’ = 2 + ¢ + . Putting all relevant estimations together, we obtain

+ N(qn)2+c+e N(n)—inf(c,1)+e)

bang (1) <ielnsy A+AFMF
+ ! + M +
logN(n) (logN(n))?
with the implied constant independent of I, A, M, g, and n. By setting

N(q)c M N(n)—inf(c,l)+s

_rinf(c,1) logN(n)
M_[ 2¢’ logN(q)]’

this yields the estimate

Hq’”q (I) <<k,6,l,;7,s,] A+ Aik(logN(q))k*Z(logN(n))Z—k
+ (logN(n)) ™" + N(n)—inf(c,l)/z-#e.
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Let € > 0 and we let A vary so that it satisfies A% (logN(n))?7% =, (logN(n))~'*¢,
or equivalently A <, (logN(n)) 1*(3-€)/k By taking k = [3/e] + 1, we have

(logN(n)) /% «, A «. (logN(n)) "¢,

Hence,
Hauna (I) et 5.5 (1ogN(n)) ™€ + (log N(n)) ¢ (log N(q))*
n (logN(n))—l +N(n)—inf(c,l)/2+e
<e N(a)*(logN(n)) ™.
This completes the proof. ]

Lemma 8.3  Given € > 0, there exists a positive number N , s, q.y Such that for any
ideal n € Jqa, with N(n) > N 1..5,q.5» We have the inequality

#{Aq(m)|m € Ty (1,m), Qu(m) # 0} > N(a) ~“ (logN(n))"™*.

Proof It follows in the same way as [6, Lemma 5.3]. [ |

8.1 Hecke Fields

Let T = Aut(C/Q). We let the group T act on the set (2N)*= of even weights by the
rule °I = (l5-10y)yes., for I = (I,)yex.. and o € T, regarding 2o, = Hom(F, C). Let
Q(7) be the fixed field of Stabr (1), which is a finite extension of Q. From [8] (see [5]
also), the Satake parameter A, (7) belongs to GL(2, Q) for any v € g, — S(n) and
the set IT.ys(, 1) has a natural action of the Galois group Gal(Q/Q(1)) in such a way
that (“71), 2 7514, forallv € ., and

(8.13) q2A,(°n) = 0(q/*A, (7)) forallv e Sg, — S(n).

v

The field of rationality of 77 € ITcus(/, 1), to be denoted by Q(r), is defined as the fixed
field of the group {o € Gal(Q/Q(1))|’n = n}. From (8.13), by the strong multiplicity

one theorem for GL(2), we have Q(r) = Q(l)( qi/z)w(n)h/ € Zfin — S(n)) .

Proposition 8.4  Assume that | is a parallel weight, i.e., there exists k € 2N such that
l, = k forallv € Yo. Let S be a finite subset of Xgin — S(f4) and ] = {J, }yes a family of
closed subintervals of (-2,2). Given a sufficiently small € > 0 and a prime ideal q prime
to S U S(fy), there exists a positive integer N 1., s,q. Such that for any n € Jqq  with
N(n) > Ne1,4,5,q.)> there exists m € T17 (I, n) such that w, () # 0, A, () € ], for all
veS, and

(1-¢€)loglogN(n)
log(16N(q)(+-172)

[Q(7):Q] > \} max{ - 2e,0}.

Proof Let Q,(7) be as above. We follow the proof of [6, Proposition 73]. Let

d(Q,n) denote the maximal degree of algebraic numbers A () for all w € TI%, (I, n)
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such that Q,,(7) # 0. Then
d(Q,n) < max{[Q(n):Q] | 7 € TT¢, (I, n), Qu () # 0}
<max{[Q(7):Q] | m e I}, (I,n), wy () #0,4, () € ], (Vv eS)}.

Let £(M, d) denote the set of algebraic integers which, together with its conjugates,
have the absolute values at most M and the absolute degrees at most d. From the
parallel weight assumption, the Hecke eigenvalues N(q)*~D/2), () are known to
be algebraic integers [8, Proposition 2.2]. Since

o (N(q)* D20 (m)) = N(q)*D72A4(77)
from (8.13), by the Ramanujan bound, we have
N(q)(k‘l)/z/lq(n) c 5(2N(q)(k_1)/2,d(0,n)),

Then the cardinality of the set {N(q)* /21, (n)|7 € My (I,n), Qn(7) # 0} is
bounded from above by #&(2N(q)*/2,d(Q, n)) which in turn is no greater than
(16 N(q)(k_l)/z)d(“’“)2 by [6, Lemma 6.2]. Combining this with the lower bound
provided by Lemma 8.3, we have

N(q)“(logN(n))"™* < (16N(q) -D/2) (",
By taking the logarithm, we are done. |

Remark 8.5 The parallel weight assumption can be removed if the integrality of

the Hecke eigenvalues qsk_l)/z)tv(n) for all v € g, — S(§) is known in a broader
generality, where k = max,es__ I,.

8.2 The Proof of Theorem 1.3

Theorem 1.1 means that the numbers

Ci 1 L(1/2,m)L(1/2,m® 1)
wn(ﬂ) = 3/2 S . d
4D} L (1, 7)v(n) N(n) LS=(1, m; Ad)
for m € II%,(I,n) and n € J;Us(q)’n satisfy our first assumption (8.1). The second

assumption (8.2) follows from [2]. Thus Theorem 1.3 is a corollary of Proposition 8.4
with this particular {w, ()}

8.3 The Proof of Theorem 1.4

Forany M > 1, letﬁgus(q)’n[M] be the setofn € Jg

log gy
SUS(q).1 such that Zves(n) . <M.

Theorem 1.1 means that
Ci 1 LO/2,m)L (12, m@n)
4D;/2Lﬁ“(1’ n)v(n)log/N(n) N(n) LS (1, m; Ad)

for m e ¢ (I,n) and n € Jg 5, ,[M] satisfy our first assumption (8.1). By our
non-negativity assumption (1.9), the second assumption (8.2) is also met. Thus The-
orem 1.4 follows from Proposition 8.4.

wn () =
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Remark 8.6 In the parallel weight two case (i.e., I, = 2 for all v € £,) with totally
imaginary condition on # (i.e., ,(-1) = -1 for all v € X.,), the assumption (1.9)
follows from [17, Theorem 6.1] due to the non-negativity of the Neron-Tate height
pairing. Similar results may be expected in the parallel higher weight case [15].

9 Computations of Local Terms

In this section, we shall give the postponed proof of Proposition 71. Let @ = ® s &y €
Ag be such that &, = '™ for some (m,)yes € N3, where alm (s) = qTS/z + q;ms/z

for v € S and m € Ny. We examine the term Wgyp(l, n|a) appearing in formula (4.9).
Set 6, = [ 1457 i] for b € F*. From Lemma 4.6, by changing the order of integrals,

we have the first equality of the formula

(9.1) Wﬁyp(l)ﬂa) = beF-Z{(:) . [Ax \’}71(0)(n|(x,8b[ : (1)] [ (1) xln])q(tx;)10g|t|A d*t

= > 2{ I L®}wa(),

beF-{0,-1} weZp veXp—{w}

where J, () is defined by (6.4),
ww(b):fo W (5[ 5 0T[5 1) (tcs ) Tog ltulw d™t,

for b € F, — {0,-1}, and ¥, (g, ) denotes the w-th factor of ‘T’;o)(n|a;g) as in §6.
The second equality of (9.1) is justified by 3, 3, {IT, 2w [Jv (0)[}| Wi (b)] < 00, which
results from the analysis to be made in §9.4. The integrals J, (b) are studied and their
explicit evaluations are obtained in [11, §10]. In what follows, we examine the integral
W, (b) separating cases w € S, w € Zgp — S, and w € Zo,. We remark that vol(o})) =
#(0,/0 £0,)"Y? in the computations below.

9.1 Hyperbolic Non-Archimedean Terms for S

Let v € S. Then the integral W, (b) depends on the test function «, € A, and the
character 7, of F); we write W," (b; &, ) in place of W, (b) in this subsection. We
have

1

W) = oo [ L O 8L Dm0 loglthd”t an(s,) dps(5),

where L,(c) = {c+ it |t e R/4n(logq,)'Z} (see §6).

Lemma 9.1 Letv € S. Then for any m >0 and any b € F, - {0, -1},

W (bsa{™) =Ty (m; b) + 1,(@,){(log g, I, (m; @, (b +1)) =T} (m; @, (b +1)) }
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with
I (m;b) = vol(02)25(m=0)
—m m-1 2-m —m
x (=g ol (B)+ X, {(m-1-1g," - (m-1+1)q," }6]"(b)),
I=o(b)

T+ (m; b) = vol(02) (log g, )2°("=0)

—m o~ m-1 2-m —m o~
(=g SB)+ Y {(m-1-1g," - (m-1+1)q,} }5" (b)),
I=01(b)

where we set 0(b) = sup(0, —ord, (b)), 01(b) = sup(0,1- ord, (b)), and

(ord,(b) + 1)5("=0), (@) =1,

6Zv(b) = 8(|b|v < q:)ﬂv(@” {(2_1(7’]1/(17) + 1))5(n:0)’ ”]v(a)v) =-1,

1 (b) = 8(lel, < g7)mv(@y)

#y(b)(-n —ord, (b)), n>o0,
x{-2"Yord,(b)(ord,(b) +1), n=0,1,(0,) =1,
47 (n,(b) -1) + 27 ord, (b)n,(b), n=0,1,(@,)=-1
When m = 0,
W (b al®) =

—2vol(0})(log g, ) (87" (b) + 1, (@) 8" (@, (b +1)) — 1, (@,) 07" (@, (b +1))).

Proof We decompose the integral into the sum W, (b; oc‘(,m)) =T (m;b) + T, (m;b),
where

T:(m;b): 6vm(éb[(§(1)])’71/(t)10g|t|vdxt’

teFy,|t|<1

T;(m;b):ﬁl B (8] §9])m (1) loglel, d*t

with (3vm(gv) =1 va(c) ‘I’éo)(sv;gv)ocgm)(sv) duy(sy). We consider the case m >

2mi

0. By the evaluation of Oy (gy) made in [11, Lemma 10.1],

T (m;b) = "), () 1og |t|, d*¢
, (m;b) \tlsl,sup(l,ltl;‘lhlv)w;"( q,""*)n,(t) log|t|

m—1
+ m—1-1)g""™? - (m-1+1)q;™?
1;) flt\s1,sup<1,\r|;l|b|v>=qf { )9 ( )g,""?}

v

x 1, (t) log|t], d*t.

We have the following three equalities.
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e Ifl=0and%,(@,) =1,

t)loglt|, d*t
A|<l,sup(l,\t|;1|b|v):qz 1y (£) log ¢,

V —ord,(b)(ord, (b) +1)

= 0(|bl, <1)vol(o})logq, 5

e Ifl=0and y,(®@,) = -1,

v 1 tvdxt
f\flsl,sup<1,\r|;‘|b|v)=qr n1v(1) gl

=48(|bl, <1) Vol(oj)logqv(

nv(b) -1 N OrdV(b)ﬂV(b)).
4

2
e If] >0,
() log|t], d*t
/\‘fISI,sup(l,\t|;1|b|v):qlv’7 (t)log]
=olel<a) [, m(O)loglild
|t‘V:QV ‘b‘v

= ~8(|bl, < g,) vol(0y) (log g, )11, (@, ) (I + ord, (b))
By the variable change y = @;'t™', T, (m; b) becomes

fu Bun(@[ 7 0 D@y ) logl@; 'y dy
Ylv<

-1, -1

= .(@;") ) B (8 [ 2 O D (y) (log v — loglyly) d*y

= 1y(@){(log g, I; (m; @' (b +1)) = Ty (m; @' (b + 1))},

where the integral I} (m;b) is evaluated in the proof of [11, Lemma 10.2]. From the
results above, we have the lemma for m > 0. The case m = 0 is similar. [ |

Lemma 9.2 FormeN,
W, (bsa§™)| << (log 4,)d(lbly < gy )gy "> m(2m + ord, (b(b +1)))?,
where b € F) — {-1}. When m =0,

W (b; al)| << (log g,)8(|bl, < 1)(ord, (b(b +1)) +1)°,  be F —{-1}.
Here the implied constants are independent of v, m, and b. Moreover, for n € Ny,
[W," (bs apn )| << (log g,)q,8(|b]y < ) {ord, (b(b+1)) +2n+1}, beFy—{-1}
with the implied constant independent of v, n and b.

Proof Noting (6.5), from the first and the second estimates in the lemma, we derive
the last one in the same way as we did to have (6.8). Let us prove the first estimate.
The second one is easier. Suppose m > 1. From Lemma 9.1, it suffices to estimate
IH(m;@; (b +1)), T: (m; b), and T! (m; @, (b +1)). By the formula in Lemma 9.1,

|13 (m, @, (b +1))] < 8(bl, < g ) (m +1)°q,™".

https://doi.org/10.4153/CJM-2015-048-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-048-4

S. Sugiyama and M. Tsuzuki

948
Next we examine I (m; b). From the definition of 8, in Lemma 9.1, we have

|60 (b)| < 8(|bl, < 1)27" (ord, (b) +1)%

By using this,

m-1

> (m-1-1)g, ™[5 (b)]

I=01(b)
m-—1 - -
<O(m>1|bl, <@gy Y (m = 1-1)[8] (b)| + (m - 1)|5¢" (b)[}
=1

<O(m>1,|bl, < g gy ™

X{Z(m

=8(m>1[bl, < gy *)q,” '”/Z(m -1)
{67 (m ~2)m+27"(m ~2) ord, (b) + [5;" (b)|}
< 8(m>2,|bl, <q" ) gt ™2 m(m* + mord, (b) + (ord, (b) +1)?)

~1-1)( +ord, (b)) + (m - 1)|50" (b)[}

< 8(m > 2,[bl, < q"2)gs ™ 2m(m + ord, (b)),

Similarly,
9" ) g;™*m(m + ord, (b) +1)2.

m—1

S (m—1+1)g," 28" (b)] < 8(m >1,|b], <
I=01(b)
Hence, we obtain

|f:(m,b)| < (loggy)d(|bl, <

where m € N, b € F — {1}, which also yields

mD) g m2 (m + ord, (b)),

I (m; @, (b +1))| < (log g,)d(|b +1|, < g™ ) gl "2 m(m + ord, (b +1))?,
||

wherem e N, be F - {-1}.

9.2 Hyperbolic Non-Archimedean Terms Outside S
Let v € Xg, — S. There are three cases to be considered: v € Zg, — S(nf,), v € S(n),

and v € S(f,).
—{-1}, we have

- (SuS(nf,)). Forb € F;

Lemma 9.3 Letve Zg,
1)y (1) log|tl, d*t = vol(o} ) (log 4,) {81 (b) -1 (b+1)}.

W, (b) = f o) (8] §
In particular, |W, (b)| < (logq,)8(|b(b+1)|, <1)(ord, (b(b+1))+1)?, b e F}—{-1}
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Proof By [12, Lemma 11.4],

S @8R8 D () logle

:f m(t)log|t|vdxt+/ 7y (1) loglt], d™t
|bly<|t]y<1 [b+1[712]t],>1
= vol(0})(log 4,){8¢" (b) - 8¢" (b +1)}. u

Lemma 9.4 Letv e S(n). Then

W, (b) =27 vol(0))(~log g, )d(b € no,)
(ord,(b) + ord,(n))(ord,(b) - ord, (n) +1), ny(@y) =1,
x [ordv(n)nv(wsrd”(")) +ord,(b)n,(b)
27 () = (@)}, (@) = -1,

In particular,
|W, (b)| < 8(b € no,)(logq,)(ord,(b) +ord,(n) +1)%, beF - {-1}.

Proof By [12, Lemma 11.4],

[ @Rl D (1) loglel, d*t

:[ 8(t € oy ), () log|t], d*t
[bly<|t|v<1

ord, (b)

=8(beno,) > f 1y (@2u)log|@lul, d*u

n=ord, (n)
ord, (b)

=8(benoy)vol(o))(~loggy,) >, n(@))n. ]
n=ord, (n)
Lemma 9.5 Letv e S(f,) andput f = f(n,) € N. For b € F} - {-1},
W, (b) =vol(0;)8(b € p, ) (-1) (1~ 4,") "'q,” (log gv)
x{=f + m(b(b+1))(8(b e p,)(~f - ord,(b))
+8(beol)(~f +ord, (b+1)) +8(b ¢ 0,) () ®) }.

In particular,

W, (b)] << (logqv)gy” 8([bl, < g ){ f + 8(|bl, <1) ord, (b(b +1))},

where b € F) — {-1}.
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Proof By [12, Lemma 11.4], we have W, (b) = (b € p;f)(Wv,l(b) + W, 2(b)) with
W, (b :f L(t@; ) loglt, d*t
ab) —te(D{UV(f)|t\V||b+1\vs1’1 ( )log|l
= vol(0;)7, (-1)(~f loggs)a,” (1~ 4;) ™,
Woa(b) = [ 1+ 1@, || + t@y” (b + D]y < [ty (1077 ) logt], d*t.
20 [ @ Lot b e < (03 gl

The integration domain of W, () is a disjoint union of the sets D; (b) (I € Z) defined
in [11, §10.2]. By [11, Lemmas 10.6, 10.7, and 10.8],

vol(0) W, 5 (b) = vol(0X) ™ 3 (~1log g,) fD o n(t@;7) d*t
1

leZ
=0(|bl, <1=|b+1,){(-f +ord,(b+1) —ord, (b)) logq,}

b o
() (-4, 'q,”

+0(|bly = b +1,| >1)(~flogqy)

-b Z1N—1 _—f+ord, (b
X’Iv(m)(l_qvl) 1qvf+o (b)

+0(lb+1), <1=1b|,){(-f +ord, (b +1) —ord, (b)) logq, }

-b g -
Xﬂv(m)(l—qvl) 'q,”

_ ﬂv(b;fl)(l—q;l)—lq;f(logqv){6(|b|v <1=[b+1),)(~f - ordy (b))
+0(bly =|b+1], 2 1)(_f)q2rdv(h)

+8(b+1ly <1=[bl,)(~f + ord, (b+1)) |

= (L) (1= 7)1y (log ) { 8(b € p,) (=1 - ord, (1))

b+1
+0(beoy)(—f+ord,(b+1))+0(b¢ gv)(_f)qsrdv(b)}.

This completes the proof. ]

9.3 Hyperbolic Archimedean Terms

Let v € 2o, and fix an identification F, = R. In this paragraph, we abbreviate /, to I,
omitting the subscript v. From the proof of [11, Lemma 10.12], we have

1+ it
o= )T

- [R (1= i) 2 (1+ b+ £7'60) 2y, (£) log|t], d” ¢

= W, (b) + 1, (<) W (B),

) {1+ (bt + (b +1))} P, (£) log |t], 4t

where we set W, (b) = i'2(1+b)/2 [Z(t+i) 72 (t+ L) 12 log tdt.
Here is an explicit formula of W, (b).
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Lemma 9.6 Suppose | > 4. Then for b € R* — {1}, we have
W, (b) = -mi].(I;b) - A(b) — iB(b)
with
b+1 )
J+(I;b) ={ 1og|T| +8(b(b+1) <0)mi}
(/4 41— am +1)

x Pyjpi(2b+1) - mz:jl @m-D(1-2m)

A(b) = l:il (l/z +kk - 1)(1/2k_ 1)

x{”—;a gl -
N 1/221 (l/z +kk - 1) ’/22’:‘ 1(1/2 —.1) (—})J’

k=0 =1 k+j J

Pijyam(2b +1),

e(b) 9” ( )k+l/2(b+1) }

U b
(X bk ()M (041N - brlog ).

m=1

B(b) - ’21(1/2 +kk —1)(1/2k— 1)bk log|%|9(b)

U212+ k-1 PR 12 -1y (1)
-2 () 2 (ies )5
LT B0),

where 0(b) = n/2ifb(b+1) <0, and 0(b) =3n/2ifb(b+1) > 0.

Proof Forb e R* - {-1}, put

o(2) = 11/2(IJr b) l/2(z+ i) l/z(z+ bbzl) l/zzl/zfl(logz)z,
where logz = log|z| + iarg(z) with arg(z) € [0,27). Then g(z) is meromorphic
on C - R;y and holomorphic except for poles at z = —i, 377 1 We note that ; +i

iR — {0, —i}. By the residue theorem, we have
(9.2)  2mi(Res,—_; + Res,_ - )g(2)

= /E.Rg(t) dt—feRg(teZ”")+y|§Z|=Rg(z) dz—ﬁl?;lzeg(z) dz

with R sufficiently large and € > 0 sufficiently small. By letting R - +o0, € - +0,
noting the relation (log t + 271i)* = (log t)* + 4milog t — 47, we have

2mi(Res;——; +Res,__u:)g(2) = ~4miW,(b) + 4m*], (1;b),
because the last two terms on the right-hand side of (9.2) vanish in the limit, where

Jo(L;b) == i (1+ b) 72 [ (t40) 2 (e + %)_l/zt’/z_1 dt is evaluated in the proof
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of [11, Lemma 10.13]. Hence, we obtain
1 .
W, (b) = —E{Resz?i + ResZ:;Tb;-}g(z) - ni](L;b).

A direct computation reveals %{ Res;-_; +Res,__u: } g(z) = A(b) +iB(b). This com-
pletes the proof. ]

Lemma 9.7 Suppose | > 4. For any € > 0, we have

[b(b+1)| | W, (b)] <es (1+|b])71/%, beR-{0,-1}.

Proof From Lemmas 6.3 and 9.6, for any € > 0, [b(b +1)|* W, (b) is locally bounded
around the points b = 0, -1. For b away from the set {0, -1}, we have

W (B)] < f2b(b+ D [ (62 41) 1 log ] 2
0

by t2(b +1)% + b* > 2|t||b(b +1)|. Since [ > 4, the last integral is convergent; hence
the above inequality gives us |b(b +1)||W, (b)| <c,; (1+|b])7"/?*% for large |b]. ®

9.4 The Proof of Proposition 7.1
We start from the formula (9.1) taking & to be aq € Ag(q) defined by (1.6). If we set

(9.3) W)= > S{ I 5I(®)}w.(b)

beF—{0,-1} weT veZp—{w}
for any subset T' c X, then (9.1) can be written in the form

Wgyp(l, nfag) = W(Ze) + W(S(a)) + W(S(n)) + W(S(f,)) + W(Zgin — S(nafy)).
We shall estimate each term in the right-hand side of this equality, explicating the
dependence on nand a = [T,c(q) Py Set ¢ = (1/2 —1)/dg. In the remaining part of
this section, all the constants implied by the Vinogradov symbols are independent of
nand a but may depend on /, 7 and a given small number € > 0. For convenience, we
collect here all the estimates used below (other than these, we also need (6.6), (6.7),
(6.8), and Lemma 9.7). Let wy € S(a), wa € S(n), ws € S(f,), wa € Zgn — S(afy).
Then

(94) |[W,,(b)] <
(9.5)  |W,,(b)] <

10g Gy, ) g, 8(b € a”t0,,, ) {21y, +ord,, (b(b +1)) +1}7,
log g,,)8(b € noy, ) {ord,, (b) + ord,, (n) +1}%,

(9.6) |W,,(b)| < (loggy,)d(b e f;low3){2f(nw3) +ord,,(b(b+1)) +1},
(9.7)  |Wy,(b)] < (logqw,)8(|b(b +1)|y, <1)A,,(b)*

for b € F* - {0, -1}, where all the constants implied by the Vinogradov symbol are
independent of b, 1, a, and the places w; (1< i < 4). Indeed, the estimate (9.4) follows
from Lemma 9.2, (9.5) is from Lemma 9.4, (9.6) is from Lemma 9.5, and (9.7) is from
Lemma 9.3.

Proposition 7.1 follows from Lemmas 9.8, 9.9, 9.10, 9.11 and 9.12 to be shown below.

~ o~ o~ o~

Lemma 9.8 We have [W(2o)| <c,1,y N(a) "¢ N(n) ¥,
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Proof Similarly to the proof of Proposition 6.5, by Lemma 9.7 and Proposition 6.4,
we have [W(Zo)| <,y C*N(a) ¥1es(ay N(Fy Ty p27)7 N(n) =¥, Thus,
we are done. ]

Lemma 9.9  We have [W(S(a))| <1,y N(a)“"2" N(n)~c*e.

Proof By the estimates recalled above, the range of b in the summation (9.3) with
T = S(a) can be restricted to na™'f,! = {0,-1}. If b € na”'f,, then b(b + 1)a’f; is
an ideal of 0. From this, noting that # is unramified over S(a), we have the equality
ord,, (b(b + 1)a2f,27) =2n,, +ord,, (b(b +1)) for any w € S(a); by taking summation
over w € S(a),
Z(: ){an +ordy, (b(b +1)) + 1} logq, <logN(b(b +1)a’f;) +logN(a)
weS(a

Ko |IN(b(b + 1))|‘€/2 N(a)°.
Using this, from (9.4), (6.6), (6.7), and (6.8), we obtain

[W(S(a))] < > > { IT o

benf;'a1-{0,-1} wieS(a) veZp—{wi}
% (10g Gy, ) qu, {ordy, (b(b + 1)) +2m,, +1}?
Keyy C I N(a)" 2 > IN(b(b+ 1) TT [1:(0)]

benf;‘a*l—{o,—l} V€Zoo
< JI M) [T {1+A(0)}
veZgn—S(afy) veS(a)
<CUON()™* Y T, [Tei),
IcS(a) vel
where C is the implied constant in (6.8) and (9.4). [ |

Lemma 9.10  We have [W(S(n))| <¢,1,, N(a)“***¢ N(n) ¥

Proof From the estimations recalled above,
[W(S(n))] <e,y Cc*(Y'N(a)
x > [Tn®  IT Ak [T {1+AB)) D W, (b)),

benf,;'a"1-{0,-1} veZoo veZgn—S(anfy) veS(a) waeS(n)

where C is the constant in (6.8). By (9.5),

> W ()<« 3 (logqu,)(ordy,(n) +ord,, (b) +1)*

waeS(n) wreS(n)
< Z orsz(n)Z(log qwz) + Z (log qwz)sz(b)z
woeS(n) waeS(n)
< N(m)* J] A (b)?
veS(n)
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for b € nf,'a™". From this,

[W(S(n))| <e,y C*N(a) N(n)®
x > [TU.® TI A [T {1+A(0)}

benf,'a"1-{0,-1} veZoo veZga—S(afy) veS(a)

< C#S(a)N(a)N(n)E Z jg(l,n,fqnpg").

IcS(a) vel

Then the desired estimate is obtained by Proposition 6.4. ]
Lemma 9.11 ~ We have [W(S(§,))| <e,1,; N(a) "¢ N(n)~c*e,

Proof By the same argument as in the proof of Lemma 9.9, we have

Z {2f(ny) +ord,, (b(b +1)) +1}log g, < logN( b(b+ l)azﬁ) +logN(f,)
weS(fy)

Koy IN(b(b +1))|*N(a)*
for b € na”'f," - {0, ~1}. From the estimations recalled as above,

[W(S(Fq))l < 2 > I o

benf,'a"1-{0,-1} w3eS(f;) veZr—{ws}

x (log quy){2f (1w, ) + ordy, (b(b +1)) +1}
ety C¥WN(a) > IN(b(b+1))N(a)

benf,;'a"1-{0,-1}

< [T @l T A T {1+A(0)}

V€Xoo veZgn—S(afy) veS(a)

Sty CFON(@)™ S I(n, 5, [Te0).
IcS(a) vel

Then the desired estimate is obtained by Proposition 6.4. ]
Lemma 9.12  We have [W(Zgy — S(anfy))| <e,1,y N(a) 2 N(n)7c*,

Proof In the summation on the left-hand side of (9.3) with T = Zg,, — S(anf,), the
range of (b, w) is restricted to b € nf,'a™" = {0,-1} and w € S(b(b +1)ono) N T, due
to the estimations recalled above. Thus,

|W(Zﬁn—5(anf,1))|
< > > { TI @I} W, (b))

benf,'a"1-{0,-1} wseS(b(b+1)ono)-S(anf,) veZp—{ws}

Koy CHON(a) D [T ) TT {1+A.(b)}

benf;'a1-{0,-1} veZoo veS(a)

x > { TI A(b)}(ogqu,)A,(b)
waeS(b(b+1)ono)-S(anf,) veZg,—S(afy)
VEWY
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€y C5ON@ Y [TI@I IT {1+A(0)}

benf,'a"1-{0,-1} veZoo ves(a)
x{ > logqw,} [  Au(b)?
waeS(b(b+1)ono)-S(anf,) veZan—S(afy)
ey CO N(a) > [T 1) TT {1+A.(b)}
benf;la*—{o,—l} Vel oo veS(a)

x [T A(B)>xN(a)*IN(b(b+1))[

veZgn—S(afy)

- CSON@) Y 3y T,

IcS(a) vel

Here we note

10g G, <ep N(a)*IN(b(b+1))[5, be nf;la_l -{0,-1}.
w4eS(b(b+1)ono)-S(anfy,)

Indeed, if b € nf,'a™ - {0, -1}, we have b(b +1)f;a* c 0 and
S(b(b+1)ono) - S(anf,) c S(b(b+ 1)‘f,21c12 .
Hence,

log gy, < > log 4w, <logN(b(b +1)f,a®)
w4€S(b(b+1)ono)-S(anf,) waeS(b(b+1)f7a?)
<e [N(b(b +1)) N(fy)* N(a)?[%,
for b € nf;la_l — {0, -1}. Therefore, the assertion follows from Proposition 6.4 and
from C*$(®) «, N(a). ]

9.5 Unipotent Terms

It is seen from (4.10) and (4.11) that W{ (I, n|a) is a linear combination of

[MTU”(a,) and ﬁzw(ocw) M U'(a,) (wes),

ves veS—{w}

where U,"" () is defined in (6.3) and

9.8) Ul (a,) =

1 o+2mi(logq,)™" qv(cv,,)log qv
27‘[1' o—2mi(log gy)™1 _ —(s+1)/2\p 01 _ —(s+1)/2 s+1“v(s) dyv(s)
toga)™  (1-y,(@y)q; 2(1-q, )q;

with d, (s) = 27 (log g, ) (q$"""* = g{"9/*Yds and o > 0.
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Lemma 9.13  For any m € Ny, we have
U (a§™) = ~28(m = 0) + """

) {8<m e2N)(1-gq;"), (@) = -1,
8(m>0){(m-1)-(m+1)g;"}, n.(@,) =1,
Tl (al™) = =8(m > 0)g;™*(log q)

[ - S e B e <,
“1)(m-2 1
{ (m )Z(m g, - m(r;ﬁ )}, 7y(@y) = +1.

Proof The first formula is proved in [11, Proposition 11.1]. The second formula is
shown similarly. [ |

Appendix A An Estimation of a Certain Lattice Sum

Let d > 1be an integer. We fix [ = (Ij)i<j<a € R? such that I; > --- > I} > 4, and
consider a positive function f(x) on R? defined by

d
F) =TT+ D)™, x = (x)igjea € R
j=1

Given a Z-lattice A c R? (of full rank), we define

oA = Y f(b),  r(A)=+ min [b].

beA—{0} 2 beA-{0}

Viewing 6(A) as a function in A, we need to compare its asymptotic size with a cer-
tain power of D(A), the Euclidean volume of a fundamental domain of R? /A. The
following is the main result of this section.

Theorem A.1 Let F be a totally real number field of degree d. Let Ay and A be
fractional ideals such that A c Ao; we regard them as Z-lattices in R by the embedding
F — RHOMER) ~ RA Thepn, O(A) << {1+ 7r(Ag)}¥4/2D(Ag) ' D(A) 172/ with
the implied constant independent of A and A.

A.1 Proof of Theorem A.1

Let du(w) denote the Euclidean measure on the sphere 7! = {x = (xj)1<j<d €
R ¥, 63 =1}

Lemma A.2  Forany A = (;) € C¥ such that Re(A;) < 1, we have

d d 14 —Aj
I() = [S.H [Tlojl™du(w) =20(3, 54T %)
j=1 / '

= j=1 j=1
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Proof The formula is obtained by computing the integral

2 d A
Al - T
(A1) Jowexplels I [Tl d

in two different ways, where € > 0 and Re(1;) < 1. By expressing (A.1) as an iterating
integral, we compute it as

d —ex?| A 4 e LA
IT [ e ax; = [Tet 20—~
j:] R j:1 2

d
_shoan LAy
) =€'> ﬂ (=)

on one hand. On the other hand, by the polar decomposition, (A.1) becomes

o L o
fo fge " TTlpw;|1p* dp du(w)
1

d - ]
= (_/S‘d,1H|wj|_)'j d‘u((U))([O e—é‘P p_Z?:11j+d—1 dp)
j=1

1-1;
2

SN

I
—_

= ()2 e D ). n

J

Lemma A.3  Fort=(t;)icjca € [1,00)%, set

o(t, . 1a) :[S’Hf(tlwl,...,tdwd)dy(w).
For t > 1, let t denote the diagonal element (t;) defined by tj =t (1< j<d). Then
p(1) =0, refl,00).

Proof For A =(1;) € C? such that 0 < Re(};) < 1, we compute the multiple Mellin
transform ¢(A) = [ [ @(t1, ..o ta) ]'[}i:1 t?dt—ij. By Lemma A.2,

d )
—_ 7. Ai—
0= [, AT [ Qe gl ™26 dij} du()
i1
4 PP 1/2 A1
:fgﬁ{]‘“wjrffo (L )27 dty) dp(w)
-1

d d -
(L Tl (T oy an)
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d
=I(A){ n T(1;/2)7'T(1;/2- ;)T (X))}

1-1;

:2r(i

j=1

1 d
) {T1r(/2)7'T((1=24))/2)T (/2= ;)T ()}
j=1

By Stirling’s formula, this is bounded by a constant multiple of

d
P(ImA) exp(-m Y. |Im(;)])

=1
with some polynomial P(x;, ..., x,) which can be taken uniformly with Re(1) var-
ied compactly. Thus, by a successive application of the Mellin inversion formula, we

obtain

p(t) =

/ / li[r l_i)r(lzi_/\j)ruj)} b d 0

R e | S (N5) RN
where 0 < 0; < 1forall1 < j < d. We shift the contours L,; = {Re(1) = o;} in
some order far to the right. The residues arise when the moving contour L,; passes
the points in (1 + 2Z30) U (1j/2 + Z3o). Among those residues, the one with the
smallest possible power of ™' comes from the pole at A; = [;/2,1; =1(2 < j < d) if
I, > I}, which we assume for simplicity in the rest of the proof of thls lemma (When
I, = 1, there are several terms giving the same power in t™'.) The residue term is
O(t(4-1%1/2)) by which the contribution from the remaining terms are majorized.
This completes the proof. ]

Lemma A.4

@) f(x+y) > f(x)f(y)forall x,y e R%
(i) vol(S*™)(1+p) /2 < [u fpw) du(w) < (1+p)=971/2, p > 0, with the
implied constant depending on | and d.

Proof (i) is immediate from the inequality 1 + |x; + y;| < (1+ |x;])(1 + [yj). As
for (ii), we first note the inequality 0 < |w;| < 1for @ € S?™. Using this, we have
4,1+ pw)) < (1+ p). By his,

flpw) > {H(1+pw;|)} 25 (14 p)tial,

Taking the integral in w, we have the estimation from below as desired. The upper
bound is provided by Lemma A.3. ]
We compare 6( A) with the integral of () ontheball By = {x ¢ R%||x| < r(A)}.

For convenience, we set I(D) = [}, f(x) dx for any Borel set D in R¥.

Lemma A.5 Let Ay and A be Z-lattices such that A c Ag. Then we have the inequality
O(A) <I(By,) ' I(R? - By).
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Proof Lemma A.4 (i) gives us I(Ba)0(A) < Tpen—go} [, f(b +x)dx. Since A c
Ay, we have B, c By, from which I(B,,) < I(B,) is obtained by the non-negativity
of f(x). Since (Ba + Bo) N A = {0}, the translated sets By + b(b € A — {0}) are
mutually disjoint. From this remark

S [, fexax< [ fG)de=1(R - By). n

beA—{0}

Lemma A.6  Let A be a Z-lattice. Then I(Bx) > vol(S*™)(1+7(A)) #a/2r(A)4/d.
We also have (R — By) < r(A)'"1/2 with the implied constant independent of A.

Proof By Lemma A.4 (ii),
r(A) d-1
I(By) = fo o S (pw) dwp™dp
a1y [T ~dlg/2 d-1
> vol(S*7) (1+p) p*dp
0

d-1 —atgp [T 4
> vol(S4) (14 r(A)) f P4 dp
0
=vol(S¥ )1+ r(A)) /21 (A)/d,
d _ [ d-1
R B = [ [, Spw)dap*dp

« [T (14 p)d-h2 d-1 4
T(A)( p) pedp

< p M2 dp = (L)2-1)"tr(A) N2, n
r(A)

Lemma A.7 Let F be a totally real number field of degree d. There exist positive
constants Cq and C'y such that C4r(A)? < D(A) < Cyr(A)? for any fractional ideal A.

Proof The first inequality follows from Minkowski’s convex body theorem. The sec-
ond inequality is proved as follows. For any b € A — {0}, there exists an ideal a c o
such that (b) = aA; hence |[N(b)| = N(A)N(a) > N(A). Thus, by the arithmetic-
geometric mean inequality,

d d
DAY = N < {TT 102 < {3 Ib,2/d} 2 = a 72| b).
j=1 j=1

Hence, D(A)Y4 < 2d72r(A). This shows D(A) < C, r(A)? with C, = (2d7/2)4.
|

Theorem A.1 follows from Lemmas A.5, A.6 and A.7 immediately.
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