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Let k be the kernel of a "general transformation11; that 
i s , k(x)/x €.1^2 (0*0°) > and if x and y a r e positive 

(1) J0 k(xu)k(yu)u du = min(x ,y) . 

Then it i s well known (see for example C8; Theorems 129 and 13l]) 
that if the t ransform of f € L 2 (Q*00) is g, that i s , if 

(2) g(x) = (d/dx) / * k(xy)f(y)dy/y, 

then the inverse t ransform i s given by 

(3) f(x) = (d/dx) / "k(xy)g(y)dy/y. 
J O 

In p rac t i ce , the inversion formula (3) is often hard to use . 
For example, the integral may be too difficult to evaluate; m o r e ­
over , since (2) requi res a differentiation, it i s not well suited 
for numerical calculation. Hence it seems worthwhile to find 
other methods for inverting the transformation. 

Here we shall give a technique for finding a large number 
of inversion formulae, and will i l lus t ra te the technique by a 
number of examples . It should be noted that , since the relat ion 
between f and g i s rec iproca l , we can calculate the t ransform of 
f by applying the inversion methods developed here to f ra ther 
than to g. 

The essence of the inversion technique to be developed here 
is the conversion, by a suitable operation, of the general t r a n s ­
formation into some other t ransformation. Fo r this second t r a n s ­
formation we chose the Laplace transformation since it has a 
par t icular ly r ich inversion theory. 

* This paper was writ ten while the author was a fellow at the 
1958 Summer Research Institute of the Canadian Mathematical 
Congress , Kingston, Ontario. 
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To this end, suppose the Laplace t rans form of f i s F , that 
i s , 

(4) F(s) = / * e"SXf(x)dx, s > o, 

and let 

(5) K(s) = s / 0 e" s xk(x)dx, s > o, 

Then since (by (2; Chapter 3, % 2, Theorem 1] ) we may differ­
entiate a Laplace t ransform as often as we like under the integral 
sign, we have, if s and x a r e posi t ive, 

x ^ K f s / x ) = s x " 2 / ^ e " s y / x k(y)dy 

= (d/dx) / ° ° e - s y / x k(y)dy /y = (d/dx) / % " syk(xy)dy/y, 

that i s , x " 1 K(s /x ) is the k - t rans form of e ~ s x • Hence, by the 
P a r s e v a l formula for general t ransformat ions £8; theorem 129J» 

(6) r K i s / x J g W d x / ^ ^ e - s x f (x)dx^F( S ) • • ' , . J o O 

that i s , / °° K(s/x)g(x)dx/x is the Laplace t r ans fo rm of f» 

Hence any inversion technique for the Laplace t ransformat ion, 

when applied to JQ K(s/x)g(x)dx/x will serve to inver t the 

general t ransformat ion as well . 

As a f i rs t example, le t L^ x denote the Widder Pos t i nve r ­
sion operator for the Laplace t ransformat ion, that i s 

L n > x C F ] = C( - l ) n / n l ] ( n / x ) n + 1 F ( n ) (n /x) . 

Then from (6)# L [F}-formal ly i s equal to 

(7) ft f g ) = C ( - l ) n / n O ( a / x ) a + 1 / ° B K < n > ( n / x y ) g ( y ) d y / y l r i - 1 . 
n, x y o 

Thus we would suspect that ^Ktx.x [gj should yield f in the l imit 
as n-^oo • We prove this in the following theorem, 

THEOREM 1. If f € L 2 (0, <4 and g i s the k - t r ans fo rm of 

f then 
l im J( [g] = f (x) 

at every point x > 0 in the Lebesgue set of f. 

Proof. As a l ready r emarked , we can differentiate 

/

oo 
o e~ s uk(u)du, as often as we like under the in tegra l 
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sign» Using the Leibnitz rule, we obtain 

K<n)(s) = (-l)ns / % - s V k ( u ) d a + n(-l)11-1 / * e - ^ ^ k ^ d u , 

so that if x > 0, 

C(-l)n/yn+1}K(n)(n/xy) = (n/y11*2) /°° e - ^ ^ J ^ u - y j u ^ k M d u 

= (d/dy)y-n/C° e-nu/xyun-1k(u)da= (d/dy)/00 e-na/xun"1k(yu)du. 

Hence if x > 0, as a function of y, C(-l)n/yn+1]K^n) (n/xy) is the 

k-transform of e~ny' ^y11 • By the Parseval theorem for general 
transformations £8; theorem 129] , 

^ n , x [ g ] = C( - l ) a /n0(n /x) n + r /* K<n> {n/xy)g(y)dy/yn+1 

= (1/ni )(n/x)n+1 / * e-ny/xyn^(y)^y 

= [(-l)n/nl)(n/xf+1F(n) (n/x) = Ln j X lF] . 

By [9; chapter 7, theorem 6a } , **mn-» oĴ n X £ F 3 = f(x) at 
every point x > 0 in the Lebesgue set of f, and hence 

lima->cx^n,x^g'' = f*X* a t e v e r y s u c h Po in t-

Let us see what J( looks like for certain particular 

general transformations. If, for example, k(x) = (2/it)"2 sin x, 
then the equation of the transformation is 

g(x) = (d/dx)(2/7r)i/o°° y"1 sinxy f(y)dy 

that is, we obtain the Fourier cosine transformation in this case. 
Then from [3; § 4.7(1)} , K(s) = (2/lt)i(s/s2+l) = (2JT)-2Re {l/s- i}, 
and 

^ n xCg3 = nn+1 (2TT) 4 /°° Re { l/(n-ixy) n + 1} g(y)dy . 

Similarly for the Fourier sine transformation; that is if k(x) = 

(2/Tl) ^ (1-cos x), we obtain 

X fgl = rP-+1(ZTy) 4 / » Im { l/(n-ixy) n+1}g(y)dy . 
n,x ' o ' 

From these two formulae it is easy to find an inversion 
formula for the complex Fourier transformation, defined for 
f €L2 (-OQOO) by 

g<x) = (d/dx)(2iT) -£ /o
œC(eixy -D/ iy ] f(y)dy . 
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The even par t of g is the cosine t ransform of the even par t of f, 
and the odd par t of g is i - t imes the sine t ransform of the odd 
par t of f. Patt ing things together in this manner we see that , if 

y fg] =.(-ia/x)n+1(2Tr) " ^ / ° ° ( y - i n / x ) - ( n + 1 ) g(x)dx 
n, x o 

and if f€ L, 2(-OD,OO) and g i s the complex Four ie r t ransform of f, 

then lim ;? Cs3 = f(x) at every point x ^ 0 of the Lebesgue 

set of f. (For other uses of this invers ion operator for the Four ie r 
t ransform see [7}.) 

To obtain other invers ion formulae for a general t r ans fo rma­
tion we select other invers ion opera tors for the Laplace t ransforma­
tion. For example let M n x denote P h r a g m e n ' s invers ion opera tor , 
that i s 

M n x C F ) = 1 ^ < - l ) r + 1 ( r i ) " 1 e r a x F ( r n ) . 

Applying this to (6) and using £2; chapter 8, h 1, theorem i j 
we see that if x > 0, 

/ * f(y)dy = l i m n ^ 0 0 I r ^ i ( - l ) r + 1 ( r i r 1 e r n x / * K(nr/y)g(y)dy/y . 

We can put this in a somewhat s impler form: 

THEOREM 2. If f€L,2(0,oo) and g i s the k - t r ans fo rm of f 

then for x 7 0, 

/ x £(y)dy = l i m n ^ 0 0 / H(n, x,y)g(y)dy, 

where 

H(n,x,y) = ( d / d y ) / * ( l - e " ^ * " 1 1 * )k(yu)du/u, 

Proof. F r o m the P a r s e v a l formula for general t r ans fo rms 
[ 8 ; theorem 129] we have 

/o°° H(n,x,y)g(y)dy = J™ ( l - e - e n ( x " y ) )f(y)dy, 

and expanding the exponential we obtain 

/ 0 0 H(n ,x , y )g (y )dy = I _? , {- D r + 1 (ri yle r n x / " e- r nyf(y)dy 

= Z r t o . ( - l ) r + 1 < r i ) - 1 e r n x F ( r n ) = M a f X C F ] , 
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provided we justify the interchange of integration and summation. 
For this it suffices to show that 

Z ( e r n x / r l ) r e" r ny|f(y) | dy < » , 
r=o ' o 

and this i s easy since by £2? Chapter 3, § 6, Theorem l 3 > 

/ ° ° e - r n y | f ( y ) | dy-^0 as r->oo. 
J Ci 

By using other inversion operators for the Laplace trans­
formation, such as the Widder-Boas operator ClJ , or Hirsch­
mann^ operator [ 4 ] , or the Erdélyi-Rooney operators [ 5 , 6 j a 
variety of other inversion formulae all of much the same type, 
can be found. A rather different inversion method comes about 
by making use of a technique using JLaguerre polynomials. We 
state this as a theorem. 

THEOREM 3. If f €JL2 (0 ,») and g i s the k-transform of f, 
then 

f(x) = 1. i . m . ^ e - £ x Z £ 0 qrLr(x) 

where 
00 

o 
q n s 2 1 r = o ( ? ) < r l ) ' 1 / " K ^ ( l / 2 x ) g ( x ) d x / x r + 1 

Proof. The theorem follows from \jL\ Chapter 8, § 3, 
Theorem 1^ once we have show that 

rOO 

o 

As in the proof of Theorem 1, 

I<*> (S) = f00 K<r> ( s /x jg tx jdx /x^ 1 . 

K<r> (s) = ( - l ) r s / ^ , e - s y y
r k ( y ) d y + r ( - l ) * - l / " e-8ty*-lk(y)dy, 

so that 

x - ( r + l ) K ( r ) ( s / x ) = ( . 1 ) r s x - { r + 2 ) / V * y / x ( y _ r x ) y r - l k ( y ) d y 

= ( - l ) r ( d / d x ) x " r r e- sy/3V r"1k(y)dy 
o 

= (-1) r(d/dx)/rC° e- s y y
r - 1 k(xy)dy ; 
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that is x - ( r + 1 ) l d r ) ( s / x ) i s the k-transform of (-y)re"-sy .Hence 
by the Parseval theorem for general transformations 

o 
f°°K< r) ( s / x ) g ( x ) d x / x r + 1 = /°°e~ s y(-y) r f (y)dy = F<r> (s) , 

on using \jl\ Chapter 3, $ 2, Theorem l } , and our theorem is 
proved. 
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