ON THE INVERSION OF GENERAL TRANSFORMATIONS®
P. G. Rooney

(received August 2, 1958)

Let k be the kernel of a ""general transformation'; that
is, k(x)/x €L, (0,), and if x and y are positive

o -2 .
(1) jo k(xu)k(yu)u “du = min(x,y).

Then it is well known (see for example [8; Theorems 129 and 131))
that if the transform of f € L3 (0,®) is g, that is, if

o]
(2) - glx) = (d/dx) [ klxy)ly)dyly,
then the inverse transform is given by

(3) £(x) = (d/dx) [ “kixy)g(y)ay/y.

In practice, the inversion formula (3) is often hard to use.
For example, the integral may be too difficult to evaluate; more-
over, since (2) requires a differentiation, it is not well suited
for numerical calculation. Hence it seems worthwhile to find
other methods for inverting the transformation.

Here we shall give a technique for finding a large number
of inversion formulae, and will illustrate the technique by a
number of examples. It should be noted that, since the relation
between f and g is reciprocal, we can calculate the transform of
f by applying the inversion methods developed here to f rather
than to g.

The essence of the inversion technique to be developed here
is the conversion, by a suitable operation, of the general trans-
formation into some other transformation. For this second trans-
formation we chose the Laplace transformation since it has a
particularly rich inversion theory.

* This paper was written while the author was a fellow at the
1958 Summer Research Institute of the Canadian Mathematical
Congress, Kingston, Ontario.
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To this.end, suppose the Laplace transform of f is F, that

is,
(4) CF(s) = [g e S¥e(x)ax, s> o,
and let
[e2]
(5) K(s) = s [, e 5%(x)dx, s » o.

Then since (by [2; Chapter 3, § 2, Theorem 1] ) we may differ-
entiate a Laplace transform as often as we like under the integral
sign, we have, if s and x are positive,

x~1K(s/x) = sx % f:o e'SY/?‘ k(y)dy

= (a/dx) [ &5V *(y)ayly = (@/dx) [ Z e SVrixylay/y,

that is, x"lK(s/x) is the k-transform of e"5¥ , Hence, by the

Parseval formula for general transformations (8; theorem 129],
(6) , /e K(slx)g(x)dx/"ﬁ;=;[: e~ S%f(x)dx = F(s) ,

that is, j:’ K(s/x)g(x)dx/x is the Laplace transform of f.

Hence any inversion technique for the Laplace transtormation,
when applied to f:o K(s/x)g(x)dx/x will serve to invert the

general transformation as well,

As a first example, let denote the Widder Post inver-
sion operator for the Laplace transformation, that is

Ly (F)= (-077m) (/™ ) @/,
Then from (6), L _ [ F)formally is equal to
(7) 7(n,x(g3 = ((-1)™/nt) (m/x)"t? /:K(n) (n/xy)gly)dy/y ™1,

Thus we would suspect that 7<n,x [g]) should yield f in the limit
as n~> o « We prove this in the following theorem,

THEOREM 1. Iff € L2 (0,0) and g is the k~transform of

f then
lim o, K &) = £(x)
at every point x Y 0 in the Lebesgue set of f,
Proof, As already remarked, we can differentiate

[e <]
K(s) = s /o e~ ®Yk(u)du, as often as we like under the integral
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sign, Using the Leibnitz rule, we obtain ‘

K(n)(S) = (~1)Bs /: e~ 54y (u)du + n(-l)n"1 /: e "suun'lk(u)du,
so that if x > 0, ‘ '

[(-1)n/yn+ IIK(n) (n/xy) = (n/yn+2) /: e -nu/xy[x-lu-y]un'lk(u)du
= (d/dy)y™2 / :’ e~0u/xyyn-ly(y)du = (d/dy) /:’ e~Pu/Xyn-l(vu)du,

Hence if x ) 0, as a function of y, [(-l)n/yn+1]K(n) (n/xy) is the

k-transform of e'nY/Xyn . By the Parseval theorem for general
transformations [8; theorem 129] ,

F o xlg] = (-02/m) (a7 21 [ & k) (@/xy)g(y)y [yt
(1) (/=)= [/ o2y xyRily)ay

(-1)%/nt] (/=P L FlB) (n/3) = L L(F] .

By [9; chapter 7, theorem 6a ] , lim > oden, x (F] = £(x) at
every point x > 0 in the Lebesgue set of {, and hence

lim n»ﬁn,x[g] = f(x) at every such point.

Let us see what Kx looks like for certain partilcu,lar

general transformations. If for example, k(x) = (2/%)2 sin x,
then the equation of the transformation is

1 - .
g(x) = (d/dx)(2/m)z2 /o°° vy~ ! sin xy f(y)dy
that is, we obtain the Fourier cosine transforrnatlon in this case.

Then from [3; § 4.7(1)) , K(s) = (2/7)2(s/s%+1) = (2F)"ZRe {1/s-i},
and

K, o83 = o1 2172 [ © Re {1/(a-ixy) **1} gly)dy .

Similarly for the Fourier sine transformation; that is if k(x) =
1
(2/m) 2 (1-cos x), we obtain

X, (&= P+ (2m) -%[:’ Im { 1/(n-ixy) ™ 1} g(y)dy .

From these two formulae it is easy to find an inversion
formula for the complex Fourier transformation, defined for
f€L, (-xwx) by

g(x) = (d/dx)(Z‘n') /o (™Y -1)/iy] f(y)dy .
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The even part of g is the cosine transform of the even part of {,
and the odd part of g is i - times the sine transform of the odd
part of f. Putting things together in this manner we see that, if

F, L8] = (-in/07 @m 72 /7 (yein/0" D) goax

and if f€ L, 2(-w,) and g is the complex Fourier transform of {,

n—»>ow
set of f. (For other uses of this inversion operator for the Fourier
transform see [7].)

then lim }'n x[g] = f(x) at every point x # 0 of the Lebesgue

To obtain other inversion formulae for a general transforma-
tion we select other inversion operators for the Laplace transforma-
tion. For example let My x denote Phragmén's inversion operator,
that is

©
_ r+l, ,,-1 rnx
M, (F)=2 _ (-7 () ™ () .

Applying this to (6) and using [2; chapter 8, § 1, theorem 1]
we see that if x > 0,

. *® - ®
JE fly)dy = limy, (Fro1 (DT e TR /2 K(ar/y)g(y)dy/y -
We can put this in a somewhat simpler form:

THEOREM 2. If f€L,(0,®) and g is the k-transform of {
then for x > 0,

(o]
S fydy = limy, o, [ Hm % y)glndy,
where
H(n,x,y) = (d/dy) /:3 (l—e'en(x-u) Yk(yu)du/u.

Proof. From the Parseval formula for general transforms
[8; theorem 129] we have

-en(x

[ Hinx, ey = [0 (e gpyay,

and expanding the exponential we obtain
®
[T Hmxygdy = L2 (0T ) tle Trx S Bemrvi(y)ay

= T o (-1t lemnXp(rn) = M _(F],

n,x
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provided we justify the interchange of integration and summation.
For this it suffices to show that

(o2)

Z,.

® -rn
oy (€%/xt) [T e T 5(y)] dy< @,

and this is easy since by [2} Chapter 3, § 6, Theorem 1],

® -rny

e | #y)| dy—=>0 as r>w.
o
By using other inversion operators for the Laplace trans-

formation, such as the Widder-Boas operator {13}, or Hirsch-
mann's operator [4] , or the Erdélyi-Rooney operators [5,6] a
variety of other inversion formulae all of much the same type,
can be found. A rather different inversion method comes about
by making use of a technique using Laguerre polynomials. We

state this as a theorem.

THEOREM 3. If f€L, (0,®) and g is the k-transform of {,
then

1
flx)=1. 4. m. e 2X 3 1, qL(x)

where
9]
a0 = T2 (M)t [ Tk (17 2x)g(xjax/x 7L
o

Proof. The theorem follows from [2; Chapter 8, § 3,
Theorem 1] once we have show that

K™ (s) = [7 () (s/3)g(x)dx/xTHL,
o
As in the proof of Theorem 1,
K{T) (s) = (-1)Ts JZ ey kiy)dy + x(-1)T-1 [® & -syyT-lk(y)dy,
so that
x-(r+ I)K (I') (S/X) = (_l)rsx -(r+2) /o;”e-SY/X(Y_rX)Yr-1k(y)dy

= (-7 (@/dx)x T [ e SV T N(y)ay
(o}

=(-1) *(@/ax)f" ey T iegaylay ;
o
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that is x~(r+1) k(7) (s/x) is the k-transform of (-y)¥e~SY ,Hence
by the Parseval theorem for general transformations

f°° K(T) (s/x)gx)dx/x T = [T e=8Y(-y)Ts(y)ay = F(T) (s),
o “ o

on using [2; Chapter 3, § 2, Theorem 1] , and our theorem is
proved.
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