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Abstract

Let K be an infinite cardinal, F a field, and let GL(/c, F) be the group of all non-singular
linear transformations on a /c-dimensional vector space V over F . Various examples are given
of maximal subgroups of GL(K , F). These include

(i) stabilizers of families of subspaces of V which are like filters or ideals on a set,
(ii) almost stabilizers of certain subspaces of V ,
(iii) almost stabilizers of a direct decomposition of V into two K-dimensional subspaces.

It is also noted that GL(K , F) is not the union of any chain of length K of proper subgroups.

1991 Mathematics subject classification (Amer. Math. Soc): 20 B 07.

1. Introduction

Throughout this paper K will denote an infinite cardinal, F a field, V a
vector space of dimension K over F, and G := GL(K , F) will be the group
of all non-singular linear transformations from V onto itself. This paper is
mainly concerned with maximal subgroups of G, and its goal is to extend
to G certain results from [1], [7] and [8] on maximal subgroups of infinite
symmetric groups. The examples given of maximal subgroups are very far
from exhaustive, and there are several further natural candidates for maximal
subgroups which remain to be checked. Also, it would be natural to extend
the results further to infinite dimensional classical groups preserving a form.
I have not attempted this.

In Section 2 we define notions of filter and ideal on the lattice of subspaces
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[2] Maximal subgroups of infinite dimensional general linear groups 339

of V. The main theorem (Theorem 2.3) of this paper is that stabilisers
in G of maximal filters or ideals are maximal in G. In fact, the action
induced by G on any orbit of maximal ideals or filters is 2-transitive. The
proof is straightforward. It is similar to the result of Richmann [9] that if
S is the symmetric group on an infinite set Q then the stabiliser in 5 of a
maximal filter or ideal on O is maximal in S. We also note, in Theorem
2.12, that, in an appropriate sense, the almost stabiliser of any subspace of
V is maximal in G. Another maximal subgroup of G, given in Theorem
2.13, is the almost stabiliser of a direct sum decomposition of V into two
K-dimensional subspaces. In Section 3 we add some miscellaneous remarks
about G. In particular, we note in Theorem 3.1 that G is not the union
of a K-chain of proper subgroups (this is similar to a result from [8] about
symmetric groups).

It is convenient to recall here the classification of the normal subgroups of
G, due to Rosenberg [10]. Let F* denote the multiplicative group of F.
For each infinite cardinal X < K , let

(here Fix(g) is the subspace of V consisting of vectors fixed by g). Note
that g e Gx if and only if Dim(Im(g - 1)) < A. Then the normal subgroups
of G which are not contained in Gm are precisely the groups of the form
Gx-Z , where Z < F*. We put G*x := Gx-F*. The normal subgroups of G
which are contained in Gw are also described in [10], and were classified by
Dieudonne in [2] (they are the natural analogues of the normal subgroups of
GL(n,F)).

We will use the following standard permutation group notation. If H
is a permutation group on a set Y, and A C Y, then H,A, , H(A) denote
respectively the setwise and pointwise stabilisers of A in H.

Several people have made helpful contributions to this paper through con-
versation. In particular, I mention Paul Bankston, Claudia Bottinger and
Wilfrid Hodges.

2. Maximal subgroups of G L ( K , F)

First, we record the following lemma of Peter Neumann, given in the
present form in [8].

LEMMA 2.1 [8, LEMMA 2.1]. If Q is an infinite set, S := Sym(fi), and
T, A are subsets of Q with \Y n A| = Min{|r|, |A|}, then
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340 Dugald Macpherson [3]

This lemma has the following linear analogue, which we use repeatedly.
If U < W < V we say that U is a moietous subspace of W if Dim U =

PROPOSITION 2.2. Let V be the direct sum ofmoietous subspaces Ux, U2,
W, and put Hx := G^ >{W+Ui}, H2 := G(Ui){w+Ui}. Then G = (HX, H2).

PROOF. Let 38x = (uxk : A < K) , £§2 = (u2k : X < K) and 38w = (wk :

A <K) be ordered bases for Ux, U2, and W respectively, and let 38 be the
basis 38K U&2U&W of V. Note that by Lemma 2.1, (//,, H2) induces the
full symmetric group on 38, so we need only show it is transitive on the set
of ordered bases of V. Let 38' be a basis of V. Also let n{, n2 and nw

be the natural projections of V onto Ul, U2 and W.
CLAIM 1. There is hx e (Hl, H2) such that &hx D &x.
PROOF OF CLAIM. First, since {S8'nx) - [/, there is k{ e Hx such that

38'kxiix D 3§x. For each X < K choose xx e 38'kx such that xknx = uxx,
and write xx = uix + vx where vk e W®U2. There is a moiety A of K such
that (vx : X e A) has codimension K in W © U2. Choose k2 e (Hx, H2)
so that { « u , VX : X € A}k2 spans a moietous subspace of £/,. Then choose
k3 e Hx so that xxk2k3 = uxk for all X e A. Finally, choose k4 e (Hx, //2)
so that {MU : A G A}k4 = {un : X <K} , and put hx = kxk2k3k4 . This proves
the claim.

Next, since (Hx, H2) induces the symmetric group on 38 there is h2 e
(Hx, H2) such that 38'hxh2 D 38x \J38W . Thus,

<%'hxh2=£8x u&w U

where (M^ : X < K) is a basis for C/2 , and aXjl, bk G F for all X, fi < K .
Clearly there is h3 e //2 taking ^ U { £ A < I C fl^w^+E^ ^ % + M l : A < K)
onto ^ ^ U {Z)^<K

 axnuin + u2k : X < K) . Next, choose A4 e //, so that
= wk and u;^^ = uxk. Then

&'hxh2h3h4 =38X\J 38W U { ^ % % + M2A : A < /c}.

Now there is A5 e //2 so that £&'hxh2h3h4h5 = 38 , as required.

The notations oi filter and /cfea/ on a set have natural vector space ana-
logues. An ideal on V is a family .f of subspaces of V such that

(i) {0} G J2" and F £ J .
(ii) if C/ € J and fF < U then W eJ*,
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(iii) if Ui,U2eJr then Ux + U2 e J .
Similarly, a filter on V is a family 9~ of subspaces of V such that

(i) F e / , {0} $&-,
(ii) if U e & and U < W < V then W e &,
(iii) if Ux, U2 € & then [/, n U2 € &.

Note that, by Zorn's lemma, every ideal (respectively filter) on V is contained
in a maximal ideal (respectively filter) on V. Note too that there is no natural
duality between ideals and filters on V. If 5? is any family of subspaces of
V then

:= {g e G : for all U < V, UeS*if and only if Ug e &} .

Note that G has a natural action on the set of all maximal ideals on V, and
on the set of all maximal filters on V. By the next theorem, this yields a
large family of maximal subgroups of G.

THEOREM 2.3. If 5? is either a maximal ideal or a maximal filter on V
then G acts 2-transitively on the set of all G-translates of S?, and hence

is a maximal subgroup of G.

LEMMA 2.4. (i) Let J^^J^ be maximal ideals on V such that for every
moietous subspace W of V, W e J^ if and only ifWeJ^. Then Jr

x=^2.
(ii) The same as (i) holds with filters replacing ideals throughout.
(iii) Every maximal ideal or filter on V contains a moietous subspace of

V.

PROOF, (i) It suffices to show that if U e J\ and Dim U < K then there
is some moietous subspace W of V with U <W and W eJ\. So let Wo

be moietous in V. If Wo $ J"x then there is Wx eJ\ with W0®W{-V.
As U, Wx e J\ , U + WxeJr

x. Clearly U + Wx is moietous in V.
(ii) This is similar to (i).
(iii) Let J2" be a maximal ideal on V, and let W be a moietous subspace

of V. If W £ S then by maximality of J, W has a complement U in
V with f / e / . Since U is moietous in V, this yields the result for ideals.
The proof for filters is similar.

The following lemmas are analogues for vector spaces of results which are
immediate for symmetric groups.

LEMMA 2.5. Let J2" be an ideal on V, and put G,y, := \J{GrV-,
U 6 J2"}. Then G(jr) is a normal subgroup of
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342 Dugald Macpherson [5]

PROOF. CLAIM 1. If U e S and W < V with U e W = V, then
G(w),{u} ^ G w

PROOF OF CLAIM. Let T e ^ and say T has a basis (tx : X < fi) with
tx = ux + wx where ux e U and wx e W, for all X < /u. Now if g €
G(W) {u} t n e n ' ^ = ux8 + wx ^or a11 ^ < /* • S i n c e ^ + t/ 6 / , and
(itf̂  : A < /z) < T + f/, (wk:X<n)eJr. Hence, as uxg eU for all X < //,

A < //) < U + (wA : X < fi) so Tg e J^ , as required.

CLAIM 2. In the notation of Claim 1, G,^ ([/) (w/u) ^s transitive on the
set of complements of U in V.

PROOF OF CLAIM 2. Suppose U®Wl = U®W2 = V, and let Wx have
basis {wA : X < fi} . Then JF2 has a basis {ux + wx : X < fi} where all the uk

lie in U. Let g be the element of G fixing (7 pointwise and mapping each
wx to ux + wx. Since Wxg= W2,'\\ suffices to show g 6 Gw, . So suppose

I e / . Then T has a basis {u'x + Y,v<ll Hvw
v :*</*> «i e C/, fl^ef).

Now clearly T^ := (£„<„ a^,,^,, : A < //, a^ € F) e / , since it is a
subspace of U + T. Also, T g has a basis {u'x + Y.v<lt

 ax^u
v + w

v) '• *• < f1 >

u'xeU,aXv£F). Hence Tg < C/ + T^ , so as C/ + T^ e / , TgeJ^ . A
similar argument shows that if -R e J2" then Rg~l e J? . Hence g €
as required.

It follows easily from Claims 1 and 2 that for each U e
G.jr, . Thus, the lemma will follow if we can show that G(jr) is a group.
However, it is easily verified that if U{, U2 e J^ and gx e G,v j ^y/u)'
Si e G{C/2})(K/I/2)

 t h e n ^1^2 e G{(/l+m,(F/(c/1+[/2))' a n d as ^ + f/2 e > this
shows that gx g2 e G^) •

LEMMA 2.6. Let & be a filter on V, and let G(gr) := {g e G : Fix(g) e
G(̂ -j w a normal subgroup of

PROOF. This is immediate.

REMARK. Lemmas 2.5 and 2.6, together with Theorem 6.4 of [8] (also
proved earlier in [9]), suggest the following question. If S" is a maximal
filter or maximal ideal on V, do we have G^ =

LEMMA 2.7. Let £7 be a maximal filter (respectively maximal ideal) on
V, and let U be moietous subspace of V lying in S?. Then there is W eS"
such that W is a moietous subspace of U (respectively, U is a moietous
subspace of W, and W is a moietous subspace of V).
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PROOF. Let S? be a filter. Choose a moietous subspace I of [/. If
X £ 5? then by maximality there is Y e 5? with I n 7 = 0 . Now choose
W to be any moietous subspace of U containing Y n U. The proof for
ideals is similar.

LEMMA 2.8. Let S? be a maximal ideal or maximal filter on V. Then
is transitive on the set of moietous subspaces of V which lie in 5?.

PROOF. Suppose that S? is a maximal ideal. Let Ul, U2 be moietous
subspaces of V lying in S?. If £/, + U2 is not moietous in V, then both [/,
and U2 are moietous in Ul + U2; hence, there is g e G,v +u x ,v,,v +u » with
C/j g = U2, and by Lemma 2.5 and the fact that Ul + U2 e S*, g e G^x, as
required. If Ui + U2 is moietous in V, then by Lemma 2.7 there is W € S'
such that Ux + U2 is moietous in W and W is moietous in V; hence there
is g e G{W^ (v/w) w*tn U\S ~ ^ 2 ' anc^ ^y Lenrnia 2.5 we have g e
as required.

We omit the proof when 5? is a filter, since it is very similar (it uses
Lemmas 2.6 and 2.7).

PROOF OF THEOREM 2.3. Let S? be a maximal ideal, and let Q be the
set of G-translates of S?. Let J ^ , J ^ , fx, f2 € Q with J^ ^ J^ and

. By Lemma 2.4(i) there is a moietous subspace [/, of V with t/j €
, and as U1 £ J ^ and by maximality of S?, Ux has a complement

U2 in F with t/2 e ^ \ ^ • Similarly, there are moietous subspaces Wj, W2

of K with FT, € f x \ ? 2 , W2 6 f2\fx, and K =WX®W2. By Lemmas 2.5
and 2.8 there are gx, g2 e G such that for all /, ) G {1 , 2 } , J^gj = /•
and t/,g = Wt (here, 2.5 is used since we need that for any W e S?,
G,™ ,wx is transitive on the set of complements of W in V). Let g
be the unique element of G inducing g{ on U2 and g2 on Ux . Now
gg~l e G{ [ / } ( F / [ / ) < G p ^ (by Lemma 2.5), so J^g = fx. Similarly,

The proof when ^ is a filter is very similar, and we omit it.
For the final part of Theorem 2.3 recall that a transitive permutation group

H on a set X is primitive if and only if, for every x G X, Hx is maxi-
mal in H. Since 2-transitive permutation groups are primitive, this yields
maximality of G w , .

QUESTION. IS the degree of transitivity in the actions of Theorem 2.3
greater than two?

One would expect Theorem 2.3 to yield a large number of non-conjugate
maximal subgroups. This is certainly true if the field is not too large. We call
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an ideal (respectively filter) uniform if it contains no subspace of codimension
in V (respectively dimension) less than K .

2K

LEMMA 2.9. There are at least 2 uniform maximal ideals on V, and at
2K

least 2 uniform maximal filters on V.
PROOF. We prove the result for ideals, the proof for filters being similar.

Let S? be the set of subspaces of V of dimension less than K . Also let
3! = (uA : X < K) be an ordered basis of K. By a theorem of Pospisil

2*

(Jech [5; p. 256]) there are 2 distinct uniform maximal ideals on 38,

( ^ : X < 2 ) say (here, "ideal" just means ideal of subsets of a set, and an

ideal f on 3S is uniform if, for every A e f , \3§\A\ = K). For each

X < 2 let J ^ be the ideal on V generated by

(note that each J*J is an ideal, that is, does not contain V). By Zorn's lemma
each J^ is contained in a maximal ideal J^* on V, and, as y c J ^ , J^*
is uniform. Clearly the ideals J^* are all distinct, since the ^ are distinct.

LEMMA 2.10. Distinct maximal ideals on V have distinct stabilisers, and
distinct maximal filters on V have distinct stabilisers.

PROOF. We prove the result for ideals, the proof for filters being similar.
It suffices by Lemma 2.4 to show that if J*" is a maximal ideal then J
contains every moietous subspace U of V for which G^y > G^Vy
So suppose W $ J* where W is moietous in V and G™, (viw) - {}
As If ^ / and J2" is maximal, there is U e J2" with U ®W = V.
Furthermore, by Lemma 2.7 there is I e / such that U is moietous in
X and X is moietous in V. Proposition 2.2 now shows that G{jr, = G, a
contradiction.

COROLLARY 2.11. Provided the cardinal (K-\F\K) is less than 22 , G has

22 distinct non-conjugate maximal subgroups.

PROOF. First, note that since \G\ is equal to the number of ordered bases
of V, \G\ — (K-\F\K). The result now follows from Theorem 2.3 and
Lemmas 2.9 and 2.10.

QUESTION. If the assumption in Corollary 2.11 fails, how many maximal
subgroups does G have up to conjugacy? In particular, how many maximal
ideals and maximal filters are there?
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REMARK. In the above material on filters and ideals, we have essentially
had to give the same proof twice, once for filters and once for ideals. It would
be interesting to know if there is any way to make these proofs uniform.

We now obtain some further maximal subgroups of G. As the proofs are
similar to earlier arguments, we omit some details. If X < K is a cardinal
and U, W are subspaces of V of dimension X, then we write U =x W if
Dim((t/ + W)/U) + Dim((U + W)/W)<X. Note that =x is an equivalence
relation (to see transitivity, note that if X =x Y =x Z then Dim((Z + Y +
Z)/Y)<X so Dim((* + y + Z)/(X + y))<A;hence , as Dim((X + Y)/X) <
X, Dim((X+Y+Z)/X) <A,so Dim((X+Z)/X) <X and a similar argument
gives Dim((X + Z)/Z) < X).

THEOREM 2.12. Let U < V with DimU = X < K and Dim(V/U) = K.

Let H := {g € G : Ug —x U}. Then H is a group, and is maximal in G.

REMARK. We may regard H as the almost stabiliser of the subspace U.
Note that H > G,v-, • G*x , with equality if and only if X > No.

PROOF. We omit the proof that H is a group. Suppose first that X <
K. Let g 6 G\H. By replacing g by g~* if necessary, we may suppose
that Dim((U + Ug)/U) = X, so U is moietous in U + Ug. It is easily
seen that there is k e (H, g) such that U n Uk = 0. Choose moietous
subspaces Vi, V2, W of V such that V = ((7® Vx)@ W®{Uk® V2). Then
(H,g) contains both G{UeVih{uk9yj@1Vy and Gm9Vjh{u&Vi9W}. Hence,
by Proposition 2.2, G = (H, g), as required.

Suppose now that X = K . Then we may assume (by adjusting by elements
of H if necessary) that U is moietous in Ug, or Ug is moietous in U, or
UnUg is moietous in each of U, Ug, or U and Ug generate their direct
sum which is moietous in V, or U® Ug — V . The first three possibilities can
be reduced to the fourth, and in the fourth, much as in the last paragraph, an
application of Proposition 2.2 shows that (H, g) = G. So suppose that the
fifth case holds, that is U®Ug — V . Let Ug = Wl®W2 be a decomposition
into moietous subspaces, let (u : n < K) , {w : n < K) be ordered bases
of U, W2 respectively, and let Wl := (u^+w^-.fKK). Clearly (H, g) >
G(v\ {w+w} • Also> there is h e H with Ugh — Wl © W3; hence, as W3 ©
{WX®W2) = V and H is transitive on the set of complements of U, there
is k e (H,g) with Uk = W2. It follows that (H, g) > G(w)>{u+w}-
Proposition 2.2 applied to U ,Wl,W2 now gives that (H, g) = G.

REMARK. It is very easily checked that the stabiliser in G of any finite-
dimensional subspace of V is maximal in G. From Proposition 2.2, the
same holds for subspaces of V of finite codimension in V. More generally,
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if U is a subspace of V such that Dimt/ = K and Dim(F/£/) = X where
No < A < K , then { g e C : t/g =k U} is a maximal subgroup of G, again
by Proposition 2.2.

If F = Fj © • • • © Vn (« < OJ) is a direct sum decomposition into moietous
subspaces, then the almost stabiliser of the decomposition is

{ g e G: there is n € S y m { l , . . . , « } such that for"!

a\li=l,...,n,Vlg=KVin-l ) •

Then / / is a group,and H>G*K- (GL(F,) x • • • x GL(FJ) -Sn , with equality
if and only if K > No .

THEOREM 2.13. Let V — Vx © F2, w/z r̂e Fj, F, are moietous subspaces
of V, and let H be the almost stabiliser of the decomposition. Then H is
maximal in G.

PROOF. Choose g e G\H and put K := (H, g). Also put N := GL(F,) x
GL(F2).

CLAIM 1. There is A: e K{v) {v/v) such that Dim((F2 + V2k)/V2) = K .
SUBCLAIM 1. We may suppose there is no h e K such that Vxh is a

moietous subspace of Vx.
PROOF OF SUBCLAIM. Suppose that there is such an h . Let V{ - V{h + Z ,

and let (zA : A < K) and {vx : X < K) be ordered bases of Z and F2

respectively. Then V2h has a basis of the form {zx + sx, vx + tx : X < K}
where sk,tkeVxh. Now choose k to be the linear transformation fixing V{

pointwise and taking vk + tk to vk + tk + zk + sk for all X < K . Because k
fixes Vxh and V2h setwise, hkh~l e N, so k £ K. Hence k satisfies Claim
1.

From now on we make the assumption indicated in Subclaim 1. Now write
Ux := F, n Vxg, Wx := F2 n F,g, U2 := Vx n F2#, W2 := F2 n V2g. There are
cardinals ft, v < K and linearly independent sets {xxk : X < / / } , {x2k : X <
v) C Vx a n d {yxk : X < n}, {y2k : X < v) C F2 such tha t

Vxg = Ux © Wx © ( x u + yn:X<n),

V2g = U2®W2® (x2k + y 2 k :X<u).

SUBCLAIM 2. We may assume that either

Ux © (xxk :X<n)=KVx,

o r
Wx®(yxk:X<n)=KV2.
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PROOF OF SUBCLAIM. Suppose that neither possibility in the subclaim
holds. Clearly one of Dim Ux, Dim Wx, n is equal to K . Hence there is
feN with Vxgf moietous in Vxg. It follows that Vxgfg~x is moietous
in Vx, contrary to our assumption after Subclaim 1.

SUBCLAIM 3. We may assume that fi = K .
PROOF OF SUBCLAIM. Assume for a contradiction that JU < K . Suppose

first (by Subclaim 2) that Ux e (JCU : X < tc) =K Vx. Then either
(i) Dim Wx < K , and Vxg =K Vx, or
(ii) Dim Wx = K , and Vx g contains a moietous subspace X with X =K

Vi-
la, case (i) there is / e K such that Vxgf - Vx and Dim((F2g/ +

V2)/V2) = K . It follows that for some n € JV, the element k := gfn
satisfies Claim 1. Case (ii) cannot hold, since it would contradict our as-
sumption after Subclaim 1 (recall that H contains the almost stabiliser of
the decomposition VX®V2). If the second possibility in Subclaim 2 holds,
then a similar argument (using an involution which interchanges Vx and V2)
again justifies the assumption that fi = K .

SUBCLAIM 4. We may assume that v = K .
PROOF OF SUBCLAIM. This is virtually the same as the proof of Subclaim

3 (with the obvious adaptation of Subclaim 2).
By Subclaims 3 and 4, from now on we can assume that fi = v = K .

SUBCLAIM 5. We may assume Dim Ux = Dim U2 = K .
PROOF OF SUBCLAIM. It is possible to find feN such that there are

disjoint vx, v2 C K , each of size K , with

- l

C2A + yiX i f k e V2 •

Clearly VxgfnVxg and Vxgff)V2g both have dimension K . Hence Vxgfg

intersects both Vx and V2 in subspaces of dimension K . To obtain the sub-
claim, now replace g by gfg~X .

Now, to prove Claim 1, let Ux, U2 have bases (wu : k < K) , (u2k :X<K).

Choose h e N to fix V2, Ux and VX/(UX + U2) pointwise and to map u2X

to u2X + M U for all k < K . Then h fixes Vxg setwise, and Dim((K2^ +
V2gh)/V2g) - K . There is n e g~~lNg such that hn fixes Vxg and V/Vxg
pointwise and Dim((K2g + V2ghn)/V2g) = K . Now k := ghng~l satisfies
the claim.

CLAIM 2. K > G,,,-, .
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PROOF OF CLAIM. We argue as in the proof of [3, Proposition 2.3]. Note
that Gjy. is the semidirect product of M := G(K) (yiv) by ^ •> an(* ^ a t '
as an FiV-module, M is naturally isomorphic to Hom(V2, Vx) (here, if
(gi,g2)

 e N a n d <i> e Hom(F2, Vx) then <t>(gl,g2) sends v2 e V2 to
(<j)(v2g2 )g{ . Since N < K and k e M n K, we must show that any
FTV-invariant submodule A of Hom(V2,VX) containing the element corre-
sponding to k is Hom(F2, F,). As DimFj = Dim V2 we may identify them,
and as in [3], A becomes a 2-sided ideal in Hom(F2, V2). Such ideals are
classified in [6] (see also [4, p. 258]), and since A contains an element cor-
responding to k (that is, an endomorphism of V2 with infinite dimensional
image), we have A = Hom(K2, V2), which proves the claim.

Given the claim it follows that K > G< v •, . Now by Theorem 2.12, K = G,
as required.

Theorems 2.12 and 2.13 suggest that many of the maximal subgroups of
the finite dimensional general linear groups may have infinite dimensional
analogues. It would be interesting to investigate whether the almost stabilisers
of other finite direct sum decompositions or of tensor decompositions, or
the almost stabiliser of a symplectic form, if appropriately defined, ever give
maximal subgroups. Note that if K = co and V is endowed with a symplectic
form ( , ) , then the corresponding symplectic group Sp(F, F) also fixes
the set S? of all hyperplanes of V which are of the form vL := {w e V :
{v , w) £ 0} for some v e V. Let {et, fl• : i < a)} be a standard basis of
V with respect to ( , ) (so for all i, j < co, (et, e}) = (fn f.) = 0 and
(e., fj) = Sl..). Then 5? is the set of all those hyperplanes of V which
contain all but finitely many elements of {e{, ft : i < co}. It follows easily
that the full stabiliser H in G of S? induces the general linear group on each
finite dimensional subspace of V, so properly contains Sp(F, F). Hence,
under any reasonable definition, the almost stabiliser of the form ( , ) ought
to contain H. (These observations were suggested by a conversation with
Tim Penttila, and were made independently by Jon Hall.) There are other
questions, such as the following, about large proper subgroups of G.

QUESTION. IS there a proper subgroup H of G such that for each moi-
etous subspace U of V, Hu = GL(t/)?

3. Further remarks on G

We here give for G some further analogues of results proved in [8] for
infinite symmetric group. Recall that if N, M are groups, N < M and
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H < M, then H is a supplement for N in M if NH = M. In [8] (and
also earlier, using GCH, in [11]) supplements of the normal subgroups of S
(the symmetric group on a set of size K) are classified, and this sheds some
light on the maximal subgroups of S (see [8, Observation 6.1]). Also, in [8]
we define the cofinality of an uncountable group H to be the smallest order
type of a chain of proper subgroups of H with union H and it is shown
that the cofinality of S is greater than K . This is used in the classification
of supplements of the normal subgroups of S. Here we obtain an analogous
result on the cofinality, but do not have a similar classification.

THEOREM 3.1. The group G has cofinality greater than K.

We use the following lemma.

LEMMA 3.2. Let H < G and suppose there is a decomposition V = U ®W
into moietous subspaces such that H,v, ,w, induces GL(C/) on U. Then

(i) there are g,heG such that {H, g,h) = G,
(ii) H is contained in a maximal subgroup of G.

PROOF, (i) Choose g e G fixing W pointwise, U setwise, and, in its
action on U, having fixed point space on U of codimension K in [/. Then
by the results on normal subgroups of G given in the introduction {g) has
normal closure G,Vy (IF) in H^ (W), so {H, g) contains G^y {W). Next,
let U = t/, © U2 be a decomposition into moietous subspaces and choose
h € G with Uh = Vx®W,Wh = U2. Then (O(w)i{Ui+Ui},G{U2h{Ui+w}) <
(H, g, h), so by Proposition 2.2 we have {H, g, h) = G.

(ii) This follows from (i) by Zorn's lemma, applied to the collection of all
proper subgroups of G which contain H but omit at least one of g, h (cf.
[8, Lemma 6.9]).

PROOF OF THEOREM 3.1. Suppose there is a chain {Hk : k < K) of proper
subgroups of G with union G. Choose a direct sum decomposition V =
0(f^ : A < K) into moietous subspaces. For each X, there is gx e GL(f^)
not induced by Hxivy {fi)(v • H<K n^tx)} ^or ^ ^ s w e r e ^ s e ^or s o m e ^>
then by Lemma 3.2 there would be g, h e G such that (Gx, g, h) = G;
for some [i < K , we would have g, h € G^, and if v = Max{A, /*} then
Gv = G, a contradiction). There is a unique g e G coinciding with gx on
Vx for each A, and clearly g e G\ \}(HX : A < K) , a contradiction.

The next corollary was pointed out by Wilfrid Hodges.
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COROLLARY 3.3. Let E be the ring of F-endomorphisms of V. Then E
is not the union of a K-chain of proper subrings.

PROOF. Suppose E is the union of a chain of subrings (Ex: X < K) . Since
G is a subgroup of the group of units of i s , G = \J(G n Ex : X < K) . Hence,
by Theorem 3.1, G < Ex for some X < K . However, by Zelinsky [12] each
element of E is a sum of two elements of G, so E - Ex, as required.

Theorem 3.1 gives a little information about supplements of the normal
subgroups Gx . First, note the following lemma.

LEMMA 3.4. If K is regular then GK has cofinality at most K .

PROOF. Let (vx : A < K) be an ordered basis of V, and for each X < K

let Ux := (v • ix < K) and Hx := G,v -, iv/u}. Then Hx < Gx for all X < K ,
for if h € Hx, then Im(/z - 1) < Ux I so Dim(Im(A - 1)) < K . Clearly also
Hx ^ GK for all X < K . Finally, U ( ^ : X < K) = GK , for if h e GK then
Dim(Im(A - 1 ) ) < « : , so by the regularity of K , lm(h - 1) < Ux for some
X < K .

QUESTION. Does Lemma 3.4 hold if K is singular?
QUESTION. Does GK every have cofinality less than K ?
Now suppose that AT is a supplement for GK , that is, K < G and GK-K =

G. Then ((Hx, K) : X <K) is a chain of length K of subgroups of G with
union G. Hence, by Theorem 3.1, there is X < K such that (Hx, K) = G.

We conclude with an observation which must be well-known. We omit its
proof, since it is routine.

LEMMA 3.5. Let E :— End f (F) . Then there is an inclusion-preserving
bijection 4> between the set of filters of subspaces of V and the set of proper
right ideals of E, given by the rule, if £F is a filter on V then 4>(^) := {x e
E : Ker(jc)
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