ON A PROBLEM OF ERDOS AND SZEKERES
F.V. Atkinson
(received June 27, 1960)
1. -Write ‘
n
3 o = oy = - 'e ?

(1) M(a1 an) rnax'ﬂ,'k:1 |1 exp(akx )|
2 f = I o M 3 oo ey 3
(2) (n)=g.1.b (al1 an)
where the maximum is over all real 6, and the lower bound is
over all sets of positive integers a; <az<... < a . The
problem of the order of magnitude of f(n) was posed by Erdos
and Szekeres [1], side by side with a number of other interest-
ing questions. Writing g(n) =log f(n), it is obvious that g(n) is
sub-additive, in the sense that g(m + n) < g{m) + g(n), and also

that g(1) =log 2, so that g(n) < n log 2. However, they were
able to prove the stronger result that

(3) g(n) = o(n)

for n—+o, their main tool being the approximation to numbers
by rationals; in the other direction, a distinct argument showed

that
(4) g(n) _>_-} log(2n).
The aim of this note is to improve (3) to
P
(5) g(n) < n* log n + 4 log 2),

using a method which is connected more with Fourier series
and trigonometric polynomials.

2. The connection with the latter topics appears on taking
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logarithms in (1). We get
g(n) = g.1. b. max 21: log|1 - exp(akie )|

.where the lower bound and maximum are taken over the same
sets as in § 1. We re-write this as follows. Define, for non-
negative ¢y, ..., Cp: and {1 < p<nm,

= P ol -
(6) N(ci, ey Cp)-max0<9_<_21r2k=1 cklogli e

ki6 l
We then write

g(p,n) =g.1.b. N(c,, ..., cp),

where the lower bound is over all sets of p non-negative integers
whose sum is n, so that, finally,

g(n) =rxn.1:\1 <p<n g(p,n).

If in (6) we use the Fourier series

(7) logli - ele | = - Zrm-icos mo ,

valid when 6 # 0 (mod. 2w), re-arrangement gives, formally at

any rate,
. i -4
3 sy == i j e 3
(8) N(c‘1 cp) mmoi o< zn Zm=1m j(mo)
where
(9) j¢) ==. P c. cos ké.

k=1 k

This suggests that we should choose the ¢y so as to maximize
the lower bound of j(¢), which will be negative if the cy are
not all zero.

3. In making this line of reasoning rigorous, the main
obstacle is that the Fourier series (7) is not absolutely con-
vergent. It turns out that the place of the infinite series (7)
may be taken by a partial sumn of the series, modified by the
insertion of certain means.

LEMMA 1. For positive integral M, and real 8 # 0(mod. 2w)
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(10)
i - 2 -1 -2
logli - elel < - Zx_;(i -m/M) m cosmb+M (2M-1)log2.
For M =1 the sum is empty, and the inequality is then
precise if 0 = .

It is clearly sufficient to prove this when 0 <8< w. On
this assumption we have

i0 o dz
log(1 - e )_[iei-z

: N-1 k ZN
o - o
= ~ dz
/iezo Zdz+/iei-z
e e
=- zlf m ™ | R,
say. We write
1 ) zN
= = + H
R {/eie+/1}1_zdz R +R,

say, where R, is taken round the unit circle in the positive
sense and R, along the negative real axis. Putting z = el® we
get
Nio , i6
i

Te e
R :/ ————— 4
1 0 1-e16

I
= —%/; e(N+ 2)lecosec %ede .

Taking real parts, we therefore get

i0, _ N -1 wcos(N+1)9
(11) log|1 - e | --ngim cos mb - 0 —zgfe— de

OZN
+ dz.
[11~z z

We now take (11) with N=0, 4, ..., M - 1, multiplying
these results respectively by (2M - 1), (2M - 3), ..., 1, and
add. After slight reduction, the result may be written as

M-1 2 -1
m=1(M‘-m) m cos m6 -11+IZ'

(12) Mlog|t - ¥ =-2

where
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I, :fe“(z sinko) ! ;’I_ (2M - 1 - 2N) cos(N + L)ede,
and Mo ZN
o}
2M - 1 - 2N dz.
L /1 Zn=0PM Y124

It is clear that (12) will imply the result of the lemma, namely
(10}, if we show first that

0,
(13) 1, >

and secondly that
(14) I2 < (2M - 1) log 2.

As regards (13), it is sufficient to show that the integrand
in Iy is non-negative. Clearly sin46 > 0 in the relevant inter-
val. As regards the other factor, simple calculations show that

- 2 2

2;’1_ (i)(ZM -1 - 2N)cos(N + )8 =cos+6 sin +M6 cosec +6,
which again is non-negative. This establishes (13). For (14),
we observe that, if -1 < z < 0,

o<zM- YoMt <M - 1.
N=0
This follows from the fact that the terms in this sum are
alternating in sign, and monotonically decreasing in absolute
value. Hence

0<I <(2M-1)/

14-2"

which proves (14). This completes the proof of the lemma.

4. We now apply this result to the estimation from above
of N(Ci' cees cp), as given by (6). We have

LEMMA 2. Let Cgs =--» €
all zero, and such that

P be non-negative, and not

(15) p> cos k$ > 0

P
k=0 k
for all real ¢. Then, for any positive integer M,

(16) N(ci', cans Cp)f_co log M + 2M°123 cy log 2.

P
k=1

10
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The bound (10), inserted in (6), gives, with the notation
(9),

M-1 2
N(ci, e cp)_<_max {=-Z:m=1 (1 - m/M) j(m9))}

0<6<2r

2 -
s M-t P
M2 k=

1 i
In deriving (16) we have only to use (15) and the estimate

- 2 - ,
2M11 (1 -m/M)m 1ﬁlogM.

5. We first use lemma 2 to estimate g(n) when n is a
triangular number. We take c/ =-§-(p +1), cp=p+1-k,
k=1, ..., p, this choice being justified by the identity

P _L .2 1 2,
Zk-i (p+ 1 - k)cos ko +-§-(p+ 1) =% sin (p + )6 cosec 39,
valid for 0< 8 < 2w. This gives
N(p, p-1, ..., 1)< +(p+ 1)logM + M-ip(p + 1)log 2.
Taking M =p, say, we deduce that
gk plp + 1)) < H(p + 1)log p + 2 1og 2).

For the case of general n, let p be the greatest integer
such that +p(p + 1) < n, and write

n=%plp+ 1) +q,
so that 0 < q< p. Then
gln) < gk p(p + 1)) + gla)
< p+1)logp+2log2)+q log 2.

Here we use the bounds +(p + 1) <Jm, q< p<J(2n), and (5)
follows immediately.

6. I conclude with two minor remarks bearing on the

precision of our estimate for g(n). Our main result, that for

11
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g(i‘P(P + 1)), was in effect that
(17) h(8) < $(p+ 1)(log p+ 2 log 2)

kif
where h(6) =Zkfi(p +1-k) logli e I That the bound on

the right of (17) is not very wide of the mark may be seen from
the result that

fo" (1 - cos 6)h(6)dd = +mp,

which follows on use of the Fourier expansion (7). This shows
that we must have h(6) > +p for some 6.

The method of this paper does not seem to yield any
improvement on the lower bound (4) for g(n). However it is
perhaps worth pointing out that there seems to be a connection
with this problem and another very difficult problem, namely
that of the minimum of a sum of cosines. Using the Fourier
expansion in (1), we need to minimize the upper bound of

o -1 n
m=1 m :k:i cos (akme).

-z
Treating the terms for which m =1 as perhaps dominant, it is
a question of the best possible upper bound for the negative
minimum of

Zy

n
=1 cos (ake )s

for arbitrary integers a,, ..., a;. A recent work on this
topic is that of P.J. Cohen [2].
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