
Hints to selected problems

Chapter 2

2.1 a′
μ = gμρa′ρ = gμρ Lρ

λaλ = gμρ Lρ
λgλνaν . Hence a′

μ = Lμ
νaν where Lμ

ν =
gμρ Lρ

λgλν . In particular, L0
1 = g00L0

1g11 = −L0
1.

2.2 a′μ = Lμ
νaν . Multiply on the left by Lμ

ρ · Lμ
ρa′μ = Lμ

ρ Lμ
νaν = aρ, or aμ =

a
′ν Lν

μ. Similarly, aμ = a′
ν Lν

μ.

2.3 dφ = ∂φ

∂xμ
dxμ = ∂φ

∂x ′ν dx ′ν = ∂φ

∂x ′ν Lν
μdxμ. Since the dxμ are arbitrary,

∂φ

∂xμ
= ∂φ

∂x ′ν Lν
μ.

This is a covariant vector field transformation (Problem 2.2).

2.4
det

(
Lμ

ν
) = det(gμρ) det

(
Lρ

λ

)
det(gλν)

= (−1)2 det
(
Lρ

λ

)
.

From (2.14), det(Lμ
ν) det(Lμ

ρ) det
(
δν

ρ

) = 1. The result follows.

2.6 Note that if det L1 = 1 and det L2 = 1 then det L1 det L2 = 1.

2.7 δ′μ
ν = Lμ

ρ Lν
λδ

ρ
λ = Lμ

ρ Lν
ρ = δμ

ν using Problem 2.2.

2.8 Using (2.3), ω′ = ω cosh θ − k sinh θ
= ω(cosh θ − sinh θ ) since ω = k
= e−θω.

Since υ/c = tanh θ , the result follows.

2.9 Jacobian is det(∂x ′μ/∂xν) = det(Lμ
ν) = 1.

2.10 The operation of space inversion can be written as xμ
′ = Pν

μxν . Then the tensor
εμνλρ , transforms as

ε′
μνλρ = Pα

μ Pβ
ν Pγ

λ Pδ
ρ εαβγ δ

= εμνλρ det P = −εμνλρ.
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Chapter 3

3.1 Let xi (i = 1, ..., 3N ) be the Cartesian coordinates of the particles. Since xi =
xi (q), ẋi = (∂xi/∂q j ) q̇ j . Then T = (m/2)ẋi ẋi = (m/2)(∂xi/∂q j )(∂xi/∂qk)q̇ j q̇k .

3.2 dE

dt
=

∫ [
φ̇

∂

∂t

(
∂L

∂φ̇

)
+ ∂L

∂φ̇
φ̈ − ∂L

∂φ̇
φ̈ − ∂L

∂φ′ φ̇
′
]

dx .

Integrate by parts the term −(∂L/∂φ′)(∂φ̇/∂x) and use (3.12).

3.4 Use orthogonality and the dispersion relation (3.20). Note that H and Pi form a

contravariant four-vector (H, P).

3.5 Varying ψ∗,

δS =
∫

δL dt d3x

=
∫ [

−(1/2i)

(
δψ∗ ∂ψ

∂t
− ∂(δψ∗)

∂t
ψ

)

− (1/2m)∇(δψ∗) · ∇ψ − δψ∗V ψ
]

dt d3x.

Integrating by parts the terms involving ∂(δψ∗)/∂t and ∇(δψ∗) gives

δS =
∫ [

−(1/i)
∂ψ

∂t
+ (1/2m)∇2ψ − V ψ

]
δψ∗dt d3x.

Since this is true for any δψ∗, the integrand must vanish. Hence

i
∂ψ

∂t
= −(1/2m)∇2ψ + V ψ.

Chapter 4

4.1 L = −(1/4)Fμν Fμν − Jμ Aμ. From (4.16), F01 = −Ex = −F01, F12 = −B2 = F12,

etc.

4.2 A → A′ = A − ∇χ . We require ∇ · A′ = ∇ · (A − ∇χ ) = f − ∇2χ = 0. The solu-

tion is

χ (r, t) = − 1

4π

∫
f (r′, t)

|r − r′|d3r′.

4.3 F̃01 = (ε0123 F23 + ε0132 F32)/2

= (F23 − F32)/2 = (−Bx − Bx )/2 = −Bx , etc.

4.4 A = 1√
2ωV

[
(εx + iεy)ei(kz−ωt) + (εx − iεy)e−i(kz−ωt)

]

= 1√
2ωV

[2 cos(kz − ωt), −2 sin(kz − ωt), 0] ,

E = −∂A
∂t

=
√

2ω

V
[sin(ωt − kz), − cos(ωt − kz), 0] .

By inspection, on any plane of fixed z, E rotates in a positive sense about the z-axis.
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4.5 If the fields vanish at infinity, a term ∂i (A0 F0i ) = ∂μ(A0 F0μ) does not contribute to

the energy. Thus the energy density is not unique, and we may take

T 0
0 = −F0μ∂0 Aμ + ∂μ(A0 F0μ) + 1

4
Fμν Fμν

= −F0μ(∂0 Aμ − ∂μ A0) + 1

4
Fμν Fμν,

since in free space ∂μF0μ = 0 by (4.8),

= −F0μF0μ + 1

4
Fμν Fμν.

4.6 L = 1
2
mẋ2 − qφ + qẋ · A, pi = (∂L/∂ ẋ i ) = mẋi + q Ai are the generalised

momenta. The equation of motion (dpi/dt) = (∂L/∂xi ) is

mẍi + q(∂ Ai/∂t) + q(∂ Ai/∂x j )ẋ j = −q(∂φ/∂xi ) + qẋ j (∂ A j/∂xi ),

giving

mẍi = q[−(∂φ/∂xi ) − q(∂ Ai/∂t)] − q Fi j ẋ j

(noting ∂ i = −∂/∂xi , and definition (4.6)). Taking i = 1,

mẍ = q(Ex − F12 ẏ − F13 ż)

= q(Ex + ẏ Bz − ż By),

and similarly for the other components.

H (p, x) = pi ẋ i − L
= p · (p − qA)/m − [(p − qA)2/2m − qφ + q(p − qA) · A/m]

= (p − qA)2/2m + qφ.

4.7
∫

L dt = ∫
(γ L) dτ , where dτ = dt/γ is Lorentz invariant (see (2.5); τ is the ‘proper

time’). Hence the result.

Chapter 5

5.3 Under the transformations (5.19) and (5.20),

ψ
′†
R ψ ′

L = ψ
†
RN†MψL = ψ

†
RψL,

ψ
′†
L ψ ′

R = ψ
†
LM†NψR = ψ

′†
L ψR,

ψ
′†
R σμψ ′

R = ψ
†
RN†σμNψR = Lμ

νψRσ νψR,

ψ
′†
L σ̃ μψ ′

L = ψ
†
LM†σ̃ μMψL = Lμ

νψ
†
Lσ̃ νψL,

ψ ′
Rσμσ̃ νψ ′

L = ψ
†
RM†σμMN†σ νNψL

(
since MN† = I

)
= Lμ

λLμ
ρψ

†
Rσλσ̃ ρψL, etc.

5.4 Using (5.28), (5.31) becomes

ψ†β (iβ∂0 + iβαi∂i − m) ψ = ψ† (i∂0 + iαi∂i − βm) ψ since β2 = I.
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5.6
iψ̄γ 5ψ = i

(
ψ

†
L, ψ

†
R

)( 0 σ 0

σ 0 0

)(−σ 0 0
0 σ 0

)(
ψL

ψR

)

= i
(
ψ

†
LψR − ψ

†
RψL

)
.

This is invariant under proper Lorentz transformations, but changes sign under the

parity operation (5.27).

5.7 The results follow from the definitions (5.30) and (5.4).

Chapter 6
6.1

ψ
†
+ψ+ = 1

2
(〈+ | e−θ/2, 〈+ | eθ/2)

(
e−θ/2| + 〉
eθ/2| + 〉

)

= 1

2
[e−θ 〈+ | +〉 + eθ 〈+ | + 〉]

= cosh θ = γ = E/m.

From (6.14), probability of right-handed mode

= eθ

eθ + e−θ
= eθ

2 cosh θ
= 1

2

(
1 + v

c

)
, since tanh θ = v

c
.

6.3 u†
+(p)u+(p) = 1

2
(eθ + e−θ ) = cosh θ = E/m, etc.

u†
+(p)u−(p) = 0 since 〈+ | −〉 = 0.

Note that

σ ·p̂| + 〉 = | + 〉 and σ ·p̂| − 〉 = − | − 〉
implies

σ ·(−p̂) | + 〉 = − | + 〉 and σ ·(−p̂) | − 〉 = | − 〉.
6.5 | + 〉 and | − 〉 are evidently normalised, and by direct substitution and the use of

trigonometric identities, σ ·p | + 〉 = | + 〉,σ ·p | − 〉 = − | − 〉.

Chapter 7

7.1 This follows using the orthogonality properties of plane waves and those derived in

Problem 6.3.

7.2 For example,

ψc
+ = −iγ 2ψ∗

+ =
(

i/
√

2
)

e−i(pz−Et)

(
0 −σ 2

σ 2 0

) (
e−θ/2 |+〉
eθ/2 |+〉

)

and σ 2 |+〉 = i |−〉, giving

ψc
+ =

(
1/

√
2
)

e−i(pz−Et)

(
eθ/2 |−〉

−e−θ/2 |−〉
)

.

https://doi.org/10.1017/9781009401685.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.032


254 Hints to selected problems

7.3 Under the parity operation,

ψL → ψR, σ̃ μ∂μ → σμ∂μ,

from (5.26) and (5.27). Under charge conjugation,

ψR → iσ 2ψ∗
L.

Hence under the combined operations,

iψ
†
Lσ̃ μ∂μψL → iψT

L σ 2σμσ 2∂μψ∗
L = −i∂μψ

†
L(σ 2σμσ 2)TψL

(recall the – sign that must be introduced when spinor fields are interchanged). But(
σ 2σμσ 2

)T = σ̃ μ.

Finally, integrating by parts in the action yields the Lagrangian density iψ
†
Lσ̃ μ∂μψL.

7.4 ψR → ψ ′
R = NψR by (5.20).

iσ 2ψ∗
R

→ iσ 2N∗ψ∗
R
.

But σ 2N∗ = Mσ 2. This is true for M and N given by (5.24), and holds in general.

7.5 Varying Φ∗ in the action gives

δS =
∫

{−[(i∂μ + q Aμ)δΦ∗][(i∂μ − q Aμ)Φ] − m2δΦ∗Φ} dt d3x

=
∫

δΦ∗{(i∂μ − q Aμ)(i∂μ − q Aμ)Φ − m2Φ} dt d3x,

after integrating by parts. Since this holds for any δ�∗, the Klein–Gordon equation

follows.

7.6 If Φ → eiαΦ with α = α(x) small,

(i∂μ + q Aμ)(eiαΦ) = eiα(i∂μ + q Aμ)Φ − (∂μα)eiαΦ

δS =
∫

{−(∂μα)Φ∗[(i∂μ − q Aμ)Φ] + [(i∂μ + q Aμ)Φ∗](δμα)Φ} dt d3x

=
∫

α(x)∂μ{Φ∗[(i∂μ − q Aμ)Φ] − [(i∂μ + q Aμ)Φ∗]Φ} dt d3x,

after integrating by parts. Hence the current

jμ = i[Φ∗(∂μΦ) − (∂μΦ∗)Φ] − 2q AμΦ∗Φ

is conserved, as is also q jμ. (Note that q jμ = −∂L/∂ Aμ is the electromagnetic

current.)
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7.7 Verify by direct calculation, e.g. for positive helicity and taking μ = 3,

q j3 = −eψ+γ 0γ 3ψ

= − (e/2)
(
e−θ/2〈+|, eθ/2〈+|)

(−σ 3 0

0 σ 3

) (
e−θ/2 |+〉
eθ/2 |+〉

)

= −e sinh θ, since σ 3 |+〉 = | +〉.
7.8 This follows since the electric field lines are reversed in direction, E → E′ = −E.

7.9 Assuming ρ(t) → ρ ′(t′) = ρ(−t), Maxwell’s equations retain the same form if E →
E′ = E, B → B′ = −B, J → J′ = −J, or equivalently

φ → φ′ = φ, A → A′ = −A.

Taking the complex conjugate of (7.6) and multiplying on the left by γ 1γ 3 gives

γ 1γ 3[γ μ∗(−i∂μ − q Aμ) − m]ψ∗ = 0.

Now

γ 1γ 3
(
γ 0

)∗ = γ 1γ 3γ 0 = γ 0γ 1γ 3,

γ 1γ 3
(
γ i

)∗ = −γ iγ 1γ 3 for i = 1, 2, 3,

and the result follows.

Chapter 8

8.3 If an e+e− pair is created there is a frame of reference (the centre of mass frame)

in which the total momentum of the pair is zero. The photon would also have zero

momentum in this frame and hence zero energy: energy conservation would be vio-

lated.

Chapter 9

9.1 Conservation of energy gives mπ = Ee + Eν. Conservation of momentum gives pe =
pν . Also

Eν = pν, Ee
2 = pe

2 + me
2, υe = pe/Ee.

Hence

(mπ − pe)2 = Ee
2 = pe

2 + me
2, pe = mπ

2 − me
2

2mπ

.

Then

Ee = mπ − pe = mπ
2 + me

2

2mπ

,

1

2

(
1 − υ

c

)
= 1

2

(
1 − mπ

2 − me
2

mπ
2 + me

2

)
= me

2

mπ
2 + me

2
.
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9.2 Final energy E = Ee + Eν = Ee + pe

dE

dpe

= dEe

dpe

+ 1 = Pe

Ee

+ 1 = Ee + Pe

Ee

= Mπ

Ee

.

9.3 Using Problem (9.1),

(
1 − υe

c

)
pe

2 Ee = me
2

4mπ
3

= (
mπ

2 − me
2
)2

,

with a similar expression for the μ leptons.

9.4 Since the pion is at rest, only the term ∂Φ/∂t contributes. From (3.35), there is a

factor in Lint arising from this:

1√
V

(−imπ)√
2mπ

a0.

From Problem 6.5, the ν̄ factor is

1√
V

d†
p′e

i(−p′ ·r) |−〉p′ .

From (6.24), the e†L factor is

1√
V

√
me

E p
b†

pei(−p·r) 1√
2

e−θ/2 〈+|p .

(Only this helicity term contributes.)

Integrating over volume gives p′ = −p and a volume factor V, so that, for a

given p,

〈
ep, ν̄−p |V (0)| π−〉 = (−i)√

V

√
mπ

2

√
me

Ee

απ√
2

e−θ/2.

(Note that |−〉−p = |+〉p.)

Hence the transition rate s is obtained. The factor 4π in the density of states comes

from summing over all directions of p. Also (Ee/me) = cosh θ and e−θ / cosh θ =
(1 − tanh θ ) = (1 − υ/c).

9.7 G F ≈
(

192π3

τmμ
5

)1/2

= 1.164 × 10−5(GeV)−2.

9.8 The square of the centre of mass energy

s = (Ee + Eν)2 − (pe + pν)2

is Lorentz invariant. In the electron’s rest frame

s = (me + Eν)2 − p2
ν = m2

e + 2me Eν.

9.9 The expression (9.8) contains the term

−2
√

2GFgμνe†Lσ̃ μνeLν
†
eLσ̃ νeL.
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The expression (9.15) contains the term(
GF/

√
2
)

gμνν
†
μLσ̃ μνμLψ̄eγ

ν(cv − cAγ 5)ψe.

9.10 τ (K → μν̄μ)

τ (K → eν̄e)
= m2

e(m2
K − m2

e)2

m2
μ(m2

K − m2
μ)2

= 2.57 × 10−5

1

τ (K → μν̄μ)
= αK

2

4π

(
1 − υμ

c

)
pμ

2 Eμ (cf. (9.3)),

where
(

1 − υμ

c

)
p2

μEμ = mμ
2

4mK
2

(mK
2 − mμ

2)2

(cf. Problem 9.3).

This gives αK = 5.82 × 10−10 MeV−1, and απ = 2.09 × 10−9 (text), giving

αK/απ = 0.28.

9.11 Consider the decay τ− → π− + ντ . The term in Lint that generates the decay is

ν
†
τLσ̃ μτL∂μΦ†.

Consider the τ to be at rest with its spin aligned along the z-axis, and the neutrino

momentum to be p. The pion momentum is then (−p), and the interaction energy

contains a term

απ√
V

i√
2Eπ

a†
π (−p) b†

ν (p) bτ (0) 〈−|p
(
σ o Eπ − σ · p

) 1√
2

(
1

0

)
.

Now 〈−|p (σ 0 Eπ − σ ·p) = 〈−|p (Eπ + pν) = 〈−|p mτ , and from Problem 6.5,

〈−|p = (− sin(θ/2)eiφ, cos(θ/2)) where θ and φ are the polar angles of p.

Hence

〈
π−p, νp |V | τ 〉 = − απ√

V

i√
2Eπ

mτ

1√
2

sin (θ/2) eiφ.

The decay rate is

1

τ
= 2π

∫
|〈 f | V |i〉|2 p (mτ) d�

where

p (mτ ) = V

(2π )3

(
m

τ

2 − mπ
2
)2

4mτ
2

Eπ

mτ

,

and the angular integration gives a factor 2π.

Chapter 10

10.1 The term −(m2/2φ0
2)

√
2φ0χψ2 links the χ and ψ fields, and m = mχ/

√
2. Since

the ψ particles are massless, the final energy E = 2p, and the density of states factor
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for the decay is

ρ(E) = V

(2π )3
4πp2 dp

dE
where

dp

dE
= 1

2
,

and the factor 4π comes from the angular integration.

In the matrix element 〈p, −p|V |χ at rest〉, the χ field gives a factor 1/
√

2mχ from

the expansion (3.21), and each of the ψ fields gives a factor 1/
√

2p. Hence

2π |〈p|V |i〉|2ρ(E) = 2π
mχ

4

8φ0
2

1

2mχ

1

4p2

4πp2

(2π )3

1

2

= mχ

128π

(
mχ

φ0

)2

.

10.2 The decay of an isolated vector boson requires a term in Lint linear in Aμ. There is

a term (
√

2φ0q2)Aμ Aμh that allows the decay of the scalar boson if energy conser-

vation can be satisfied, i.e. mh = √
2m > 2

(√
2qφ0

)
.

Chapter 11

11.1 The term UWU† satisfies (UWU†)† = UWU† and Tr(UWU†) =
Tr(U†UW) = Tr(W) = 0.

Noting that (α̂ · τ )2= I and (∂μα j )α j= 0 since α jα j = 1, the term

(2i/g2)(∂μU)U† may be written as a linear combination of the matrices τ j

with real coefficients. Each τ j is Hermitian and has zero trace.

11.3 The last term may be written as (g2
2φ0

2/4)(Wμ
1W 1μ + Wμ

2W 2μ), and in the absence

of electromagnetic fields the term that precedes it can be handled similarly. There

are therefore two independent fields each with mass g2φ0/
√

2 (cf. Section 4.9).

11.4 The interaction Lagrangian density (11.32) contains a term g2
2/

√
2)hW −

μ W +μ cou-

pling the h field and the charged W fields.
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11.5 Consider

U = cos αI + i sin ατ · α̂ (see B.9).

Then

U∗= cos αI − i sin α(τ 1α̂1 − τ 2α̂2 + τ 3α̂3)

and

τ 2U∗ = [cos αI + i sin α(τ 1α̂1 + τ 2α̂2 + τ 3α̂3)]τ 2

using

τ 2τ 1 = −τ 1τ 2, τ 2τ 3 = −τ 3τ 2.

Hence

iτ 2U∗ = U(iτ 2) and iτ 2 =
(

0 1

−1 0

)
.

The result follows.

11.6 Using (B.9).

U = cos αI + sin α(sin φτ 1 + cos φτ 2)

=
(

cos α i sin α(sin φ − i cos φ)

i sin α(sin φ + i cos φ) cos α

)
.

Chapter 12

12.2 Take the two fields to be

L =
(

L1

L2

)
.

To maintain local gauge invariance, the dynamical term in the Lagrangian density

must be L†σ̃ μi(∂μ + i(g2/2)Wμ)L.

There are terms which mix L1 and L2, for example,

−(g2/2)L1
†σ̃ μ(Wμ

1 − iWμ
2)L2

= −(g2/2)L1
†σ̃ μL2Wμ

†.

The operator Wμ
† destroys electric charge e, so that to conserve charge L1

†σ̃ μL2,

must create charge e.

12.3 The Higgs particle at rest has zero momentum and zero angular momentum. Hence

the e+ and e− have opposite momentum. If they had opposite helicities, they would

have to carry orbital angular momentum with a component +1 or −1 along their

direction of motion, to conserve angular momentum. This is not possible since

p · (r × p) = 0.

The final density of momentum states is

ρ(E) = V

(2π )3
4π pe

2 dpe

dE
.
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The final energy E = 2Ee,where Ee
2 = me

2 pe
2. Hence

dpe

dE
= 1

2

dpe

dEe

= Ee

2pe

, and p(E) = V

(2π )2
pe Ee.

The interaction term in (12.9) is −(ce

√
2)hψ̄ψ . From (6.24) and (3.21), this gives

〈 f |V |i〉 = 1√
V

1√
2mH

me

Ee

[μ̄+(p)v+(−p)]

or

[μ̄−(p)v−(−p)].

Now μ̄±(p)v±(−p) = sinh θ , and Ee/me = cosh θ . Hence the decay rate to positive

helicities is

2π |〈 f |V |i〉|2ρ(E) = 2π
ce

2

2

1

2mH

tanh2 θ
1

(2π )2
pe Ee.

Also tan θ = ve/c = pe/Ee and Ee = mH/2. The decay rate to negative helicities is

the same, and the result follows.

12.4 Since cτ > cμ > ce (see (12.13)) the decay to τ+τ− dominates in the leptonic partial

width. Also, since the Higgs mass is much greater than the τ mass, vτ ≈ c. Hence

�

mH

≈ c2
τ

16π
= 1

16π

(
mτ

φ 0

)2

.

Chapter 13

13.1 In the rest frame of the W, and neglecting the lepton mass, p1 = −pv, El = pl =
Mw/2, and pi

2 = Mw
2/4 = px

2 + py
2 + pz

2. Taking the x-axis to be the beam direc-

tion, the mean square transverse momentum is

px
2 + py

2 = (2/3)pl
2 = Mw

2/6.

13.2 From (12.23), the Zμ is produced by right-handed electron fields with a cou-

pling e tan θw = 2 e sin2 θw/ sin(2θw) and by left-handed fields with a coupling

−e cos(2θw)/ sin(2θw). In head-on collisions at high energies the right-handed com-

ponent of the electron (positron) has positive (negative) helicity. Hence the total spin

is +1 along the electron beam direction. The spin of the left-handed components is

opposite. For unpolarised beams the left-handed and right-handed components are

equally populated, and the result follows.

13.3 Consider the decay W− → e− + ν̄e in the W− rest frame. With no loss of general-

ity we may take the W− to have J = 1, Jz = 0 (see Section 4.9). The interaction

Lagrangian density responsible for the decay is (from (12.15) and (12.16))

L = −(g2/
√

2) j3W −
3 .
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If the electron has momentum p, the neutrino has momentum −p. Neglecting the

electron mass (see Problem 6.5) the matrix element for the decay is

〈 f | V |i〉 = g2√
2

1√
2MwV

〈−| σ 3 |+〉 .

(Recall σ ·p |−〉 = − |−〉 ,σ · (−p) |+〉 = − |+〉.) Also, from Problem 6.6,

〈−| σ 3 |+〉 = − sin θeiφ . The decay rate is

� = 2π

∫
| 〈 f | V |i〉 |2d�

V

(2π )
3 pe

2 dpe

dE

where dpe/dE = 1/2, pe = Mw/2, giving

� = g2
2

48π
Mw = GF Mw

3

6π
√

2
, by (12.22).

The decay rate for Z → νν̄ requires a similar calculation, with Mw replaced

by Mz and the coupling constant g2/
√

2 replaced by e/ sin 2θw = g2/2 cos θw =
g2 Mz/2Mw. (We have used (12.23), (11.38) and (11.37a).) Then

�(Z → νν̄) = GF M3
z

12π
√

2
.

There are two terms in (12.23) contributing to �(Z → e+e−), yielding

�(Z → e+e−) = �(Z → νν̄)[(2 sin2 θw)2 + (cos 2θw)2].

13.4 83.86 MeV.

Chapter 14

14.3 Under an SU(2) transformation, and from Appendix A.2

(�TεL) → (�TU TεUL)

U TεU =
[

UAA UB A

UAB UB B

] [
0 1

−1 0

] [
UAA UAB

UB A UB B

]
=

[
0 Det(U )

−Det(U ) 0

]

= (Det(U ))ε

= ε, since Det(U) = 1. Hence (ΦTU TεUL) = (ΦTεL)

14.4 From (11.23),

Φ =
(

0

φ0 +h/
√

2

)
.

Inserting this in (14.6) gives the coupling terms

− (1/
√

2)
∑

[Gd
i j d

†
Li dR j h + Hermitian conjugate.

Similar terms arise from (14.9) and (14.10). Using the true quark masses these

become

− (1/
√

2φ0)
∑

[md
i (d†

LidRi + d†
RidLi) + mu

i (u†
LiuRi + u†

RiuLi)]h.
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The coupling to the top quark is

ct = mt√
2φ0

≈ 180 GeV√
2 × 180 GeV

≈ 0.7.

14.5 For K+ → μ+ + νμ, the terms

sL
†σ̃ μuLV ∗

us from jμ, νμL
†σ̃ μμL from jμ†

contribute in the second order of perturbation theory. (See (a).)

For D+ → K 0 + e+ + νe,

s†Lσ̃ μcLV ∗
cs from jμ, ν

†
eLσ̃ μeL from jμ†. (See (b).)

For B† → D̄0 + π †,

b†
Lσ̃ μcLV ∗

cb from jμ, u†
Lσ̃ μdLVud from jμ†. (See (c).)
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14.6

Chapter 15

15.1 The decay rate for Z → dd̄ of (15.3) can be compared with the decay rate for

Z → e+e− of (13.3), calculated in the answer to Problem 13.3. Comparing the inter-

action Lagrangian densities (12.23) and (14.14), the term in the left-handed coupling

cos 2θw = 1 − 2 sin2 θw is replaced by (1 − (2/3) sin2 θw), and in the right-handed

coupling 2 sin2 θw is replaced by (2/3) sin2 θw. Including a colour factor of 3 and

replacing sin2 θw by (1/3) sin2 θw in the rate (13.3) gives the rate (15.3).

Similarly for Z → uū. Comparing (12.23) with (14.14), sin2 θw is replaced by

(2/3) sin2 θw.

The decay rate W+ → ui d̄ j of (15.6) can be compared with the rate W+ → e+νe

of (13.2) calculated in the answer to Problem 13.3. Comparing the interactions

(12.18) and (14.20), g2/
√

2 is replaced by eVi j/
√

2 sin θw = g2Vi j/
√

2. Including

the colour factor of 3, the rate (15.6) follows from the rate (13.2).

Chapter 16

16.1 Gμν = ∂μGν − ∂νGμ + ig(GμGν − GνGμ)

= (∂μGa
ν − ∂νGa

μ)(λa/2)

+ i(g/4)
(

Gb
μGc

νλbλc − Gc
νGb

μλcλb

)
,

and

(λbλc − λcλb) = 2i fbcaλa (see (B.27)).

Hence

Gμν = [(∂μGa
ν − ∂νGa

μ) − g fabcGb
μGc

ν](λa/2).

16.2 These are the terms in (16.9) cubic and quadratic in the G fields.
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16.3 Variation of Ga
ν gives

δS =
∫ [

− (1/2)GaμνδGa
μν − g

∑
f

q̄ f γ
νδGa

ν (λa/2)q f

]
d4x,

and

−(1/2)GaμνδGa
μν = −Gaμν∂μ(δGa

ν ) + gGcμνGb
μδGa

ν fcba .

(There are two equal contributions to the right-hand side.) Integrating by parts gives

δS =
∫ [

∂μGaμν − gGcμνGb
μ fabc − g

∑
f

q̄ f γ
ν(λa/2)q f

]
δGa

ν d4x

( fcba = − fabc).

Since the δGa
ν are arbitrary (16.14) is obtained.

16.4 Q2/4m2 = e12x2/e2 = e3π/α = 10560.

2m ∼ 1 MeV, Q2 ∼ 10560 (MeV)2.

16.5 Take Q·r = Qr cos θ and d3Q = Q2dQ d(cos θ )dφ where (Q, θ, φ) are the polar

coordinates of Q, with r taken to be (0, 0, r).

Chapter 18

18.1

From (14.15), the interaction terms in ūdW+ and ūsW+ contain factors Vud and

Vus, respectively. Problem (9.10) shows αK/απ ≈ 0.28. Setting this equal to Vus/Vud

gives sin θ12 ≈ 0.27.
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18.2 The internal wave function of two pions at r1 and r2 in an S state is a function of

only |r1−r2| and |r1−r2| is invariant under both C and P. Hence

CP
∣∣π0π0

〉 = ∣∣π0π0
〉

and CP
∣∣π+π−〉 = ∣∣π+π−〉

.

18.3 The internal wave function of three pions at r1, r2, r3, depends only on two relative

coordinates, say r12 = r2 − r1 and r23 = r3 − r2. To be invariant under rotations (J =
0) the internal wave function can be a function of only three scalars: r12 · r12, r12 · r23,

and r23 · r23. These are invariant under C and P. Since the intrinsic parity of the π0

is negative,

C P
∣∣π0π0π0

〉 = − ∣∣π0π0π0
〉
.

18.4 The area of the triangle formed by the origin and the points r1= (x1, y1, 0) and

r2= (x2, y2, 0) is

(1/2)|r1 × r2| = (1/2)|x1 y2−x2 y2)|
= (1/2)|Im(z∗

1z2)|,

where z1 = x1 + iy1, z2 = x2 + iy2. Hence the area of the unitary triangle is

(1/2)|Im(V∗
ud VubVcd V ∗

cb)| = J/2.

18.5 All the complex numbers zi are transformed to z1
i = ei(θd−θb)zi and the triangle is

rotated through an angle (θd − θb).

Chapter 19

19.2 (a) (U ∗
β jUα jUβiU ∗

αi ) = (U ∗
βiUαiUβ jU ∗

α j )
∗ hence

Im(U ∗
β jUα jUβiU ∗

αi ) = −Im(U ∗
βiUαiUβ jU ∗

α j ).

(b) Since U is unitary,∑
i

Fβαi j = Im(∂αβUβ jU ∗
α j ) = Im(|Uα j |2) = 0.

As two examples Fβα12 + Fβα32 = 0 and Fβα13 + Fβα23 = 0.

Hence Fβα12 + Fβα23 = Fβα31.

(c) ∑
i> j

Fμei j sin(
�m2

i j L

2E
) = −J

[
sin(

�m2
21L

2E
) + sin(

�m2
32L

2E
)

− sin(
(�m2

21 + �m2
32)L

2E
)

]

and the result follows.

Chapter 21

21.1 Let
(
iσ 2 ν∗)† σμ ∂μ

(
iσ 2 ν∗) = E

Inserting explicit spinor indices

E = νiσ
2
i jσ

μ

jkσ
2
kl∂μν∗

l , (repeated indices summed).
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But from the algebra of Pauli matrices σ 2
i jσ

μ

jkσ
2
kl = σ̃

μ

li . Taking account of the

anticommuting spinor fields E = −∂μν∗
l σ̃

μ

li νi . and discarding a total derivative that

makes no contribution to the action

E = ν∗
l σ̃

μ

li ∂μνi = ν†σ̃ μ∂μν.

21.2 Inserting explicit spinor indices

νT
ασ 2νβ = ναiσ

2
i jνβ j = −ναiσ

2
j iνβ j = νβ jσ

2
j iναi = νT

β σ 2να.

21.3 From (21.15)

U M
β j U M∗

α j = U D
β j e

i� j U D∗
α j e−i� j = U D

β j U D∗
α j .

Appendix A

A.1 The equation holds for αβ . . . ν = 1, 2, . . . , n. Interchanging, say, α and β is equiv-

alent to interchanging column i with column j, and gives the same sign change.

A.3 M = (M + M†)/2 + i(M − M†)/2i. (M + M†)/2 is Hermitian, as is (M − M†)/2i.

A and B, and hence M, can be diagonalised by the same transformation if and only if

AB − BA = 0, i.e. (M + M†)(M − M†) − (M − M†)(M + M†) = 0

or

M†M − MM† = 0.

(This condition is satisfied if M is unitary.)

A.4 Since (MM†)† = MM†, we can find U1 such that U1(MM†)U†
1 = MD

2. MD
2 has

diagonal elements ≥ 0, since MD
2 = U1M(U1M)†. Thus we can choose MD with

real diagonal elements ≥ 0. If none are zero, MD can be inverted. We may then define

H = U1
†MDU1 = H†, and V = H−1M.

Hence

VV† = H−1MM†H−1 since (H−1)† = H−1

= H−1U1
†MD

2U1H−1

= U1
†MD

−1U1U1
†MD

2U1U1
†MD

−1U1

= I, since U1U1
† = I.

Thus V is unitary, as is U1V = U2.

Finally, M = HV = U1
†MDU1V = U†

1MDU2.

Appendix B

B.1 A unitary transformation, H → H′ = VHV† = HD, say, also diagonalises each term

of U and hence

U → U′ = VUV† = UD = exp(iHD).
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det U = det UD =
∏

n

exp i(HD)nn

= exp
[
i
∑

n

(HD)nn

]
= exp[iTr HD].

But TrHD = TrH. Hence if Tr H = 0, det U = 1.

B.2 The SU(2) matrices corresponding to R01(θ ) and R02(θ ) are respectively

(
cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

)
and

(
cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

)

and the correspondence can be checked directly.

B.3 From equation (B.5), using (B.12) and Problem B.2, R(ψ, θ, φ) corresponds to the

product

(
eiψ/2 0

0 e−iψ/2

) (
cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

) (
eiφ/2 0

0 e−iφ/2

)
.

B.4 Under a Lorentz transformation, l → l′ = Ml, r → r′ = Nr.

Hence

l†σ̃ μσ νr → l†M†σ̃ μσ νNr
= l†M†σ̃ μMN†σ νNr since MN† = I
= l†Lμ

λσ̃
λLν

ρσ
ρr from (B.17) and (B.18)

= Lμ
λLν

ρ(l†σ̃ λσ ρr).

It is easy to verify that

σ̃ μσ ν + σ̃ νσμ =
⎧⎨
⎩

0 if μ �= ν,

2 if μ = ν = 0,

−2 if μν = i ; i = 1, 2, 3.

B.5 Equation (B.10) gives

X(x) = xiσ i

X′(x ′) = x ′iσ i = Ri
j x

jσ i .

Also X′ = UXU† = Ux jσ j U†. The x j are arbitrary. Hence Uσ j U† = Ri
jσ

i . Multi-

plying on the left by σ k and taking the trace,

Tr(σ kUσ j U†) = Ri
j Tr(σ kσ i ).

Now

Tr(σ kσ i ) =
{

2 if k = i,
0 if k �= i.

Hence the result.
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B.6 From (B.17), M†σ̃ μM = Lμ
λ σ̃ λ. Multiplying on the left by σ̃ ν and taking the trace,

the result follows, since

Tr(σ̃ ν σ̃ λ) =
{

2 if λ = ν,

0 if λ �= ν.

Appendix C

C.2 The ground state is given by a|0〉 = 0, or (X + iP)|0〉 = 0. In the Schrödinger rep-

resentation. P = −id/dX , so that (X + d/dX )ψ0 = 0, giving ψ0 = Ae−X2

/2, where

the constant A is determined by normalisation.

C.3 Ni bi
†|0〉 = bi

†bi bi
†|0〉

= bi
†(1 − bi

†bi )|0〉 = bi
†|0〉.

Appendix D

D.1 Q2 = (p − p′)2 − (E − E ′)2

= (p2 − E2) + (p′2 − E ′2) − 2p·p′ + 2EE′.

But E2 = p2 + m2, E ′2 = p′2 + m2, so that, neglecting electron masses,

Q2 = −2pp′ cos θ + 2EE′ = 2EE′(1 − cos θ ) = 4EE′ sin2(θ/2).

The energy and momentum of the recoil proton are given by E p = M +
E − E ′, P = p − p′; also Ep

2 = M2 + P2. Hence

Q2 = p2 − (E − E ′)2

= (M + E − E ′)2 − M2 − (E − E ′)2

= 2M(E − E ′)

so that (D.3) follows.

D.3 Q2 = 2EE′(1 − cos θ )

ν = E − E ′

dQ2dν = ∂(Q2, ν)

∂(cos θ, E ′)
d(cos θ )dE ′

where the Jacobian of the transformation is∣∣∣∣−2EE′ 2E(1 − cos θ )

0 −1

∣∣∣∣ = 2EE′.

Hence the result.
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