2.1

2.2

2.3

24

2.6
2.7
2.8

2.9
2.10

Hints to selected problems

Chapter 2
a/u - gupa/ﬂ — gule)}Lal — guprAg)Lvau- Hence a/M — L,uvav where LMU —
gupL:.g"" . In particular, Ly' = gooL% g"' = —L).

a™ = L*,a". Multiply on the left by L,” - L,’a’* = L,’L*,a" =a”, or a* =
aVL,". Similarly, a, =a',L",.
0 d 0
d¢ = —¢dx" = —¢dx“’ = —¢L"de“. Since the dx* are arbitrary,
oxH ax" ox"
0 0
0 _ 9,

axr  axv M

This is a covariant vector field transformation (Problem 2.2).

det (L") = det(g,,,) det (L") det(g"")
= (—1)*det (L"}).

From (2.14), det(L,,") det(L* ) det (8"p) = 1. The result follows.
Note that if detLL; = 1 and detL, = 1 then detL; detL, = 1.
8 = L*,L,*8Y = L*,L,” = §" using Problem 2.2.
Using (2.3), ' = wcosh@ — ksinh 0

= w(coshf — sinh ) sincew = k

=e¢ .
Since v/c = tanh 0, the result follows.
Jacobian is det(dx™/9x") = det(L*,) = 1.

The operation of space inversion can be written as x,” = P x,. Then the tensor
€v1p» transforms as

Y pé
€y = P Pf P P)eapys
= & detP = —g,,5,.
250
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Chapter 3

Let x;(i =1,...,3N) be the Cartesian coordinates of the particles. Since x; =
xi(q), X; = (0x;/9q;)g;. Then T = (m/2)%;%; = (m/z)(axi/36]j)(3xi/36]k)67j6'1k-

s () o
i~ %9 g 3<z>¢ a¢ a0 |

Integrate by parts the term —(32£/3¢')(3¢/dx) and use (3.12).

Use orthogonality and the dispersion relation (3.20). Note that H and P’ form a
contravariant four-vector (H, P).

Varying ¢*,
8S = | s2£drd’x
d sy
- / [—(1/20 ( L )w)
— (1/2m)V(81ﬁ ) -Vy — SW*VW] dr d*x.
Integrating by parts the terms involving a(8v*)/d¢ and V(5y*) gives

58 = / [—(1/1)829—1? +(1/2m)Vy — vw]aw*dr d’x.

Since this is true for any 5y, the integrand must vanish. Hence
d
ia—if = —(12m)V>y + V.
Chapter 4
L=—(/4F,,F* — J*A, .From(4.16), F"' = —E, = —Fy;, F'> = =B, = Fy,,
etc.
A— A =A—-Vy. Werequire V-A' =V -(A - Vy) = f — V2x = 0. The solu-
tion is

1 f(r/v t) 3
)= —— a’r'.
xe == Lm0
For = (e F + 012 F) /2
= (F® - F%))2 = (=B, — B,)/2 = —B,, etc.
1
20V

A =

[(er +ie,)e ™) 4 (6, —ig,)e®0)]

1
= [2cos(kz — wt), —2sin(kz — wt), 0],

\/_

‘/ [sm(a)t kz), — cos(wt — kz), 0] .

By inspection, on any plane of fixed z, E rotates in a positive sense about the z-axis.
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If the fields vanish at infinity, a term 9;(AoF*) = (Ao F 01y does not contribute to
the energy. Thus the energy density is not unique, and we may take

T) = —F%8A, + 8,(AcF™) + iF,wF’”

= —F%(@A, — 9,A0) + %FMVF‘”,

since in free space 9, F%* = 0 by (4.8),
= _FO#FOM + %FMVF’”.
L=1m% —q¢p+q%x- A, p' = (aL/ax") =mi' + in are the generalised
momenta. The equation of motion (dp'/dt) = (AL/dx") is
mi' 4+ q(dA)o1) + (DA’ Jax)i! = —q(dp/dx") + qx/ (DAT JaxT),
giving
mi' = q[—(3¢/0x") — q(OA" /1)) — g i/

(noting 8" = —d/dx", and definition (4.6)). Taking i = 1,

mi = q(E, — F?y — F3z)
=q(E, + VB, — ZBy)v
and similarly for the other components.
H(p,x) = p'&' — L

=p-(p—qA)/m—[(p—qA)’/2m — qp + q(P — gA) - A/m)]
= (p — qA)*/2m + q¢.

f Ldr = f (yL)dr, where dt = dr/y is Lorentz invariant (see (2.5); 7 is the ‘proper
time”). Hence the result.

Chapter 5
Under the transformations (5.19) and (5.20),
QUL = VENMYL = vl
Tk = WMINyR = 9y,
Yo"k = YENTO"NyR = L* o Y,
Yoty = I MIG My = L'yl 6 v,
Yoy = YiMIa"MNIo "Ny (since MN' = 1)
= L% L" ,yho?67 ., etc.
Using (5.28), (5.31) becomes

Vi By + iBaid; — m)y = ¥ (idy + i — Bm) ¢ since 7 = L.
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5.6 - i/ 0 0%/ =0 0\ /v
Ty = i) (509 ) (T 00) (G
iy y l(wu ‘/fR) 0 0 0 o/ \yx
= i(Vivr — V).
This is invariant under proper Lorentz transformations, but changes sign under the
parity operation (5.27).

5.7 The results follow from the definitions (5.30) and (5.4).

6.1 Chapter 6 .
1 _ e e +)
T _ 6/2 6/2
Vv = 5((+Ie S+ e )<eg/2|+> )
|- 0
=§[e (+14) + e (+]1+)]
=coshf =y = E/m.
From (6.14), probability of right-handed mode
¢ e ! (l + v> since tanh 6 v
= = = - -, 1 = —.
e? + e 2 cosh@ 2 c c
6.3 Wl (pui(p) = L + e ) = cosh 6 = E/m, etc.

ul (p)u_(p) = Osince (+|—) = 0.

Note that
o-pl+)=|+) and op—)=—|-)
implies
o (=pl+)=—1+) and o-(-P)| —)=]|-).
6.5 |+) and |—) are evidently normalised, and by direct substitution and the use of
trigonometric identities, o-p|+) = |+ ), 0-p|—) = —|—).
Chapter 7

7.1 This follows using the orthogonality properties of plane waves and those derived in
Problem 6.3.

7.2 For example,
) ) i 0 —o2\ [e 2 |4)
v =—iy’yl = (l/ﬁ)e (e (02 0 ) ( 02 |+>>
ando? |+) =i|—), giving
02

. / _
Vi = (1/~/§>€71(p17E1) <_ee—9/2 :_; ) .
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Under the parity operation,
Y — Yr, 6709, — 09,,
from (5.26) and (5.27). Under charge conjugation,
YR — iazlpﬁ.
Hence under the combined operations,
{61990 — i oo a0, yf = —id, ¥ (070" oD Yy
(recall the — sign that must be introduced when spinor fields are interchanged). But

(aza“UZ)T =k

Finally, integrating by parts in the action yields the Lagrangian density iwﬁ& RO
Yr — Y = Nyg by (5.20).

o2y — i’ N*y*.
But 0>N* = Mo 2. This is true for M and N given by (5.24), and holds in general.
Varying ®* in the action gives

88 = / {—[(, + qA,)8®*][(10" — gA")®] — m*8P* P} dr d°x

= /8@*{(1811 —qA,)({" — gAM® — m* @) dr dx,

after integrating by parts. Since this holds for any §®*, the Klein—Gordon equation
follows.

If & - ¢9® with @ = a(x) small,

(10, + qA,)(E“®) = e®(id, + gA,)® — (3,a)e“®
58 = / {(—=(0,)®*[(10" — g AM)®] + [(10" + g A)®*](8,0) P} dr d*x

- fa(x)au{{)*[(ia" — gAMB] — [(13" + gAM)B*| B} dr dx,

after integrating by parts. Hence the current
JH =1i[®* (3" ®) — (3" P*)P] — 2 A D* P

is conserved, as is also ¢gj*. (Note that gj* = —9£/dA,, is the electromagnetic
current.)
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7.7 Verify by direct calculation, e.g. for positive helicity and taking p = 3,
qj* = ey y’yy o e
= e (T 0 (S D)
= —e sinh 6, sinceo? |[+) =|+).

7.8 This follows since the electric field lines are reversed in direction, E — E' = —E.

7.9 Assuming p(t) — p'(t') = p(—t), Maxwell’s equations retain the same form if E —
E =E,B— B =-B,J — J = —J, or equivalently

¢— ¢ =¢, A—> A =—A.
Taking the complex conjugate of (7.6) and multiplying on the left by y'y3 gives
vV (=0, — gA) —mly* = 0.
Now
v'y3 () =y =01y,
yly3 (yi)* =—yiyly3 fori =1,2,3,

and the result follows.

Chapter 8

8.3 If an eTe™ pair is created there is a frame of reference (the centre of mass frame)
in which the total momentum of the pair is zero. The photon would also have zero
momentum in this frame and hence zero energy: energy conservation would be vio-

lated.
Chapter 9
9.1 Conservation of energy gives m, = E. + E,. Conservation of momentum gives p. =
pv. Also
Ey = pv, Eez = pez +me2» Ve = pe/ Ee.
Hence
2 2
m —m
(mn — Pe)2 = Ee2 = Pez + meza Pe = 7T2 :
My

Then

2 2

my” +m
Ee=mg— pe = z - s
2m g
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9.2 Finalenergy E = E. + E, = Ec + pe
dE  dE. P. E.+P. M,
dpe B dpe E. E. E.’
9.3 Using Problem (9.1),

U, m 2
(1 e) Pe Ee = 4me”3 = (mrrz - mez) ,

with a similar expression for the u leptons.

9.4 Since the pion is at rest, only the term d®/9d¢ contributes. From (3.35), there is a

factor in £, arising from this:

L (=imz)

[— a
JV 2my

From Problem 6.5, the v factor is

\/_dll) l( pr)| >

From (6.24), the e{ factor is

1 m . 1
[ pteipr___,—6/2 (41, .
VVVE, " V2 b

(Only this helicity term contributes.)
Integrating over volume gives p’ = —p and a volume factor V, so that, for a
given p,

(ep T-p IVO)| 7] ( 2 [ [ e

(Note that |[—)_, = [+)p.)
Hence the transition rate s is obtained. The factor 47 in the density of states comes

from summing over all directions of p. Also (E./m.) = cosh® and e~/ coshf =
(1 —tanh0) = (1 — v/c).

192723
9.7 Gr~ ( il > = 1.164 x 10-5(GeV)2.

5
Tmy,

9.8 The square of the centre of mass energy
s = (Ee+ E\)* — (pe + pv)’
is Lorentz invariant. In the electron’s rest frame
s_(me~|—E1,)2 —m +2m.E,
9.9 The expression (9.8) contains the term

—Zx/EGFgwe{&“ VeLLVo €L
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The expression (9.15) contains the term
(GF/‘/E> 8y V/TLLC}# V,uLlpe)/v(cu —Ca Vs)we-

9.10 TR wv) _ omelmg —mO? s

7 (K — eVv,) mi(m%( —m?)?

1 ax’ Uy )
T(K— uv,) 4r (1 - 7) P Ey (cf.(9.3),

2

v m
where (l——”) 2E = —2 (mg? —m,>)?
c pu 29 4mK2( K LL)

(cf. Problem 9.3).
This gives ax = 5.82 x 1071 MeV~!, and o, =2.09 x 10~ (text), giving
ok /o = 0.28.

9.11 Consider the decay T~ — 7 + v;. The term in £, that generates the decay is
viLﬁurLaﬂtIﬁ.

Consider the 7 to be at rest with its spin aligned along the z-axis, and the neutrino
momentum to be p. The pion momentum is then (—p), and the interaction energy
contains a term

L )b, )b ) (—y (0 — - B) = <1>

VV V2E; 7 \0
Now (=, (0"Ex — o-p) = (—|, (Ex + py) = (—|pm, and from Problem 6.5,
(—lp = (—sin(6/2)e'’, cos(0/2)) where 6 and ¢ are the polar angles of p.
Hence

(ropvpIVIT)= sin (6/2) e'?.

oy 1 1
- m,—
VV J2E; 2
The decay rate is
1 .
~ =2 [V IDP ponoas
where

v (m?—md)E,
P (mr) = 3 2 R
2m) dm, my

and the angular integration gives a factor 27t.

Chapter 10

10.1 The term —(m?/2¢0>)v/2¢o x ¥ links the x and y fields, and m = m,, /+/2. Since
the ¢ particles are massless, the final energy E = 2p, and the density of states factor
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for the decay is

Vv dp dp
= dmp*—  where — = -,
oy P g Y 4E T2

and the factor 47 comes from the angular integration.
In the matrix element (p, —p| V| x atrest), the x field gives a factor 1/,/2m, from
the expansion (3.21), and each of the i fields gives a factor 1/4/2p. Hence
m X4 1 1 4np*1
8¢’ 2m, 4p2 (27)3 2
2

_ My (M
1287 \ g0 )

10.2 The decay of an isolated vector boson requires a term in £, linear in A,. There is

aterm (vV2¢pg?) A A" h that allows the decay of the scalar boson if energy conser-
vation can be satisfied, i.e. mj, = v2m > Z(ﬁqqﬁo).

27 |(pIV[i)I*p(E) = 27

Chapter 11
11.1 The term UWU' satisfies (UWU) =UWU' and Tr(UWU') =
Tr(U'UW) = Tre(W) = 0.
Noting that (&-7)°=1 and (3,0/)a’/=0sincea/a’ =1, the term
(2i /gg)(al,dU)UT may be written as a linear combination of the matrices 7/
with real coefficients. Each t/ is Hermitian and has zero trace.

11.3 The last term may be written as (g22¢02/4)(WH twin 4 W,f W2#), and in the absence
of electromagnetic fields the term that precedes it can be handled similarly. There
are therefore two independent fields each with mass g2¢o/+/2 (cf. Section 4.9).

11.4 The interaction Lagrangian density (11.32) contains a term g,2/+/2)h w, W cou-
pling the 4 field and the charged W fields.

Y
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11.5 Consider

U=cosal +isinat - &(seeB.9).

Then
U*=cosal —isina(r'a' — 7%a* 4+ oa%)
and
72U* = [cosal + isina(t'@! + 2@% + v363)]c?
using
27l = —7172 1273 = 372
Hence

it?U* = U(ir®>) and it> = (_? (1)) )

The result follows.

11.6 Using (B.9).

U = cosal + sina(singt! + cos ¢1?)

_ (cosa i sin a(sin ¢ —icos¢)>

isina(sing +icos¢) cosw

Chapter 12

L:(“).
L,
To maintain local gauge invariance, the dynamical term in the Lagrangian density
must be Lfdf‘i(aﬂ +i(g,/2)W L.
There are terms which mix L; and L,, for example,

—(&2/DLi "6 (W, —iW, )Ly

= —(&2/DL, 16" LW,

The operator WMJr destroys electric charge e, so that to conserve charge L\T61L,,
must create charge e.

12.2 Take the two fields to be

12.3 The Higgs particle at rest has zero momentum and zero angular momentum. Hence
the et and e~ have opposite momentum. If they had opposite helicities, they would
have to carry orbital angular momentum with a component +1 or —1 along their
direction of motion, to conserve angular momentum. This is not possible since
p-(rxp)=0.

The final density of momentum state‘i is ap
2 e
p(E) = wﬁpe iE"
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The final energy E = 2E.,where E.> = m.?p.>. Hence
dpe _ ldpe _ E.
dE 2dE.  2pe

\%
, and P(E)=wPeEe~

The interaction term in (12.9) is —(Ce\/j)hl/_fl//. From (6.24) and (3.21), this gives
1 1 me

V=75 Jom E.

[A+(p)vy(—p)]
or

[A-(p)v—(—p)].
Now fi(p)v+(—p) = sinh @, and E./m. = cosh 6. Hence the decay rate to positive
helicities is
2 (FIVIDYEp(E) = 2 < 1 oo ok
l = _ [ .
P 2 2mn ()2 Pete
Alsotanf = v./c = p./E. and E. = my/2. The decay rate to negative helicities is
the same, and the result follows.

Since ¢; > ¢, > c. (see (12.13)) the decay to T+~ dominates in the leptonic partial
width. Also, since the Higgs mass is much greater than the t mass, v; & c¢. Hence

chz_l m,2
mHN16n_16n b0/

Chapter 13

In the rest frame of the W, and neglecting the lepton mass, p; = —py, E; = p; =
M /2,and p;> = M2 /4 = p* + py2 + p.2. Taking the x-axis to be the beam direc-
tion, the mean square transverse momentum is

P24 p2 =23’ = M2 /6.

From (12.23), the Z, is produced by right-handed electron fields with a cou-
pling etan6,, = 2esin®#6,,/sin(26,) and by left-handed fields with a coupling
—e c0s(20y,)/ sin(26y,). In head-on collisions at high energies the right-handed com-
ponent of the electron (positron) has positive (negative) helicity. Hence the total spin
is +1 along the electron beam direction. The spin of the left-handed components is
opposite. For unpolarised beams the left-handed and right-handed components are
equally populated, and the result follows.

Consider the decay W~ — e~ + 1, in the W™ rest frame. With no loss of general-
ity we may take the W~ to have J = 1, J; = 0 (see Section 4.9). The interaction
Lagrangian density responsible for the decay is (from (12.15) and (12.16))

L= —(g:/V2)j*W;.
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If the electron has momentum p, the neutrino has momentum —p. Neglecting the
electron mass (see Problem 6.5) the matrix element for the decay is

1
(fIV10i) \/_ \/— o’ |+).
(Recall o-p|—)=—|-),0-(—p)|+) = —|+).) Also, from Problem 6.6,
(—| 03 |+) = —sin@e. The decay rate is
14 dpe
I‘=2n/|( |V i) PR pe?
7 (2m)

where dp./dE = 1/2, p. = M, /2, giving
&, _ GeMy’
487 ¥ 6]'[\/5

The decay rate for Z — vb requires a similar calculation, with M,, replaced
by M, and the coupling constant g,/~/2 replaced by e/ sin26,, = g»/2 cos 6, =
g>M./2M,,. (We have used (12.23), (11.38) and (11.37a).) Then

GeM?
1272

There are two terms in (12.23) contributing to I'(Z — e*e™), yielding

I =

, by (12.22).

I'(Z - vV) =

[(Z — eTe™) = T(Z — vD)[(2sin® Oy)* + (cos 264)°].

83.86 MeV.

Chapter 14
Under an SU(2) transformation, and from Appendix A.2

(®TeL) — (®TUTUL)

UTet — | Y44 Usa 0 1{{Uasx Uasp|_ 0  Det(U)
UAB UBB -1 0 UBA UBB —Det(U) 0

= (Det(U))e
= ¢, since Det(U) = 1. Hence (PTUTeUL) = (®T¢L)

From (11.23),

0
B (¢o +h/ «/i) ’
Inserting this in (14.6) gives the coupling terms
—(1/v2) Z[Gd d] .dg jh + Hermitian conjugate.

Similar terms arise from (14.9) and (14.10). Using the true quark masses these
become

—(1/¥/2¢0) Z[m?(d{idRi + diydi) + ml (] g + ubiun) .
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The coupling to the top quark is

m; 180 GeV
¢ = A ~ 0.7
V2¢0 V2 x 180GeV
14.5 For Kt — u* +v,, the terms

sLTa"uLVM*S from j*, v/LLtd“p.L fromj’”L

contribute in the second order of perturbation theory. (See (a).)
(a) s

wt

(b) Ve
c s
d d
u
©) d
b c
-
u u
u
For Dt — KO+ et + v,

516 e V. from ji, vl 6ep from j*. (See (b).)

For Bf — DO + 7T,

b{&“cLV:Z from j*, u}i&“dLVud from j*'. (See (c).)
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14.6

The quark labelled u; can be u, c ort.

Chapter 15

15.1 The decay rate for Z — dd of (15.3) can be compared with the decay rate for
Z — eTe” of (13.3), calculated in the answer to Problem 13.3. Comparing the inter-
action Lagrangian densities (12.23) and (14.14), the term in the left-handed coupling
c08260y, = 1 — 2sin® 6, is replaced by (1 — (2/3) sin” 6y,), and in the right-handed
coupling 2sin® @, is replaced by (2/3)sin 6,,. Including a colour factor of 3 and
replacing sin® Oy by (1/3) sin® 6y, in the rate (13.3) gives the rate (15.3).

Similarly for Z — uii. Comparing (12.23) with (14.14), sin” 6, is replaced by
(2/3) sin” 6.

The decay rate W — u;d; of (15.6) can be compared with the rate W — e ™,
of (13.2) calculated in the answer to Problem 13.3. Comparing the interactions
(12.18) and (14.20), g»/+/2 is replaced by eV;;/+/2sin 6y = g,V;j/+/2. Including
the colour factor of 3, the rate (15.6) follows from the rate (13.2).

Chapter 16

l6.1 G,, =09,G, —9,G, +ig(G,G, — G,G))
= (8,64 — 8,G%)(14/2)

+i(g/4)(GﬁGﬁmc - GﬁGl’jAckb>,
and
Aphe = Aehp) = 2ifpeaha (see (B.27)).
Hence
G = 13,6 — 0,G) — gfunc G}, G5 1(ha/2).

16.2 These are the terms in (16.9) cubic and quadratic in the G fields.
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16.3 Variation of G¢ gives
8S = f [— (1/2)G™8G,, — g Z(’lfy"SGﬂ()\a/Z)qf]dAx,
f
and
—(1/2)G*""8Gy, = =G 3,(8GY) + gG"‘“’GZ(SGf,bea.
(There are two equal contributions to the right-hand side.) Integrating by parts gives
88 = / [%G““” —8GG fupe — 8 Y _ A" (ha /2)qf}ac;3 d*x
f

(fcba - _fabc)~

Since the §G¢ are arbitrary (16.14) is obtained.

16.4 02 /4m? = el2x?/e _ G3m/a — 10360

2m ~ 1 MeV, 0% ~ 10°°0 (MeV)2.

16.5 Take Q-r = Qr cos 6 and d*Q = Q>dQ d(cos 6)d¢ where (Q, 8, ¢) are the polar
coordinates of Q, with r taken to be (0, 0, r).

Chapter 18
18.1
d
BPd
u W
W
S
BPd
u w
W

From (14.15), the interaction terms in tdW™ and usW™* contain factors V,q and
Vis, respectively. Problem (9.10) shows ok /o, = 0.28. Setting this equal to Vis/ Vig
gives sin 6, ~ 0.27.
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18.2 The internal wave function of two pions at r; and r;, in an S state is a function of
only |r;—r,| and |r;—r| is invariant under both C and P. Hence

CP|TL’07T0) = |n0n0> and CP|JT+71’) = |n+n’>.

18.3 The internal wave function of three pions at ry, r5, r3, depends only on two relative
coordinates, say rj, = r, — rj andrp; = r3 — r,. To be invariant under rotations (J =
0) the internal wave function can be a function of only three scalars: ry, - rys, Iy; - I3,
and ry3 - rp3. These are invariant under C and P. Since the intrinsic parity of the i
is negative,

CP|n’n’n’) = — |77 "n°).
18.4 The area of the triangle formed by the origin and the points r= (x;, y;, 0) and
= (X,, y,, 0)is
(1/D)Ir; x 12| = (1/2)|x 1 y2—x2y2)|
= (1/2)[Im(zz2)l,
where z; = x; +1y1, 2o = X2 + iy». Hence the area of the unitary triangle is
(1/DIm(V; Vip Vea Vo)l = J /2.

18.5  All the complex numbers z; are transformed to z} = '@ ~%)z; and the triangle is
rotated through an angle (6; — ;).

Chapter 19
19.2 (a) (UEjUajUﬁ,‘U(ji)=(U;[Um‘UﬁjU;j)* hence

Im(U;jUajUﬂiU:l-) = —Im(U;aniUﬂjU:j).

(b) Since U is unitary,
Z Fﬂaij = Im(aaﬁUﬁonfj) = Im(anjlz) =0
As two examples FﬂalZ + F5a32 = 0and Fﬂa13 + Fﬁa23 =0.
Hence Fgy1o + Fpa2z = Fga3i-

(c) )

m;; L Am?
Z jueij Sll’l( - )=-J |:Sin( 7

i>]j
(Am3, + Am%Z)L)
2E

L Am2 L
1 : 32
—+ sin

— sin(

and the result follows.

Chapter 21

211 Let (i02v9) 0% 3, (i02v*) = E
Inserting explicit spinor indices

2 2 * . .
E =v;0};0,04,0,v;, (repeated indices summed).
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But from the algebra of Pauli matrices crjoj k‘7k21 = 6/;. Taking account of the

anticommuting spinor fields E = —3,'6/: v;. and discarding a total derivative that
makes no contribution to the action

L kaH o e
E = v/6,;0,v; = vi6"o,v.

21.2 Inserting explicit spinor indices

T, 2 2 T 2
V,0 Vg = vmo,jv,gj = va,aﬂvﬁj = VBjOjiVai = VgO Vg

21.3 From (21.15)

Mx __ lAj Dx ﬂAj _ Dx
ol = upeub = vpubr.

Appendix A

A.1 The equation holds for ¢ ...v = 1,2, ..., n. Interchanging, say, « and 8 is equiv-
alent to interchanging column i with column j, and gives the same sign change.

A3 M=M+M"/2+iM —MH)/2i. (M + M')/2 is Hermitian, as is (M — M) /2i.
A and B, and hence M, can be diagonalised by the same transformation if and only if

AB—BA =0,ie. M+MHM-M") - M-MHM+M) =0
or
MM — MM = 0.
(This condition is satisfied if M is unitary.)

A4 Since MM")T = MM, we can find U, such that U;(MM"U! = M,%. M,? has
diagonal elements > 0, since MD2 = U;M(U,M)’. Thus we can choose M, with
real diagonal elements > 0. If none are zero, M, can be inverted. We may then define

H=U,"MpU, =Hf, and V=H'M.

Hence

VVi = H'MM'H™! since H™ ") = H™!
=H'U,'Mp,’UH!
=U,"M,~'U,U, M0, U, "M, 71U,
=1, since U1UIT =

Thus V is unitary, as is U;V = U,.
Finally, M = HV = U,'MpU,V = UIMDUZ.

Appendix B

B.1 A unitary transformation, H - H' = VHV' = Hp, say, also diagonalises each term
of U and hence

U — U = VUV’ = Up = exp(iHp).
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detU = detUp = [ [ expi(Hp)un
= exp [12 (HD)n,,] = expl[iTr Hp].

But TrHp = TrH. Hence if TrH = 0, detU = 1.

B.2 The SU(2) matrices corresponding to Ry;(#) and Ry»(0) are respectively

cos(0/2) isin(6/2) J cos(6/2)  sin(B/2)
isin@/2) cos6/2) ) ¢\ Zsin@/2) cos(6/2)

and the correspondence can be checked directly.

B.3 From equation (B.5), using (B.12) and Problem B.2, R(, 6, ¢) corresponds to the

product
ez 0 cos(6/2) sin(6/2) ez 0
0 e /2 )\ —sin(@/2) cos(@/2) ) \ 0 e 02 )"
B.4 Under a Lorentz transformation,1 - 1' = Ml r — r' = Nr.

Hence

I'640'r — I'Mt640 " Nr
=1'M'6“MNTo"Nr since MNT =1
=1"L%,6*L" ,o’r from (B.17) and (B.18)
= L% L ,(T6*0"r).

It is easy to verify that

0 ifu#v,
6to’ +6"c" = 2 ifu=v=0,
=2 ifpuv=i;i=1,2,3.
B.5 Equation (B.10) gives

X(x) = xio!
X'(x) = x"ol = Rj.xjai.

Also X' = UXU" = Ux/¢/U". The x/ are arbitrary. Hence Uo/UT = R/0’. Multi-
plying on the left by o and taking the trace,

Tr(c*Uo/UT) = R Tr(c*o").
Now

2 ifk =i,

Tr(o'a") = {o itk #i.

Hence the result.

https://doi.org/10.1017/9781009401685.032 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401685.032

268 Hints to selected problems

B.6 From (B.17), M{6#“M = L*, *. Multiplying on the left by 5" and taking the trace,
the result follows, since

o |2 ifa=v,
Tr(““)_{o if A % v,
Appendix C

C.2 The ground state is given by a|0) = 0, or (X 4+1P)|0) = 0. In the Schrédinger rep-
resentation. P = —id/d X, so that (X + d/dX)yy = 0, giving Yy = Ae‘Xz/Z, where
the constant A is determined by normalisation.

C.3 N;:b;T10) = b;Tb;b,;7|0)
= b;1(1 — b;'b;)|0) = b;1]0).

Appendix D

D.1 Q*=@-p)Y—(E-EY)
— (pz _ E2) + (p/Z _ E/2) _ pr/ +2EE/

But E? = p? + m?, E”? = p’> + m?, so that, neglecting electron masses,
Q? = —2pp’ cosb + 2EE' = 2EE'(1 — cos ) = 4EE' sin*(6/2).

The energy and momentum of the recoil proton are given by E, =M +
E—E,P=p—p;also E,> = M? + P2 Hence
Q2 — p2 _(E_E/)2
=M+E—-E)Y—-M—(E—-EY)

=2M(E — E')
so that (D.3) follows.
D.3 0% = 2EE'(1 — cosb)
v=FE — Ez’
(0,
402y = 22V 4 coso)dE’
d(cos b, E)

where the Jacobian of the transformation is

—2EE"  2E(1 —cos0)

= 2FF'.
0 -1

Hence the result.
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