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LEITERS TO THE EDITOR

STRONG UNIMODALITY

CHRIS A. J. KLAASSEN,* University of Leiden

Abstract

It is proved that a distribution F is strongly unimodal iff any two
quantiles of the convolution of F with any other distribution are
further apart than the corresponding quantiles of F itself. Some
related characterizations of strong unimodality are also given.

SPREAD; CONVOLUTION; JENSEN'S INEQUALITY

1.1 Strong nnimodality and spread

A distribution F on IR is called strongly unimodal iff the convolution of F with any
unimodal distribution is again unimodal. We define F-I by

(1.1) F-I(t) = inf {x E IR IF(x) ~ r}, O~ t~ 1,

and we call a distribution F more spread out than a distribution G, notation F ~ I G, iff

(1.2) F-I(v) - F-I(u) ~ G-I(v) - G-I(u), O~u~v~l,

holds. Furthermore we denote the convolution of F and G by F* G, the set of
distributions on IR by C§ and the set of distributions with mass ~ at 0 and mass ~ at some
a EIR by «;

Theorem 1.1 For FE C§ the following statements are equivalent:

(1.3)

(1.4)

(1.5)

(1.6)

F is strongly unimodal,

F* G I~IF* G 2 holds for all G I, G 2 E C§ with G I ~l G 2 ,

F* G ~IF holds for all G E C§,

F* G ~lF holds for all G E C§o.

The equivalence of (1.3) and (1.4) has been proved by Lewis and Thompson (1981)
and Lynch et al. (1983). Under the assumption, that F has a Lebesgue density which is
positive on IR, the equivalence of (1.3), (1.5) and (1.6), with C§o replaced by the set of all
two-point distributions, has been proved by Droste and Wefelmeyer (1985). Since the
implications (1.4) ~ (1.5) ~ (1.6) are trivial, it suffices to show (1.6) ~ (1.3) in order to
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complete a proof of Theorem 1.1. Our proof of this implication is based on Jensen's
inequality.

2. Intermediate results and proofs

Let IF be the interior of the smallest interval containing the support of F. From the
classical paper of Ibragimov (1956) we obtain the following characterization.

Lemma 2.1. F is strongly unimodal iff F is degenerate or F is absolutely continuous
with a density f, which is continuous and positive on IF, vanishing outside IF and such that
f(p-l(.)) is concave on [0, 1].

Proof. Without loss of generality we assume that F is non-degenerate. Ibragimov
(1956) proves that F is strongly unimodal iff F is absolutely continuous and differenti­
able on IF with derivative f such that log f(·) is concave on IF. By, for example, 18.43 of
Hewitt and Stromberg (1965) this concavity shows that log f(·) is absolutely continuous
on IF with a non-increasing Radon-Nikodym derivative f'(·)ff(·). Consequently
f'(p-I(·))ff(P-I(.)) is non-increasing on (0,1) and f(p-l(.)) is concave on (0,1). In the
same way concavity of f(F- I

( . )) on (0, 1) implies concavity of log f(·) on IF.
The gist of our approach is Jensen's inequality, which provides a simple proof of the

following result.

Lemma 2.2. Let P be absolutely continuous with a density f, which is continuous and
positive on IF and vanishing outside IF. The function f(F- I

( . )) is concave on [0,1], iff
(1.5) holds, iff (1.6) holds.

Proof. Let h be the density of H=F*G. Note that F*G?;IF iff h(H-I(s))~

f(p-I(S)), for all s, O<s < 1, iff h(x)~f(F-I(H(x))), for all x E~, iff

(2.1) Jf(F-l(F(x - y))) dG(y) ;:af(p-lUF(x - y) dG(y))), for all x E IR.

Consequently F *G ?; I F holds for all G E Cfj iff

(2.2)

is valid for every random variable taking values in [0, 1]. In view of Jensen's inequality
this is equivalent to the concavity of f(p-l(.)) on [0, 1]. The equivalence of (1.6) and the
concavity of f(p-l(.)) can be shown in the same way.

Note that Lemma 2.1 and 2.2 give a direct proof of the implications (1.3) ~ (1.5) ~
(1.6) and show the equivalence of (1.3), (1.5) and (1.6) under the assumption of
existence of a continuous positive density on IF.

Proof of Theorem 1.1. In view of the remarks at the end of Section 1, it suffices to
show the implication (1.6) ~ (1.3). Let <Pn denote the normal distribution with mean °
and variance n-l

. Since <Pn is strongly unimodal the implication (1.3) ~ (1.4) shows that
(1.6) implies

(2.3)

Since F * <l>n has a continuous and positive density on lR, Lemmas 2.2 and 2.1 imply
that P*<Pn is strongly unimodal for all n. Taking the limit for n ~ 00 we see that P itself
is strongly unimodal (cf. Lemma 2 of Ibragimov (1956)).

https://doi.org/10.2307/1427093 Published online by Cambridge University Press

https://doi.org/10.2307/1427093


Letters to the editor 907

Acknowledgement

I would like to thank W. Wefelmeyer for sending me a preprint of his paper with W.
Droste, and the referee for some useful comments on the presentation.

References

DROSTE, W. AND WEFEUffiYER, W. (1985) A note on strong unimodality and dispersivity. J.
Appl. Probe 22, 235-239.

HEWITT, E. AND STROMBERG, K. (1965) Real and Abstract Analysis. Springer-Verlag, Berlin.
IBRAGIM:ov, I. A. (1956) On the composition of unimodal distributions. Theory Probe Appl. 1,

255-260.
LEWIS, T. AND THOMPSON, J. W. (1981) Dispersive distributions, and the connection between

dispersivity and strong unimodality. J. Appl. Probe 18, 76-90.
LYNCH, J., MIMrvtACK, G., AND PROSCHAN, F. (1983) Dispersive ordering results. Adv. Appl.

Probe 15, 889-891.

https://doi.org/10.2307/1427093 Published online by Cambridge University Press

https://doi.org/10.2307/1427093



