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Abstract

We study moduli spaces of rational weighted stable tropical curves, and their connections with
Hassett spaces. Given a vector w of weights, the moduli space of tropical w-stable curves can be
given the structure of a balanced fan if and only if w has only heavy and light entries. In this case,
the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The
tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton,
its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and
Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted
tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic
world.

2010 Mathematics Subject Classification: 14T05 (primary); 14D22, 14H10 (secondary)

1. Introduction

1.1. Main results. Let w = (w1, . . . , wn) ∈ Qn be a vector of weights
satisfying 0 < wi 6 1 for all i and

∑
wi > 2. Let C be a tree of P1’s,

with n smooth marked points p1, . . . , pn . Marked points are not necessarily
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distinct: a subset of marks is allowed to coincide precisely when the sum of the
corresponding weights is no larger than 1. The curve C is w-stable, if for each
component T of C , the sum ∑

i ; pi∈T

wi + #nodes > 2.

These spaces were introduced by Hassett [13] in the context of the log minimal
model program. In particular, he proves that there exists a smooth projective
scheme representing the moduli problem of w-weighted stable curves. This
scheme is denoted M0,w.

Ifw = (1n), then M0,w = M0,n is the well-known moduli space of stable curves.
In this case, there is an elegant connection to the space of leaf-labelled metric
trees, obtained by geometric tropicalization.

In this paper, we study tropical analogues of moduli spaces of rational weighted
stable curves and their relation to the algebraic moduli spaces. We introduce
tropical rational weighted stable curves in the natural way, by defining the
combinatorial type of a w-stable tropical curve to be the dual graph of a w-stable
curve, keeping track of the weights on the marked ends (Definition 2.1). Parameter
spaces for tropical rational weighted stable curves carry the structure of abstract
cone complexes, with graph contractions giving rise to natural gluing between
cones.

We address the following questions:

(A) For which values of w can the cone complex M trop
0,w be given the structure of

a balanced fan embedded into a vector space?

(B) When M trop
0,w is a balanced fan, can it be realized as a tropicalization of the

classical moduli spaces of w-weighted stable curves?

(C) In the above cases, can the toric variety associated to the fan M trop
0,w be used

to define the w-stable compactification of the locus of nonsingular marked
curves M0,w?

These questions are addressed completely. We begin by observing that, for any
fixed n, the notion of stability is governed by a finite set of first degree inequalities
in the weights. The parameter space for the weights is subdivided into polyhedral
chambers. For any w,w′ in the same chamber, M trop

0,w is canonically isomorphic to
M trop

0,w′ .
A weight vectorw has only heavy and light weights if it is in the same chamber

as (1 f , ε t), for ε such that t · ε < 1 (see Definition 2.2). The following answers
Question (A).
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THEOREM I. The cone complex M trop
0,w can be given the structure of a balanced

fan in a vector space if and only if w has only heavy and light entries.

Our next result generalizes work of Ardila and Klivans [3] to the weighted case.

THEOREM II. The moduli space M trop
0,w with heavy/light weights is the Bergman

fan of a graphic matroid.

The above two results are combined and stated more precisely in the main body
of the paper as Theorem 2.26.

Finally, we answer Questions (B) and (C). See Theorem 3.9 in the text.

THEOREM III. Let w be a heavy/light weight vector. There exists a toric variety
X (∆) with torus Tw, and an embedding M0,w ↪→ Tw, such that

(T1) The tropicalization of M0,w with respect to the given embedding is M trop
0,w .

(T2) The fan ∆ is naturally identified with M trop
0,w .

(T3) The closure of M0,w in X (∆) is Hassett’s compactification M0,w.

In Section 3.4, we explore the connection with Berkovich skeletons, in the spirit
of the results obtained in [1, 26]. This establishes a compatibility between the
geometric tropicalization approach employed in this text, and the perspective of
skeletons of analytic spaces.

A natural variation of weighted stable curves, also considered by Hassett, arises
by allowing the weight vector w to have zero entries. In this case, the moduli
spaces are described by fibre products of the universal curve of M0,w+ , where w+

is the subcollection of positive entries of w. We discuss a tropical analogue of this
situation in Theorem 4.13 and Corollary 4.14.

The main results rely on a careful study of the classical and combinatorial
reduction morphisms from the spaces M0,n and M trop

0,n to the weighted spaces.

1.2. Context and motivation. Tropical geometry has become a successful
tool in algebraic geometry, with exciting applications in the study of enumerative
geometry, moduli spaces and linear series on algebraic curves. Tropical
enumerative geometry began with Mikhalkin’s celebrated Correspondence
Theorem relating numbers of plane curves satisfying point conditions with their
tropical counterparts [21]. The results sparked substantial interest in tropical
moduli spaces.
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The space M trop
0,n is a polyhedral complex parametrizing leaf-labelled metric

trees. It was first studied in connection with phylogenetics [5], and later, in
relation with the geometry of the tropical Grassmannian [23]. The cone complex
M trop

0,n can be embedded into a vector space, and given the structure of a
balanced fan, by assigning weight 1 to each top-dimensional cone. In [10, 22],
M trop

0,n is discussed in analogy with the classical moduli space, with the goal of
understanding its tropical intersection theory. However, the connection between
the algebraic and tropical moduli spaces runs much deeper. Building on previous
work of Tevelev [24], Gibney and Maclagan [11] exhibit M trop

0,n as a tropicalization.
They find an embedding of M0,n into a torus, such that the tropicalization of M0,n

is a balanced fan Σ , such that Σ ∼= M trop
0,n . The closure of M0,n in the toric variety

X (Σ) is M0,n .
This phenomenon falls under the theory of tropical compactification, as

developed by Hacking, Keel and Tevelev [12, 24]. The philosophy is that
the features of a suitable (e.g. toroidal) compactification are inherent in the
tropicalization of a subvariety of a torus, that is, ‘tropicalization knows a good
compactification’. The M0,n case is particularly nice as the tropicalization has an
intrinsic modular interpretation. With this connection between the spaces M0,n

and M trop
0,n established, the orbit–cone correspondence of the ambient toric variety

induces an order reversing bijection between dimension k strata in the classical
moduli space, and codimension k cones in the tropical moduli space. Furthermore,
using techniques from toric intersection theory, Katz [15, Section 7] shows that
the intersection theory on M0,n can be related to the toric intersection theory on
the ambient toric variety, and hence to the tropical intersection theory on M trop

0,n .
With the spaces of rational weighted stable curves, we exhibit a new class of
moduli spaces, having a natural tropical modular skeleton. It seems reasonable to
expect that intersection numbers on the heavy/light spaces M0,w can be computed
tropically, following work of Katz.

REMARK 1.1. The spaces Mg,w for higher genus are defined analogously. In
general however, such spaces do not admit nice embeddings to toric varieties.
Nonetheless, the moduli space of tropical w-stable curves can be viewed as
a skeleton of the analytification of Mg,w. Since this paper first appeared,
Ulirsch has exhibited this connection [26]. In genus 0, we observe that the
compactification of M0,w can be obtained combinatorially. It is intriguing to ask
whether there exists a similar relationship between Mg,w and Mg,w.

1.3. Outline. Section 2 is devoted to projections of M trop
0,n and their relation

to Bergman fans with the nested set subdivision of a building set defined in
terms of graphs. We start with a subsection reviewing the necessary preliminaries,
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subdivided in a part about matroids, Bergman fans and nested sets and a part about
basics in tropical geometry and the moduli space of abstract n-marked tropical
curves. Subsection 2.2 contains original work. The main results are Theorem 2.17,
stating that a certain projection of M trop

0,n is the Bergman fan of a graphic matroid
in a nested set subdivision and Theorem 2.26 that states that this projection is an
embedding of M trop

0,w as a balanced fan if w contains only heavy and light points. If
w does not only contain heavy and light points, then we cannot embed M trop

0,w as a
balanced fan. This is stated in Theorem 2.26.

In Section 3, we explore the tropicalization of the algebraic moduli spaces
M0,w. We start with a subsection reviewing the preliminaries in the context of
the tropicalization of M0,n . Subsection 3.2 contains our main result of this section,
Theorem 3.9, which states that in the case of heavy and light points, we can embed
M0,w into a toric variety defined by M trop

0,w . This space exists as a balanced fan as
a consequence of the results in Section 2. In this embedding, the tropicalization
of M0,w intersected with the torus is shown to be canonically isomorphic to the
tropical moduli space. We also discuss the situation where we do not only have
heavy and light points. In Section 3.3, we consider a special case: the Losev–
Manin spaces, with exactly two heavy and only light points otherwise. They are
toric varieties, which also follows from Theorem 3.9, since the corresponding
tropical spaces are just subdivisions of Rn−3. We then consider the relationship
with Berkovich skeletons.

In Section 4, we construct the moduli spaces of heavy/light weighted tropical
curves as fibre products of spaces of unweighted tropical curves. The motivating
idea here is to replace the light points with weight 0 points. The resulting classical
spaces, studied by Hassett, are singular. The heavy/light spaces can be obtained
as natural desingularizations of the weight 0 spaces. The weight 0 spaces, in turn,
may be expressed as fibre products of spaces of unweighted curves. The main
results of this section rely on several general structure results for fibre products of
Bergman fans associated to graphic matroids.

2. Tropical moduli spaces of rational weighted curves

Let C be a rational abstract tropical curve. That is, C is a leaf-labelled metric
tree. Edges adjacent to leaves are called ends, and are metrized as [0,∞]. The
other edges are called bounded edges and have finite length. Let w = (w1, . . . ,

wn) ∈ Qn be a vector of weights satisfying 0 < wi 6 1 for all i .

DEFINITION 2.1. Let V be a vertex of C and assume that there are l bounded
edges adjacent to V as well as the ends with markings i ∈ I for a subset I ⊂ [n].
We say that C is w-stable at V if

∑
i∈I wi + l > 2. We say that C is w-stable if
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it is w-stable at every vertex. We define M trop
0,w to be the set of all tropical rational

w-stable curves.

The set M trop
0,w can be given the structure of an abstract cone complex by gluing

the cones corresponding to a combinatorial type (i.e. a tree without metrization
data) in the way dictated by the underlying tropical curves. As such, for any w,
M trop

0,w is a subcone complex of M trop
0,n . This definition generalizes the definition of

abstract n-marked rational tropical curve: if we set w = (1n), then the stability
condition is that every vertex is at least 3-valent.

DEFINITION 2.2. Let w ∈ Qn . Let i ∈ [n].

(H) We call i heavy in w, if for all j 6= i we have wi + w j > 1.

(S) We call i small in w, if wi + w j > 1 implies that j is heavy in w.

If, in addition, the total weight of the small points is less than 1, we say that they
are light.

We will often consider weight vectors that are heavy/light (respectively
heavy/small), meaning that each entry of w is either heavy or light (respectively
heavy or small).

2.1. Tropical moduli spaces of rational curves as Bergman fans.

2.1.1. Matroids, Bergman fans and nested sets Matroids abstract the concept
of linear independence of subsets of a set of vectors. Important examples are
matroids of point configurations defined by the usual linear independence and
matroids of graphs, where dependence is defined in terms of cycles. For a detailed
introduction to matroids, see for instance [16].

To any matroid M on a ground set E(M) we associate a polyhedral fan, the
Bergman fan B(M) ⊆ R|E(M)| in the following manner:

B(M) := {w ∈ R|E(M)|;Mw is loop-free},

where Mw is the matroid on E(M) whose bases are all bases B of M of minimal
w-weight

∑
i∈B wi . Ardila and Klivans [3] showed that B(M) is a polyhedral cone

complex that coincides with the order complex of the lattice of flats of M . More
precisely, for each chain of flats in M

F = ∅ ( F1 ( · · · ( Fr = E,

we let CF be the cone in R|E | spanned by rays vF1, . . . , vFr−1 , with lineality space
spanned by vFr . Here vF = −

∑
i∈F ei , where ei is the i th standard basis vector.

https://doi.org/10.1017/fms.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.7


Tropical rational weighted stable curves 7

The collection of these cones forms a fan whose support is B(M). We call this
particular polyhedral structure the chains-of-flats subdivision of B(M).

A useful equivalent definition is the following [7, Proposition 2.5].

B(M) := {w; max{wi ; i ∈ C} is attained at least twice for all circuits C}.

Feichtner and Sturmfels demonstrate multiple polyhedral structures that can be
placed on this fan using the theory of building sets.

DEFINITION 2.3. Let F be the lattice of flats of a matroid M . For two flats F,
F ′ ∈ F we write [F, F ′] := {G ∈ F : F ⊆ G ⊆ F ′}. A building set for F is a
subset G of F \ {∅} such that the following holds:
For any F ∈ F \ {∅}, let {G1, . . . ,Gk} be the maximal elements of G contained
in F . Then there is an isomorphism of partially ordered sets:

ϕF :

k∏
j=1

[∅,G j ] → [∅, F],

where the j th component of ϕF is the inclusion [∅,G j ] ⊆ [∅, F].
A subset S of a building set G is called nested, if for any set of incomparable

elements F1, . . . , Fl in S with l > 2, the join F1 ∨ · · · ∨ Fl is not an element of G.

REMARK 2.4. The nested sets of a building set G form an abstract simplicial
complex (a subset of a nested set is a nested set). We can assign to each flat F the
vector vF ∈ R|E | defined above, and accordingly a cone for each nested set of G.
It has been shown in [7, Theorem 4.1] that this produces a polyhedral fan whose
support is B(M).

NOTATION 2.5. Note that each Bergman fan contains the linear space L , spanned
by the vector (1, . . . , 1). It is standard to quotient by this lineality space, and study
the resulting space

B ′(M) := B(M)/L .

REMARK 2.6. It is a well-known fact that the set of Bergman fans is closed under
cartesian products. In fact, if M,M ′ are matroids on ground sets E, E ′, then

B(M)× B(M ′) = B(M ⊕ M ′),

where M⊕M ′ is the matroid on E q E ′, whose bases are disjoint unions of bases
of M and M ′.
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2.1.2. Facts about tropical geometry and M trop
0,n

DEFINITION 2.7. A tropical fan (X, ω) is a rational pure d-dimensional
polyhedral fan in Rn , with a weight function ω : X (d)

:= {σ ∈ X; dim σ =

d} → Z>0, fulfilling the balancing condition in the sense of [20, Section 3.4].
We consider two balanced fans (X, ω), (X ′, ω′) to be equivalent, if they have

a common refinement: if there exists a balanced fan (X ′′, ω′′), whose cones are
contained in cones of X and X ′, respectively; and ω′′ is compatible with ω and ω′

in the natural way.

REMARK 2.8. In this paper, we consider balanced fans that arise as Bergman
fans of matroids. Given a matroid M , B(M), equipped with the chain-of-flats
subdivision is a fan. It is balanced with weight function identically 1.

It is also known that (B(M), ω ≡ 1) is irreducible, that is any balanced fan of
the same dimension, which is contained in B(M), must be equal to B(M) as a
set and its weight function must be an integer multiple of w. See, for instance, [9,
Lemma 2.4].

DEFINITION 2.9. A tropical morphism between balanced fans X ⊂ Rn, Y ⊂ Rm

is a map of fans, respecting the weight function, and the integral structure on X
and Y . More explicitly, it is a map f : X → Y mapping cones to cones, induced
by a linear map Zn

→ Zm . We say that f is an isomorphism, if it is bijective and
respects the weights of X and Y .

It is often necessary to understand the local structure of a fan, near a given cone.

DEFINITION 2.10. Let (X, ω) be a tropical fan and τ a cone of X . We define the
local picture of X around τ to be the weighted fan

StarX (τ ) := ({Π(σ); τ 6 σ ; σ a cone of X}, ωStar),

where Π : Rn
→ Rn/Vτ is the residue map and the weight function is defined by

ωStar : Π(σ) 7→ ω(σ). It is easy to see that StarX (τ ) is a tropical fan (with respect
to the lattice Zn/Λτ ).

If p is a point in the support of X , we also consider

StarX (p) := ({σ − p; p ∈ σ ; σ a cone of X}, ωStar),

where ωStar is defined in the same way and σ − p = {a − p; a ∈ σ }.

We now briefly discuss some properties of the tropical moduli space M trop
0,n and

its embedding as a balanced fan. For a more detailed account, see [10, 22, 23].
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Figure 1. Assigning a curve to a flat of K4: The thick red lines indicate the
flat, which consists of two complete subgraphs. We get one bounded edge for
each subgraph. They are connected at a common vertex to which we attach all
remaining leaves.

REMARK 2.11. Let C be an abstract n-marked tropical curve and let vi and v j be
vertices incident to the leaves labelled i and j . Let dist(i, j) denote the distance
between these vertices. It has been shown that the vector

d(C) = (dist(i, j))i< j ∈ R(
n
2)/Φ(Rn)

identifies C uniquely, where Φ : Rn
→ R(

n
2), x 7→ (xi + x j)i< j .

Let C be an abstract n-marked tropical curve with a single edge, inducing a
partition or split on the leaves [n] = I q I c. We denote the corresponding ray
spanned by d(C) by vI = vI c . A d-dimensional cone of M trop

0,n corresponds to a
combinatorial type of curve with d bounded edges. If these edges introduce splits
I1, . . . , Id , the cone is spanned by rays vI1, . . . , vId . The fan M trop

0,n can be balanced
with all weights equal to 1.

The fan structure described above, with one cone for each combinatorial type is
the coarsest fan structure that can be defined on M trop

0,n . We call it the combinatorial
subdivision.

It has been shown in [3, 9] that

M trop
0,n
∼= B ′(Kn−1),

where Kn−1 is the complete graph on n−1 vertices. For later use, we now describe
the explicit isomorphism between M trop

0,n and B ′(Kn−1). That is, we describe the
image of a vector vF , when F is any flat. See Figure 1 for an example.

For convenience, throughout the rest of this paper, we label the vertices of Kn−1

by 2, . . . , n.
A flat F of Kn−1 is a union of complete subgraphs on disjoint vertex sets V1,

. . . , Vt . Denote by CF the tropical n-marked curve constructed in the following
manner: Attach t bounded edges e1, . . . , et of length 1 to a common vertex v. To
the end of ei , attach leaves { j; j ∈ Vi}. Then attach all leaves { j; j ∈ [n]\

⋃t
i=1 Vi}

to the vertex v. Then
vF 7→ CF .
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Conversely, if we pick a ray vI of M trop
0,n with 1 /∈ I , it corresponds to the flat FI ,

which is the complete graph on vertices in I . We will see in Example 2.18 how the
combinatorial subdivision of M trop

0,n can be expressed as a nested set subdivision of
B ′(Kn−1).

2.2. Tropical moduli spaces of weighted curves as Bergman fans. Let w be
a weight vector. To obtain the cone complex M trop

0,w , we wish to contract unstable
rays and their adjacent cones. It is a natural thought to use a projection of M trop

0,n
embedded as a fan contracting these rays; we denote this projection by prw. It
turns out however that prw may contract too many cones: this is the case if and
only if w does not only have heavy and light entries. The projection prw(M

trop
0,n ) is

still an interesting balanced fan which we can understand in terms of the Bergman
fan of a graphic matroid. Moreover, as we see in Section 3.4, the image of this
projection can be realized as the Berkovich skeleton of the classical moduli space
M0,w with respect to an appropriate toroidal structure.

Our first goal is to gain a clearer understanding of the role of the complete graph
Kn−1 in the M trop

0,n case, and how it generalizes to the weighted case.
An n-marked trivalent rational tropical curve is w-stable if all vertices with

exactly two leaves i and j attached fulfil the conditionwi+w j > 1. Consequently,
two weight vectors w,w′ produce the same set of stable combinatorial types of
trivalent curves, if wi+w j > 1 ⇐⇒ w′i+w

′

j > 1 for all pairs i, j . It is therefore
reasonable to expect that a graph encoding these conditions will be meaningful
towards understanding spaces of weighted stable tropical curves.

DEFINITION 2.12. Let w be a weight vector. We define the total weight graph
G t(w) to be the graph on vertices {1, . . . , n}where two vertices i, j are connected
by an edge, if and only if wi + w j > 1.

The notions of heavy and small can be efficiently expressed in terms of the total
weight graph. Let i ∈ [n].

• i is heavy if i is connected to all other vertices in G t(w).

• i is small if i is only connected to heavy vertices.

In parallel with the M trop
0,n case, we seek to have a graph on (n − 1) vertices.

DEFINITION 2.13. The reduced weight graph, denoted G(w), is the graph
obtained from G t(w) by deleting any single heavy vertex.
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REMARK 2.14. Dropping different heavy vertices we obtain isomorphic graphs,
since all heavy vertices are incident to all other vertices. We will see in Corollary
2.24 that if there is no heavy weight, prw(M

trop
0,n ) does not have the ‘expected

dimension’, which is n − 3. We will henceforth assume that w1 = 1, and the
reduced weight graph is constructed by deleting the vertex 1 from G t(w).

REMARK 2.15. There is a natural projection morphism induced by the fact that
G(w) is a subgraph of the complete graph Kn−1:

p̃rw : M trop
0,n
∼= B ′(Kn−1)→ B ′(G(w)),

which forgets the coordinates corresponding to edges not lying in G(w). We can
see that p̃rw is precisely the projection morphism prw discussed above.

A ray vI with 1 /∈ I which is contracted because it corresponds to an unstable
curve comes from a flat FI given by the induced subgraph on the vertices in I .
The fact that vI is unstable means that

∑
i∈I wi 6 1 which implies wi + w j 6 1

for all i, j ∈ I , so no edge connecting two vertices in I belongs to G(w). Vice
versa, if no edge connecting two vertices in I belongs to G(w), then wi +w j 6 1
for all i, j ∈ I and hence v{i, j} corresponds to an unstable curve and is contracted
by prw for all i, j ∈ I . But then vI =

∑
{i, j}⊂I v{i, j} is also contracted; see [18,

Lemma 2.6].

We first relate the projection prw(M
trop
0,w ) to the nested set subdivision induced

by the building set of 1-connected flats on the graph G(w).

DEFINITION 2.16. Let G be a (connected) graph and MG the corresponding
matroid. We define a building set of 1-connected flats:

GG := {F ∈ F(MG);G |F is a connected graph},

where G |F is the restriction of G to the edges contained in F .

The above definition depends not only on the matroid, but on the presentation
of this matroid as a graphic matroid. Recall that two nonisomorphic graphs G, G ′

may yield the same matroid. In this case GG , GG ′ might be different building sets.
We also warn the reader that the matroidal notion for connected sets differs from
the above definition. A connected set of a graphic matroid M(G) is a set whose
underlying graph is 2-connected.

To see that GG is a building set, let F be a flat of MG . The maximal elements
of GG contained in F are exactly the connected components G1, . . . ,Gk of
the subgraph G |F . Any flat F ′ ⊆ F can also be partitioned into its connected
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components, which in turn must be subsets of the connected components of F .
We see that there is an isomorphism

k∏
j=1

[∅,G j ]
∼= [∅, F].

We are now ready to state the first main result of this section.

THEOREM 2.17. Let w be a weight vector and assume w has at least two heavy
entries. Then prw(M

trop
0,n ) = B ′(G(w)). Furthermore, the combinatorial types of

curves in prw(M
trop
0,n ) correspond to the cones of B ′(G(w)) in the nested set

subdivision with respect to GG(w), the building set of 1-connected flats.

Before proceeding to the proof, we consider some examples and prove certain
auxiliary results.

EXAMPLE 2.18. Let w = (1, . . . , 1). Since no ray of M trop
0,n becomes unstable,

prw is the identity map. In this case, G t(w) = Kn , the complete graph on n
vertices, and the reduced graph is G(w) = Kn−1. We already observed that the
Bergman fan corresponding to this graph is B ′(Kn−1) ∼= M trop

0,n = prw(M
trop
0,n ).

Theorem 2.17 tells us that the combinatorial subdivision of M trop
0,n corresponds

to the nested set subdivision of B ′(Kn−1) with respect to GKn−1 . This is seen
as follows. It is well known that the combinatorial subdivision is the coarsest
possible polyhedral structure on M trop

0,n . Feichtner and Sturmfels [7, Theorem 5.3]
showed that it is obtained as the nested set subdivision with respect to the building
set of connected flats. In the case of graphic matroids, this means choosing all flats
whose underlying graph is 2-connected. However, in this particular case, flats are
disjoint unions of complete graphs on at least 3 vertices, so they are 1-connected
if and only if they are 2-connected, excluding the case of the complete graph on
two vertices.

The following example demonstrates that prw(M
trop
0,n ) = B ′(G(w)) may not be

the embedding of the cone complex M trop
0,w as a fan.

EXAMPLE 2.19. Letw = (1, 1, 3/4, 3/4, 1/4). The reduced weight graph is a K3

with an additional edge attached to it (connecting the remaining 1 and the vertex
with weight 1/4). The corresponding Bergman fan is B ′(G(w)) ∼= M trop

0,4 × R.
The 1-connected flats of G(w) are depicted in Figure 2. A nested set is formed

either by a chain or two incomparable flats whose join is not connected, that is, by
two vertex-disjoint flats. Only F3, F4 are vertex-disjoint, so all other nested sets
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Figure 2. The reduced weight graph G((1, 1, 3/4, 3/4, 1/4)) and its 1-connected
flats.

are formed by chains. Hence, we obtain the following 8 cones:

σ1 := cone(vF3, vF4) σ5 := cone(vF2, vF7)

σ2 := cone(vF1, vF5) σ6 := cone(vF3, vF5)

σ3 := cone(vF1, vF6) σ7 := cone(vF4, vF6)

σ4 := cone(vF2, vF5) σ8 := cone(vF4, vF7)

Figure 3 shows how this can be interpreted as the projection of M trop
0,5 . The

latter is the fan over the Petersen graph with 10 rays vi j , i 6= j ⊂ [5] and
15 cones spanned by v{i, j} and v{k,l} if {i, j} ∩ {k, l} = ∅. The projection prw
contracts the two rays v{3,5} and v{4,5}, since the corresponding tropical curves
are not w-stable. The balancing condition around the ray v{1,2} is given by the
relation v{1,2} = v{3,4} + v{3,5} + v{4,5}, so we have prw(v{1,2}) = prw(v{3,4}), and
the 2-dimensional cone spanned by v{1,2} and v{3,4}, even though it corresponds
to curves which are w-stable, is mapped to a ray. Thus, the fan prw(M

trop
0,n ) is

not an embedding of the abstract cone complex M trop
0,w . We can read off the

projection from the graph G(t) interpreted as a subgraph of the complete graph on
4 vertices K4: prw(v{1,2}) = prw(v{3,4}) = vF3 , prw(v{1,3}) = vF7 , prw(v{1,4}) = vF6 ,
prw(v{1,5}) = vF5 , prw(v{2,3}) = vF1 , prw(v{2,4}) = vF2 , prw(v{2,5}) = vF4 .

This suggests an interpretation of the combinatorics of B ′(G(w)) as follows
(see Figure 3). Let C be an element in M trop

0,4 , that is a four-marked tropical
curve with labels {1, . . . , 4} and weights (1, 1, 3/4, 3/4). We can interpret the
additional R-coordinate as placing the leaf 5 with weight 1/4 somewhere along
the subgraph consisting of leaves 1 and 2 and the edge between them, if it exists.
The subdivision of the cones of M trop

0,4 ×R given by the building set of 1-connected
flats is then obtained by subdividing a cone if the attached leaf 5 is at a trivalent
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Figure 3. The nested set subdivision of B ′(G(1, 1, 3/4, 3/4, 1/4)) and its
combinatorial interpretation.

vertex. We will see in Section 4 that we can always interpret B ′(G(w)) in this
fashion.

We have seen that prw(M
trop
0,n ) is not an embedding of M trop

0,w as a balanced fan,
since it is ‘missing’ the cone σ spanned by v{1,2} and v{3,4}. The codimension 1
type v{3,4,5} is w-stable, but is adjacent to only 1 w-stable maximal cell, namely
σ . We obtain a ‘univalent’ codimension one face. There is no way to embed this
codimension one face and its adjacent cones into a vector space as a balanced fan
(cf. Figure 4).

The following definition characterizes those cones that obstruct a balanced
embedding of M trop

0,w in a vector space. Such cones will correspond precisely to
the top-dimensional cones of M trop

0,n on which prw is not injective; see Lemma 2.23.
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Figure 4. For w = (1, 1, 3/4, 3/4, 1/4), only one of the maximal cones adjacent
to the codimension one type v{3,4,5} corresponds to a stable combinatorial type.
We can therefore not embed M trop

0,w as a balanced fan.

DEFINITION 2.20. Let n > 4 and w be a weight vector. We consider M trop
0,n in its

combinatorial subdivision.

• We denote by U 0
w the collection of all top-dimensional cones σ of M trop

0,n such
that the corresponding combinatorial type is not w-stable.

• We recursively define U k+1
w : A top-dimensional cone σ /∈

⋃k
j=0 U j

w is in U k+1
w if

and only if it has a codimension one face τ such that all other top-dimensional
cones σ ′ neighbouring τ lie in

⋃k
j=0 U j

w.

Finally we set Uw :=
⋃

k>0 U k
w. We call curves lying in the support of Uw inherited

w-unstable.

LEMMA 2.21. Let σ be a top-dimensional cone of M trop
0,n with rays vI1, . . . , vIn−3

and assume 1 /∈ I j for all j . Let FIk be the flat of Kn−1 corresponding to the
complete graph on vertices in Ik . Then

{FI1 ∩ G(w), . . . , FIn−3 ∩ G(w)}

is a nested set with respect to the building set GG(w) of 1-connected flats in G(w).

Proof. Let Cσ be the combinatorial type associated to σ . Then I1, . . . , Ik are the
leaf splits induced by the bounded edges of Cσ . Since we assumed 1 /∈ I j for
all j , we have that any two incomparable Ii , I j are already disjoint. In particular,
any two incomparable flats FIi ∩G(w), FI j ∩G(w) must be vertex-disjoint. Now
notice that in any graph, the join of two vertex-disjoint flats is just the union. As
this is not a connected graph, the claim follows.
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LEMMA 2.22. Let σ be a top-dimensional cone of M trop
0,n such that prw is not

injective on σ . Then one of the following holds:

• σ has a ray r such that prw(r) = 0.

• σ has rays r, s such that prw(r) = prw(s).

Proof. Assume σ has rays vI1, . . . , vIn−3 , which are mapped to nonzero, distinct
elements vFI j ∩G(w). By Lemma 2.21, the flats FI j ∩ G(w) form a nested set. It
is well known that nested set subdivisions are simplicial, so the corresponding
vectors must be linearly independent. In particular, prw must be injective
on σ .

LEMMA 2.23. Let n > 4 and w a weight vector as before. Let σ be a top-
dimensional cone of M trop

0,n in its combinatorial subdivision. Then σ ∈ Uw if and
only if prw is not injective on σ .

Proof. First, let σ ∈ Uw =
⋃

k>0 U k
w. We will prove that prw is not injective on

σ by induction on k. Assume σ ∈ U 0
w. Then the combinatorial type of σ is not

w-stable, so σ has a ray of the form v{i, j} with wi + w j 6 1. This is equal to the
ray vFi j , where Fi j is the flat of Kn−1 consisting only of the edge between nodes i
and j . This edge does not exist in G(w), so prw(vFi j ) = 0.

Consider a cone σ ∈ U k+1
w . That is, there is a codimension one cone τ such

that the top-dimensional cones adjacent to τ are σ, σ ′, σ ′′ with σ ′, σ ′′ ∈ U k
w.

By induction, we may suppose that prw is not injective on σ ′ or σ ′′. The
projection morphism induces a morphism on the local fan StarM trop

0,n
(τ ), which is

a tropical line, that is a one-dimensional balanced fan with three rays. The rays
corresponding to σ ′ and σ ′′ are mapped to 0, so by linearity of the local morphism,
the ray corresponding to σ must also be mapped to 0. Hence, prw is not injective
on σ .

Suppose that prw is not injective on a cone σ with rays vI1, . . . , vIn−3 . By Lemma
2.22, we notice that either one ray of σ is mapped to 0, or two rays are mapped to
the same element. In the former case, if prw(vI j ) = 0 for some j , then wa +wb 6
1 for all a, b ∈ I j . But this implies that σ ∈ U 0

w. We now consider the latter
possibility, where two rays are mapped to the same ray, say prw(vIi ) = prw(vI j )

for some i 6= j . We may assume that 1 /∈ Ii , I j . Then we can also assume that
I j ⊂ Ii , since otherwise Ii ∩ I j = ∅ and thus prw(vIi ) = prw(vI j ) = 0. Now
Ii and I j correspond to two edges. Assume these edges do not share a vertex.
Then there must be a chain of edges connecting them, corresponding to splits
I j = J1 ⊂ · · · ⊂ Jt = Ii . As prw(Ii) = prw(I j), we must have wk + wl 6 1 for
all k ∈ Ii \ I j , l ∈ I j . In particular, prw(Js) = prw(I j) for all s = 1, . . . , t . Hence,
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Figure 5. Assuming prw(vI j ) = prw(vIi ) in σ , we can see that the cones adjacent
to the codimension one type obtained by shrinking e are already in Uw by using
induction.

we can assume that the edges corresponding to Ii and I j share a common vertex.
Denote these edges by ei and e j and the vertex by vi j := ei ∩ e j .

First let us assume that |Ii | − |I j | = 1, that is, there is an additional leaf l
at vi j . We prove that this cone is inherited unstable by an induction on |I j |. We
start with |I j | = 2, that is, I j = {a, b}. This implies wl + wa, wl + wb 6 1.
We obtain a codimension one type Cτ by contracting the edge e j . The two other
adjacent top-dimensional types besides Cσ have rays v{l,i} and v{l, j}, respectively,
both of which are mapped to 0. In particular, σ lies in U 1

w. Now assume |I j | > 2.
The vertex of e j which is not vi j is also trivalent, that is, we have a partition of
I j into two edge splits I ′j , I ′′j . Again, we obtain a codimension one type Cτ by
contracting e j . We obtain an adjacent top-dimensional type Cσ ′ replacing the rays
vIi , vI j with rays vI ′j∪{l}, vIi . We now argue by induction that σ ′ ∈ Uw. The exact
same argument works for the third maximal cone σ ′′ > τ , which finally implies
σ ∈ Uw as required.

If I ′j = {a}, then wl + wa 6 1 and σ ′ ∈ U 0
w. If |I ′j | > 2, then prw(vI ′j ) =

prw(vI ′j∪{l}) (as l is not connected to any element of I j in G(w)). As |I ′j | < |I j |

and
∣∣I ′j ∪ {l}∣∣ − ∣∣I ′j ∣∣ = 1, we can apply induction to see that σ ′ ∈ Uw (see also

Figure 5).
An analogous induction argument may be used in the case that |Ii | − |I j | >

1.

COROLLARY 2.24. Let w be a weight vector. Then prw contracts all top-
dimensional cones of M trop

0,n if and only if w does not have at least two heavy
entries.
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Proof. First, assume w has no heavy entry. Choose j ∈ [n], such that w j is
minimal. Then w j + wk 6 1 for all k 6= j : If we assume w j + wk > 1 for some
k, then wk + wl > 1 for all l 6= k and k is heavy in w.

In particular, in any trivalent w-stable combinatorial type the leaf j can only be
at a vertex with two bounded edges e, e′ corresponding to rays vI , vI∪{ j}. But both
rays are mapped to the same image under prw.

Now suppose w1 is the only heavy weight. Again, choose j such that w j is
minimal. As before, we must have w j + wk 6 1 for all k 6= 1, j . Let C be a
trivalent, w-stable curve. If leaf j is attached to a vertex with two bounded edges,
these edges correspond to rays vI , vI∪{ j} with 1 /∈ I , which are mapped to the
same image. In particular, the cone corresponding to C lies in Uw by Lemma
2.23. Hence, C must have a bounded edge corresponding to the ray v{1, j}. If we
contract this edge, we obtain a curve corresponding to a codimension one cone.
But any other adjacent top-dimensional types are in Uw: It either has a ray v{ j,k},
k 6= j , which makes it unstable, or leaf j is adjacent to two bounded edges. The
corresponding cone lies in Uw by our previous argument. Hence, the cone of C
lies in Uw as well and thus is contracted under prw by Lemma 2.23.

Conversely, assume w has heavy entries i and j . Then we can easily construct
a trivalent curve whose cone does not lie in Uw: Let {i1, . . . , in−2} = [n] \ {i, j} be
in some arbitrary but fixed order. Then it is easy to see that prw is injective on the
cone corresponding to the caterpillar tree (see Figure 7) with edges v{i,i1}, v{i,i1,i2},

. . . , v{i,...,in−3}.

We now have the necessary ingredients to prove Theorem 2.17.

Proof of Theorem 2.17. The dimension of B ′(G(w)) equals rank(G(w))− 1. By
assumption, G(w) is a connected graph, so its rank is just the number of its
vertices minus one. In total, we obtain dim B ′(G(w)) = n − 3 = dim M trop

0,n . By
Corollary 2.24, the dimension of the image of prw is also n−3. Since B ′(G(w)) is
irreducible, prw is surjective. Using Lemma 2.21, it is easy to see that two different
top-dimensional cones on which prw is injective are mapped to distinct cones of
the nested set subdivision of B ′(G(w)).

We now study balanced fan structures on M trop
0,w .

PROPOSITION 2.25. Let w be a weight vector with at least two heavy entries.
Then Uw = U 0

w if and only if every i ∈ [n] is either heavy or small in w.

Proof. First, assume that Uw = U 0
w. Assume there is an entry i , which is neither

small nor heavy in w. Hence, there must be a j , such that wi + w j > 1, but j is
not heavy (in particular, it is also not small in w). It follows that there must be a
k 6= i, j , such that wi + wk, w j + wk 6 1.
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Figure 6. Constructing a w-stable type that lies in Uw.

For now assume n > 5. Let a, b be two heavy entries of w and fix an order
{i1, . . . , in−5} on [n] \ {i, j, k, a, b}. Now let σ be the cone with rays

v{i, j}, v{i, j,k}, v{i, j,k,i1} . . . , v{i, j,k,i1,...,in−5}

(see also Figure 6). The corresponding combinatorial type is clearly w-stable, but
prw(v{i, j}) = prw(v{i, j,k}). This is a contradiction.

If n = 4, then only the cone spanned by v{i, j} corresponds to a w-stable type,
so by definition it must lie in Uw.

To see the converse, we can assume that w is of the form (1 f , ε t) with f > 2.
It suffices to show that U 1

w = ∅, that is, after removing all w-unstable types, all
remaining codimension one combinatorial types still have at least two resolutions.
This is clear and the claim follows immediately.

THEOREM 2.26. Let w be heavy/light, with at least two heavy entries. The cone
complex underlying prw(M

trop
0,n ) = B ′(G(w)) is naturally identified with M trop

0,w . In
particular, this complex has the structure of a balanced fan. Ifw is not heavy/light,
then there does not exist a balanced embedding of M trop

0,w into a vector space.

Proof. Suppose w is a weight vector with only heavy and light entries. It follows
from Lemma 2.23 that prw is injective on all cones which are not in Uw. We can
deduce from Proposition 2.25 that Uw = U 0

w. In other words, prw contracts only
the top-dimensional cones we want to contract to pass from M trop

0,n to M trop
0,w . The

fact that the small points are light guarantees that M trop
0,w is pure dimensional. To see

this, consider a cone whose top-dimensional faces are contracted. Such a cone is
spanned by vectors vI j , and there must exist at least one vector such that all k ∈ I j

are light. Analysing the projections, we see that B ′(G(w)) is identified with M trop
0,w .

Consider a weight vector w that is not of heavy/light type. We first deal with
the case where w has heavy and small points. Recall i is small if wi + w j > 1
implies that j is heavy. In this situation, there is a subset I of size at least three
of small points satisfying

∑
k∈I wk > 1, but for any subset I0 ( I ,

∑
k∈I0

wk < 1.
Observe that there is a cone τ of M trop

0,w of maximal possible dimension containing
the ray vI such that all its higher dimensional faces of τ in M trop

0,n are not w-stable.
Since we have at least two heavy points, the top-dimensional cone of M trop

0,n
corresponding to the caterpillar tree with the two heavy weights on the two sides
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as in the proof of Corollary 2.24 is w-stable, and hence is also a top-dimensional
cone of M trop

0,w . We can now see that M trop
0,w is not pure dimensional, and cannot be

embedded as a balanced fan. Assume now that w has not only heavy and small
points. By Proposition 2.25, Uw 6= U 0

w, so there are cones of codimension one
with only one adjacent top-dimensional cone. These cones cannot be embedded
in a balanced way.

3. Tropicalizing spaces of rational weighted stable curves

Throughout, we work in the ‘constant coefficient’ case, that is, over C with
the trivial valuation. We have seen that for a vector of heavy and light weights,
we obtain a fan structure for the tropical moduli space M trop

0,w . In this section, we
show that this fan yields a toric variety in which we can embed M0,w, and the
tropicalization of the open part living inside the torus can be given a canonical
fan structure, making it isomorphic to M trop

0,w . If we have not only heavy and
light weights, then we still have a map from M0,w to the toric variety defined
by prw(M

trop
0,n ), but it contracts some boundary strata.

3.1. Geometric tropicalization for M0,n. In [11, Example 3.1], the locus
of smooth curves M0,n is identified with the quotient of an open set of the
Grassmannian, denoted G0(2, n), by an n − 1 dimensional torus. The open set
G0(2, n) corresponds to the 2 planes that do not pass through the intersection of
a pair of coordinate planes.

The Grassmannian G(2, n) embeds into P(
n
2)−1 via the Plücker embedding,

associating to a 2-plane given by the data of a 2×n matrix (after a choice of basis)
its minors. This embedding carries the open part G0(2, n) to points in the torus
of P(

n
2)−1. As a consequence, M0,n is embedded into the torus (T (

n
2)/T )/T n−1 ∼=

T (
n
2)−n using the Plücker embedding.
Note that the action of the T n torus corresponds precisely to the lineality space

Φ(Rn) that we quotient by embedding M trop
0,n into R(

n
2)−n (see Section 2.1.2).

Comparing coordinates on the algebraic and tropical sides, we can effectively
neglect the action of T n on one side and the lineality space on the other.
Furthermore, the Plücker coordinates give us the distance coordinates in tropical
geometry directly.

Keeping with the discussion in previous sections, we recall that the tropical
moduli space M trop

0,n comes with an embedding in a vector space, and a natural fan
structure. Fix this fan structure. Then we have the following result, due to Gibney
and Maclagan [11, Theorem 5.7], as well as Tevelev [24, Theorem 5.5].
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THEOREM 3.1. Consider the embedding of M0,n into the torus T (
n
2)−n described

above. The closure of M0,n in the toric variety X (M trop
0,n ) is the compactification

M0,n . Furthermore, the tropicalization of M0,n in this torus is M trop
0,n .

The essential ingredient in the proof of this result is the understanding of the
combinatorial structure of M trop

0,n and in particular its relationship to the boundary
stratification of the classical moduli spaces M0,n . The results provide a beautiful
explanation of the various analogies and combinatorial dualities between the
tropical and classical moduli space in question. In Theorem 3.9, we obtain
analogous results for spaces of weighted stable curves.

The result can be obtained with the help of a technique that is now known
as geometric tropicalization – initially used to study compactifications of
subvarieties of tori in [24]. The technique was elaborated upon and applied to
understand compactifications of moduli space of del Pezzo surfaces in [12]. An
accessible introduction to the topic can be found in [6, 20].

Geometric tropicalization starts with a variety X together with a simple normal
crossing boundary divisor D (such as M0,n with its usual boundary). When the
complement U of D in X has many invertible functions, it admits a map to a
torus:

ι : U → T .
In ideal situations (and indeed, in our situation) this map is an embedding. The
map ι may then be used to produce a map from the dual intersection complex Σ
of (X, D) to the vector space of one parameter subgroups of T , thus furnishing a
fan structure on Σ .

In [6], Cueto equips the top-dimensional cones of Σ with a weight function
which produces a balanced fan. This fan furnishes a toric variety with dense
torus T , in which we may consider the closure of ι(U ). Geometric tropicalization
studies the relationship between X and ι(U ).

3.2. Geometric tropicalization for spaces of weighted stable curves. We
assume that w is a weight vector with only heavy and light weights, that there
are at least 2 heavy weights, and without loss of generality, that the heavy entries
include the first two. In other words, throughout this section, we fix w = (1 f ,

ε t) where ε is light. We have seen already that the assumption of having at least
two heavy weights makes sense in tropical geometry, as without it, the tropical
moduli space is of incorrect dimension. On the algebraic side, this requirement
is also natural for weight vectors of the form w = (1 f , ε t), since otherwise, the
locus of smooth curves in M0,w would be empty.

We apply the geometric tropicalization techniques discussed above in the
context of heavy/light moduli spaces of rational pointed curves. Note that the
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compactification of M0,n to M0,w is not, in general, simple normal crossing
and may be locally a more complicated hyperplane arrangement. The following
observation is crucial, and its proof is identical to the M0,n case. An elegant proof
in this setting may be found in [26, Theorem 1.1].

PROPOSITION 3.2. Let M0,w denote the locus of smooth curves in M0,w. Then,
the boundary M0,w \ M0,w is a divisor with simple normal crossings.

REMARK 3.3. In other words, we consider the ‘interior’ of the moduli space M0,w

as not only points of M0,n but also loci of marked curves where the underlying
curve is smooth, but the markings are not distinct. We warn the reader that the
Hassett spacesMg,w are usually not toroidal compactifications ofMg,w; however,
the locus of nonsmooth curves is always a divisor with (stacky) normal crossings.

REMARK 3.4. The inclusion M0,w ↪→ M0,w induces a stratification into
locally closed strata, which coincides with the stratification by dual graph: the
codimension k strata of M0,w are the loci of curves, with fixed dual graph, having
k nodes. Locally analytically near a stratum S, there is a collection of monomial
coordinates on M0,w given by the deformation parameters for the nodes of the
curves parametrized by S.

DEFINITION 3.5. Let Prw be the projection from the torus T (
n
2)/T n dropping all

the Plücker coordinates indexed by i 6= j ∈ [n] for which wi = w j = ε.

LEMMA 3.6. The tropicalization of the map Prw agrees with the projection prw
from R(

n
2)−n (see Remark 2.15).

Proof. By [18], Lemma 2.3 and 2.4, the vectors vI where I is a two-element
subset not containing 1 and not equal to {2, 3} form a basis of R(

n
2)/Φ(Rn). A ray

vI can be expressed in terms of the basis vectors using [18], Lemma 2.6, which
tells us that vI equals the sum of all vS where S ⊂ I is a two-element subset (we
assume without restriction that 1 /∈ I ), and the fact that −v{2,3} equals the sum of
our basis vectors above. The tropicalization of the map Prw contracts the vectors
v{i, j} (which equal −2ei j modulo the lineality space, being the images of −ei j in
B ′(Kn−1)) for all i, j such that wi = w j = ε, and with these, it also contracts all
rays of the form vI with wi = ε for all i ∈ I , since we can express the latter in
terms of the v{i, j} by the above. Thus, it equals the map prw.

LEMMA 3.7. The open part M0,w can be embedded into the torus Prw(T (
n
2)/T n)

using the Plücker coordinates.
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Proof. Let us compare the open part M0,w to M0,n: now points which are both
light are allowed to collide. In the 2 × n matrix describing a collection of n
points (respectively, a two-plane in G(2, n)) this means that two columns can
now coincide (up to nonzero multiple), leading to a zero minor. However, these
are exactly the minors we project away with Prw, so using the remaining Plücker
coordinates, we embed M0,w into the torus Prw(T (

n
2)/T n).

LEMMA 3.8. The geometric tropicalization of M0,w using the embedding in
Lemma 3.7 is identified with prw(M

trop
0,n ).

Proof. It is straightforward to see that the cone over the dual intersection complex
of M0,w is canonically identified (as a cone complex) with M trop

0,w . We know already
by Theorem 2.26 that the latter is the cone complex underlying the fan prw(M

trop
0,n ).

Thus, it remains only to check that the divisorial valuations of the boundary
divisors for the remaining Plücker coordinate functions yield the rays of this fan.
This is an easy consequence of Lemma 3.6.

Finally, we must check that the weight function for the geometric
tropicalization, as given in [6, Theorem 2.5], is identically 1, thus matching
the weight on the Bergman fan prw(M

trop
0,n ) = B ′(G(w)). This again follows from

the analogous fact for M trop
0,n : the rays of a top-dimensional cone σ span the lattice

Λσ of this cone, and the corresponding boundary divisors of M0,n intersect in a
point of multiplicity one.

THEOREM 3.9. Let w be heavy/light. Consider the embedding

M0,w ↪→ Tw = Pr
w
(T (

n
2)/T n)

described in Lemma 3.7. The closure of M0,w the compactification of Tw defined
by the fan M trop

0,w is isomorphic to M0,w. The tropicalization of M0,w with respect
to this embedding is prw(M

trop
0,n ) = M trop

0,w .

Proof. We wish to show that the map M0,w → X (M trop
0,w ) is an embedding.

According to [12, Lemma 2.6 (4), Theorem 2.10], this occurs when the following
two conditions hold. Let S be a stratum, let MS be O∗(S)/k∗ and M S

M0,w
be the

sublattice of O∗(M0,w)/k∗ generated by units having zero valuation on S.

(1) For each boundary divisor D containing S, there is a unit u ∈ O∗(M0,w) with
valuation 1 on D and valuation 0 on other boundary divisors containing S.

(2) S is very affine and the restriction map M S
M0,w
→ MS is surjective.

For (1) observe that for each boundary divisor D, we can choose an appropriate
forgetful morphism to M0,4, informally a cross ratio map, as is done in [24,
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Section 5]. It is straightforward to check that these functions have valuation 1
on D and valuation 0 on any other boundary divisor.

We see that all the strata S are very affine in this case. Recall that the divisors
containing a given stratum S are precisely those rays of M trop

0,w which are contained
in the cone σS corresponding to S. It follows immediately now from the discussion
of the boundary stratification of M0,w in Remark 3.4 that the restriction map is
surjective.

REMARK 3.10. If we drop the condition of having only heavy and light points,
many of the statements discussed here are still true. The geometric tropicalization
of M0,w using the embedding in Lemma 3.7 still equals prw(M

trop
0,n ); however, we

know already that not all cones are mapped injectively in this case. As a result,
the underlying abstract cone complex of prw(M

trop
0,n ) is not M trop

0,w . On the algebraic
side, this is reflected by the fact that we still have a map from M0,w to the toric
variety defined by prw(M

trop
0,n ), but it does not map all boundary strata injectively.

REMARK 3.11. Allowing edge lengths to become infinite, analogously to [1] we
obtain an extended cone complex M

trop
0,w . The arguments above also show that forw

heavy/light, the extended tropicalization of M0,w inside the toric variety X (M trop
0,w )

can be identified with M
trop
0,w .

3.3. Extended example: Losev–Manin spaces. Let w be the weight vector
(1, 1, ε, . . . , ε) for ε light. The space M0,w is called the Losev–Manin moduli
space and parametrizes chains of projective lines with n marked points, where
n = `(w). These spaces were introduced and studied in [19] and play a role, for
instance, in the theory of relative stable maps, as a target for branch morphisms.

The Losev–Manin moduli spaces are toric varieties themselves, and as a result
the situation simplifies considerably in this case. In fact, there is some beautiful
combinatorics that arises in this situation. See [4] for a proof of the following
proposition. See also [14, 19].

PROPOSITION 3.12. Let Xn be the toric variety obtained by blowing up Pn−3

at all torus invariant subvarieties up to codimension 2 in order of decreasing
codimension. The Losev–Manin moduli space M0,w is isomorphic to Xn .

The associated fan Σ(Xn) is the normal fan of the permutahedron.

REMARK 3.13. In the case of the Losev–Manin moduli space, the modular
boundary, that is, the complement of M0,n , is not normal crossing. However, the
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Figure 7. A dual graph of a curve parametrized by a point of Losev–Manin space.

locus of nonsmooth curves coincides with the toric boundary (the complement of
the big torus), which is simple normal crossing.

Since the tropical moduli space prw(M
trop
0,n ) = M trop

0,w is a complete fan, the
embedding of M0,w into the corresponding toric variety is surjective. The fact
that Losev–Manin spaces are toric can thus also be derived from Theorem 3.9.

Let us discuss some aspects of this fan more closely. We can use Theorems
2.17 and 2.26 and study B ′(G(w)) = prw(M

trop
0,n ) = M trop

0,w . The graph G(w) is a
star graph, that is, it consists of t edges meeting in a single vertex. The matroid
of this graph is Ut,t , so we see that M trop

0,w
∼= Rt−1. Furthermore, the subdivision of

Rt−1 is the nested set subdivision with respect to the 1-connected flats of G(w).
However, all flats of G(w) are 1-connected, so the subdivision is actually the
chains-of-flats subdivision of Ut,t .

We can also describe the tropical curves we parametrize more concretely, as
follows. Any w-stable rational curve is a so-called caterpillar tree (Figure 7): it
consists of a single chain of edges with the heavy leaves at either end and the
remaining leaves distributed at will along the chain of edges.

We identify each such curve through its vector of leaf distances

(dist(l1, l3), . . . , dist(l1, ln)) ∈ Rt .

In turn, each element of Rt can be considered such a distance vector, if we set its
smallest entry to 0. So again, we obtain as parameter space Rt/(1, . . . , 1) ∼= Rt−1.
A canonical subdivision is dictated by the combinatorial types, more precisely, we
obtain a top-dimensional cone for each of the (n − 2)! orderings on the leaves l3,

. . . , ln . One can easily check that this is the same as the chains-of-flats subdivision
of Ut,t .

3.4. Spaces of weighted stable curves and Berkovich skeletons. We
continue to work over trivially valued C. Let X be a proper normal variety. Let
U ↪→ X be given by the open complement of a normal crossing divisor D. The
pair (X, D) carries the structure of a toroidal embedding, in the sense of [17].
Associated to any toroidal embedding is an extended cone complex Σ(X).
Thuillier [25] realizes this cone complex as a skeleton of the Berkovich analytic
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space X an . Building on this, Abramovich et al. [1] identify the tropical moduli
spaces M

trop
g,n with the skeleton of the Berkovich analytification of Mg,n . They use

this formalism to study a functorial tropicalization for this moduli space.
We now extend this to the present situation. To state the results most cleanly, it

is convenient to work with the extended cone complex M
trop
0,w , obtained by allowing

edge lengths to become infinite, identical to the Mtrop
g,n case.

We define a ‘set-theoretic’ tropicalization map

trop : M
an
0,w → M

trop
0,w,

as follows. Let p ∈ M
an
0,w. Such a point p can be represented by a stable curve [C]

over a valued extension K of C. Since M0,w is proper, this extends to curve over
the valuation ring R of K . Define trop(p) to be the dual graph ΓC of the special
fibre of [C]. The edges of ΓC correspond to nodes in the special fibre. Such a node
has a defining equation

xy = f,

where f ∈ R. We assign the corresponding edge length equal to val( f ). Note that
if nodes appear in the generic fibre, then the defining equation is locally xy = 0,
and the corresponding edge has length∞.

Let w be heavy/light as before. Recall from the previous section that the
complement of the locus of smooth curves in M0,w is a divisor with simple normal
crossings. We have the following result.

THEOREM 3.14. The (extended) cone complex M
trop
0,w is identified with the skeleton

of M
an
0,w. Furthermore, there exists a section of the tropicalization map trop :

M
an
0,w → M

trop
0,w ,

s : M
trop
0,w → M

an
0,w,

which realizes the tropicalization as a skeleton of the Berkovich space.
Furthermore, there is a canonical strong deformation retract from M

an
0,w onto

M
trop
0,w .

Proof. The proof is essentially the same as the corresponding statement for M g,n ,
so we merely provide a sketch. Consider a 0-stratum of M0,w, with respect
to the previously described toroidal structure. Let [C] be the w-stable curve
parametrized by this stratum. The deformation parameters of the nodes of [C]
form a system of local coordinates near [C] ∈ M0,w. This furnishes a formal
neighbourhood of [C] isomorphic to a formal AN , where N is the number of
nodes of [C]. The valuations of these deformation parameters yield coordinates
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on the top-dimensional cone of M trop
0,w corresponding to this zero stratum. However,

these are naturally identified with coordinates on the top-dimensional cone of
M trop

0,w parametrizing tropical w-stable curves with underlying combinatorial type
given by the dual graph ΓC of [C]. For higher-dimensional strata, the deformation
parameters form a subset of the coordinates of a formal local affine space, which
map to lower-dimensional cones in the skeleton. The fact that the set-theoretic
tropicalization map agrees with Thuillier’s ‘projection to the skeleton’ map is
standard and follows from analogous arguments in [1, Section 6].

Suppose that w is not necessary heavy/light. Let D be the boundary divisor
of M0,w given by the union of divisors corresponding to the rays of prw(M

trop
0,n ).

The analysis carried out in Section 2.2 characterizes the boundary intersections
of components of D. More precisely, two irreducible boundary divisors Di and
D j intersect precisely when the corresponding rays of prw(M

trop
0,n ) span a 2-

dimensional cone σ . The situation generalizes in the natural way for manifold
intersections. Furthermore, the combinatorial type of graphs parametrized by σ
are dual to the universal curve over Di∩D j . Consequently, the boundary divisor D
is simple normal crossing, and identical arguments as above yield the following.

THEOREM 3.15. The cone complex prw(M0,n) is identified with the Thuillier
skeleton of M

an
0,w, with the toroidal structure coming from the inclusion of the

complement of the divisor D above.

We return now to the w heavy/light case. The Hassett spaces admit natural
tautological morphisms, known as reduction maps. Given two weight data w =
(w j) and w′ = (w′j) such that wi > w′i for all i , there exists a natural birational
morphism

ρw,w′ : M0,w → M0,w′,

obtained by collapsing components of curves that become unstable under the
weights w′. In particular, there always exists a reduction map

ρw : M0,n → M0,w.

THEOREM 3.16. The map ρw is compatible with the tropical projection maps prw.
More precisely, in the notation above, prw = trop ◦ρw.

Proof. Recall that the formation of skeletons is functorial for toroidal morphisms.
Since ρw is birational, it suffices to check that for any point [C] ∈ M0,n , there exist
formal local toric charts around x and ρw(x), such that the monomial coordinates
on the target pullback to monomial coordinates on the source. We take the charts
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to be the ones given by the deformation parameters of [C]. Note that the inverse
image of a node of ρw([C]) is a single node of [C]. If ζ is the deformation
parameter at the node of ρw([C]), notice that ρ∗wζ is simply ζ̃ where ζ̃ is the
deformation parameter of the corresponding node of [C]. The morphism is clearly
toric and dominant in the local charts, and the result follows.

4. Spaces of rational weighted stable curves as fibre products

In this section, we express the projections prw(M
trop
0,n ) in terms of fibre products.

We use the equality prw(M
trop
0,n )= B ′(G(w)) from Theorem 2.17 and study general

properties of fibre products of Bergman fans. If w has only heavy and light
points, the tropical description as fibre products matches the analogous algebraic
description nicely.

4.0.1. Hassett spaces with weight 0 points Hassett considers ‘zero weight’
variations on the moduli problem for weighted stable curves. Such spaces are
natural from the perspective of the log minimal model program. That is, we
consider w = (w1, . . . , wn) with 0 6 w j 6 1, and

∑
wi > 2.

The resulting moduli space M0,w can be described as follows. Let w+ be the
vector of weights containing the positive entries of w, and assume that there are t
entries equal to 0 in w. Following Hassett [13, Section 2], the moduli space M0,w

is identified with the t-fold fibre product of the universal curve C0,w+ of M0,w+

over M0,w+ ,

M0,w
∼= C0,w+ ×M0,w+

· · · ×M0,w+
C0,w+ .

The special case when all positive weights are equal to 1 allows the universal
family to also be identified with the moduli space of curves with one more point
of arbitrary weight. In particular, we see that

M(1 f , 0t) ∼= M0, f+1 ×M0, f
. . .×M0, f

M0, f+1.

Replacing the 0 weights with ε weights, we obtain a birational morphism

M(1 f , ε t)→ M(1 f , 0t),

which is a desingularization of M(1 f , 0t). The exceptional loci are described
explicitly in [13, Corollary 3.5]. Informally, M(1 f , 0t) contains a locus
parametrizing curves in which multiple 0-weight points can collide with nodes.
We now investigate the tropical analogue.

https://doi.org/10.1017/fms.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.7


Tropical rational weighted stable curves 29

4.0.2. Tropical fibre products

DEFINITION 4.1. Let f : X → Y := B(M) be a morphism from a tropical fan
to a Bergman fan. Assume there are rational functions ϕ1, . . . , ϕr on Y and C :=
ϕ1 · · · · · ϕr · Y (for an in-depth discussion of rational functions and divisors, see
for example [2]). Then we define the pullback of C along Y to be

f ∗C := (ϕ1 ◦ f ) · . . . (ϕr ◦ f ) · X.

REMARK 4.2. One could of course make this definition for an arbitrary target
variety Y . However, in this case the pullback may depend on the choice of rational
functions ϕi . That this is not the case for Bergman fans was shown in [9, Example
8.2].

We will need this definition in the case, where Y = B(N )×B(N ) = B(N⊕N )
for some matroid N and C = ∆Y := {(x, x); x ∈ Y } is the diagonal of Y . It
was shown in [9, Corollary 4.2] that there are rational function ϕ1, . . . , ϕr , r =
rank(N ) on B(N )× B(N ) such that ∆B(N ) = ϕ1 · . . . ϕr · (B(N )× B(N )).

DEFINITION 4.3. Let f : B(M)→ B(N ), g : B(M ′)→ B(N ) be morphisms of
Bergman fans. Then we define their fibre product

B(M)×B(N ) B(M ′) := ( f, g)∗(∆B(N )).

Now assume we have morphisms f ′ : B ′(M) → B ′(N ), g′ : B ′(M ′) → B ′(N ).
Both induce morphisms f : B(M) → B(N ), g : B(M ′) → B(N ) and the
corresponding fibre product contains a lineality space L generated by (1, . . . , 1).
Hence, we can define

B ′(M)×B ′(N ) B ′(M ′) :=
(
B(M)×B(N ) B(M ′)

)
/L .

REMARK 4.4. Tropical fibre products were first defined in [8] in the more general
context of smooth tropical varieties. However, as the definition is a bit more
involved and requires notions from intersection theory, we will restrict ourselves
to fibre products of Bergman fans.

All examples of fibre products that we consider in this paper will be nice in
the sense that they are themselves Bergman fans and their support is equal to the
set-theoretic fibre product {(x, y) ∈ B(M) × B(M ′); f (x) = g(y)}. However,
both statements are false in general: The fibre product need not be a Bergman
fan (in fact, it need not even be isomorphic to one!). Also, it is in general strictly
contained in the set-theoretic fibre product. In fact, the latter may very well be a
cone complex that is not pure or has the wrong dimension.
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The tropical fibre product, however, always has the correct dimension due to
its intersection-theoretic definition:

dim
(
B(M)×B(N ) B(M ′)

)
= rank(M)+ rank(M ′)− rank(N ).

This follows from the fact that we apply rank(N ) many rational functions to the
tropical fan B(M)× B(M ′).

4.1. Spaces of rational weighted stable tropical curves as fibre products.

DEFINITION 4.5. Let G0,G1,G2 be graphs and assume G1 and G2 both contain
a subgraph G0. We then denote by G1×G0 G2 the graph obtained by gluing G1,G2

along these subgraphs.

PROPOSITION 4.6. Let G1,G2 be connected graphs, both containing a subgraph
isomorphic to some complete graph G0. Then

B ′(G1)×B ′(G0) B ′(G2) ∼= B ′(G1 ×G0 G2).

Furthermore, the support of the left hand side is the set-theoretic fibre product

S(G1 ×G0 G2) := {(v
1, v2); vi

∈ B ′(G i) and v1
e = v

2
e for all e ∈ G0}.

Proof. First of all note that, since all graphs are connected, we have

rank(G1 ×G0 G2) =
∣∣V (G1 ×G0 G2)

∣∣− 1
= |V (G1)| + |V (G2)| − |V (G0)| − 1
= rank(G1)+ rank(G2)− rank(G0).

In particular, both spaces have the same dimension. We must show that the linear
map

i : S(G1 ×G0 G2)→ B ′(G1 ×G0 G2)

((ve)e∈G1, (ve)e∈G2) 7→ (ve)e∈G1×G0 G2

is an embedding. More precisely, we only have to show that it is well defined, i.e
that its image lies in B ′(G1 ×G0 G2).

So assume v1
∈ B ′(G1), v

2
∈ B ′(G2) and for all edges e in G0 we have v1

e = v
2
e .

Let v := i(v1, v2). We want to show that for any circuit C of G1 ×G0 G2, the
maximum of {ve, e ∈ C} is attained at least twice. If C lies in G i , this is clear, as
vi
∈ B ′(G i), so it already attains the maximum twice.
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Assume C does not lie in G i . We will prove the claim by induction on the cycle
length of C . If C has length 3, then C must already lie in one of the G i : We assume
without loss of generality that two of the edges of C lie in G1. If the last edge is
in G2, its vertices must be vertices of G0. But as G0 is complete and a subgraph
of G1, the last edge must also lie in G1. If |C | > 3, we can use a similar argument
to find a chord c of C , that is, an edge c /∈ C connecting two vertices of C . This
chord subdivides C into two cycles C ′,C ′′ of smaller length. By induction, the
maxima max{ve; e ∈ C ′},max{ve; e ∈ C ′′} are assumed twice. If both maxima
are assumed away from c, the maximum over C is also attained twice. If one of
the cycle attains its maximum on c, then either the other cycle attains its maximum
away from c and it is bigger, so that the maximum over C is again attained twice,
or the other cycle also attains its maximum on c, and they are equal. In that case
the maximum is attained on vc, ve′, ve′′ for edges e′ ∈ C ′ \ {c}, e′′ ∈ C ′′ \ {c}. In
either case, the maximum is attained twice on C .

As B ′(G1×G0 G2) is an irreducible tropical variety containing i(S(G1×G0 G2))

and has the same dimension as B ′(G1)×B ′(G0) B ′(G2), we see that we must have

i(
∣∣B ′(G1)×B ′(G0) B ′(G2)

∣∣) = i(S(G1 ×G0 G2)) =
∣∣B ′(G1 ×G0 G2)

∣∣ ,
which implies that

∣∣B ′(G1)×B ′(G0) B ′(G2)
∣∣ = S(G1 ×G0 G2).

In particular, B ′(G1) ×B ′(G0) B ′(G2) is isomorphic to a multiple of B ′(G1 ×G0

G2). It remains to show that the weights of the fibre product (or equivalently: at
least one weight) are 1. But this follows from Lemma 4.7.

LEMMA 4.7. Let M1,M2 be matroids on ground sets E1, E2, where E0 := E1 ∩

E2 6= ∅. Assume M0 = M1|E0 = M2|E0 is the common restriction of both matroids.
Let pi : B(Mi) → B(M0) be the corresponding projections of Bergman fans. If
the support of the fibre product is the set-theoretic fibre product∣∣B(M1)×B(M0) B(M2)

∣∣ = {(a1, a2) ∈ B(M1)× B(M2); p1(a1) = p2(a2)},

then the fibre product has weight 1 on each top-dimensional cone.

Proof. Assume B(M1), B(M2), B(M0) are all equipped with the polyhedral
structure defined by their chains of flats. In particular, pi maps cones of B(Mi)

to cones of B(M0). Then the set-theoretic fibre product has a natural polyhedral
structure through the conewise fibre product:

P := {σ1 ×τ σ2; σi a cone of B(Mi) and pi(σi) = τ },

where σ1 ×τ σ2 = {(a1, a2); ai ∈ σi ; p1(a1) = p2(a2).
In particular, a top-dimensional cone σ of P is of the form σ1 ×τ σ2, where σ1,

σ2, τ are all top-dimensional cones of their respective fans and an interior point q
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of σ is mapped to an interior point of τ . To compute the weight of σ , we can look
at the local morphism

StarB(M1)×B(M2)(q)→ StarB(M0)×B(M0)((p1, p2)(q))

induced by the combined projections (p1, p2) : B(M1) × B(M2) → B(M0) ×

B(M0). Since q is an interior point of σ and (p1, p2)(q) is an interior point of τ ,
this is just a projection map of linear spaces

Rr1+r2 → R2r0,

where ri = rank(Mi). Applying the diagonal functions ϕ defined in [9] cuts out
the diagonal ∆Rr0 with weight 1 on the right hand side. Pulling this back via a
linear projection yields again a linear space with weight 1. This concludes the
proof.

DEFINITION 4.8. Let w be a weight vector. We divide the vertices of G(w) into

L(w) := {i ∈ {2, . . . , n}, wi > 1/2}
S(w) := {i ∈ {2, . . . , n}, wi 6 1/2}.

We define the following graphs:

• K (w) is the restriction of G(w) to L(w) (i.e. it is the complete graph on L(w)).

• For i ∈ S(w), we let G i(w) be the restriction of G(w) to L(w) ∪ {i}.

REMARK 4.9. The graphs G i(w) share the common subgraph K (w), and gluing
them together gives us back our weight graph:

G(w) = G i1(w)×K (w) · · · ×K (w) G is (w),

where S(w) = {i1, . . . , is}. As K (w) is complete, we can apply Proposition 4.6.
However, to obtain a deeper geometric understanding, we first want to study the
spaces B ′(G i(w)).

PROPOSITION 4.10. Assume i ∈ S(w) has vertex degree 1. Then

B ′(G i(w)) ∼= M trop
0,|L(w)|+1 × R.

Proof. By assumption G i(w) is just K (w) with an additional edge attached.
Hence, its matroid is just the direct sum of the matroid of K (w) and a coloop.
This implies the claim.
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REMARK 4.11. This has a natural geometric interpretation that is very similar
to Example 2.19. The fact that vertex i is only connected to one vertex j of
K (w) means that there are exactly two leaves, namely 1 and j , with which i
is compatible. More precisely, wi + w j , wi + w1 > 1, but wi + wk 6 1 for all
other k. Hence, we can only place leaf i along the line spanned by leaves j and 1
(All other choices would produce inherited unstable types).

PROPOSITION 4.12. Assume i ∈ S(w) has vertex degree d > 1. Then

B ′(G i(w)) ∼= M trop
0,|L(w)|+1 ×M trop

0,d+1
M trop

0,d+2.

Proof. We can write G i(w) as a glued graph: Let Ki be the restriction of G i(w)

to vertices j 6= i connected to i . In particular, it is a complete graph on d vertices.
If we add vertex i , we obtain K ′i , the complete graph on d+1 vertices. Now K (w)
and K ′i share the common subgraph Ki and

G i(w) = K (w)×Ki K ′i .

The result now follows from Proposition 4.6.

THEOREM 4.13. Let w be a weight vector. Let D1 := {i ∈ S(w) : deg(i) = 1}
and assume S(w) \ D1 = {i1, . . . is}. Let

M :=

s∏
j=1

M trop
0,deg(i j )+1 M′

:=

s∏
j=1

M trop
0,deg(i j )+2.

Then we have
prw(M

trop
0,n )
∼= R|D1| ×

(
M trop

0,|L|+1 ×M M′
)
,

where the maps from M trop
0,|L|+1 and M′ to M are the natural tuples of forgetful

maps. (If s = 0, we set M trop
0,|L|+1 ×M M := M trop

0,|L|+1.)

Proof. Assume D1 = {k1, . . . , kt}. By Proposition 4.6 we know that

prw(M
trop
0,n )
∼= B ′(Gk1(w))×B ′(K (w)) · · · ×B ′(K (w)) B ′(G is (w))

and that the support of the latter is the set-theoretic fibre product. The claim now
follows from Propositions 4.10 and 4.12.

COROLLARY 4.14. Let w = (1 f , ε t), where f > 3, t > 2. Then

M trop
0,w
∼= M trop

0, f+1 ×M trop
0, f
· · · ×M trop

0, f
M trop

0, f+1︸ ︷︷ ︸
t times

.
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REMARK 4.15. The last result might seem somewhat incongruous at first, as
classically, we have

M(1 f , 0t) ∼= M0, f+1 ×M0, f
. . .×M0, f

M0, f+1

and that M(1 f , ε t) is a blowup of this. In fact, the tropical phenomena are
analogous.

The tropical fibre product has a canonical polyhedral structure P consisting of
taking conewise fibre products of cones of M trop

0, f+1 in its coarse subdivision. Points
in the same cone correspond to n-marked tropical curves that

• have the same combinatorial base curve C when forgetting all light ends;

• have their light ends placed on the same edges or ends of C .

In other words, this is not the polyhedral structure that was assigned to M trop
0,w .

Whenever multiple light ends are put on the same edge of the base curve, we need
to subdivide. More precisely, if σ is a cone in P corresponding to a base curve
with d bounded edges and t light ends placed on its edges and leafs, then we can
identify relint (σ )with Rd+t . Under this identification, the subdivision is a product
of Rk together with tropical Losev–Manin spaces. Recall from Section 3.3 that
M trop

0,(12,εr )
∼= Rr−1 parametrizes ways to position r labelled ends relative to each

other on a line. For each bounded edge with at least one light end, we get a factor
of R2

× M trop
0,(12,εr )

, where r is the number of light ends placed on this edge. In
similar fashion, we obtain a factor of R× M trop

0,(12,εr )
for each end with at least one

light end placed on it. Finally, we get a factor of R for each bounded edge with
no light ends.
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