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Convolution Powers of Salem Measures
With Applications

Xianghong Chen and Andreas Seeger

Abstract. 'We study the regularity of convolution powers for measures supported on Salem sets, and
prove related results on Fourier restriction and Fourier multipliers. In particular we show that for
o of the form d/n, n = 2,3,... there exist a-Salem measures for which the L2 Fourier restriction

theorem holds in the range p < %. The results rely on ideas of Kérner. We extend some of his

constructions to obtain upper regular a-Salem measures, with sharp regularity results for n-fold
convolutions for all n € N.

1 Introduction

Given a finite positive Borel measure 4 on R? satisfying the condition

[E(&)[ = 0(1&™")

for some b > 0, the Fourier transform maps L? (R?) to L?(du) for some p > 1. This is
the Fourier restriction phenomenon discovered by Stein in the 1960s. Much research
on Fourier analysis has been done regarding the case of y being a surface measure on
the sphere where sharp results are due to Tomas and Stein [34,35]. A general version
of Tomas’ theorem is due to Mockenhaupt [25] and also Mitsis [24]. These authors
showed that under the above assumption and the additional regularity condition

u(B) = O(diam(B)"),

for all balls B, the Fourier transform maps L?(R%) to L2(dy) for 1 < p < pap =

%. It was shown in [1] that the result is also valid for p = p, ;. The Fourier
decay assumption implies that the regularity condition holds for a = b. Moreover, if
the support of u is contained in a set of Hausdorff dimension «, then b < «/2 and
a < a. See [37, Chapter 8], [24] for these facts. Of particular interest are measures
supported on sets E of Hausdorff dimension « for which the Fourier decay condition
holds forall b < «/2; such sets are commonly called Salem sets. The existence of Salem
sets is due to Salem [28]; for other constructions we refer to [2, 3,11,15,16,22].

Here we are also interested in the special Salem sets E that carry probability mea-
sures for which the endpoint bound [E(&)| = O(|¢]- 4™ (¥)/2) holds for large &, and

make the following definition.
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Definition (i) A Borel probability measure y is called an a-Salem measure if it
is compactly supported, the support of y is contained in a set of Hausdorft dimension
a, and if
(L1) sup (1+ &) *2[@()] < oo.

EeR4

(ii) An a-Salem measure is called upper regular (or a-upper regular) if
u(B)
p diam(B)“

where the sup is taken over all balls.

1.2)

Korner constructed examples of upper regular a-Salem measures [17]; see also [8]
for various refinements.

By the result in [1], if 4 is an upper regular a-Salem measure, then the Fourier
transform maps LP(R?) to L?(u) for1 < p < iz:gg. By analogy with results and
conjectures for surface measure on the sphere, Mockenhaupt conjectured that the

Fourier transform should map L? (R%) to L!(u) for the larger range 1< p < %. By

[24, Proposition 3.1], such an L? — L? result cannot hold for p > %. Furthermore,
Mockenhaupt remarked that for suitable examples there is a possibility that even the
stronger Stein-Tomas L? — L?*(u) bound could hold in this range. For a dense set
of a’s (and d = 1), Hambrook and Laba [12] recently gave examples of Salem sets of
dimension a showing that the p range for the L? — L?(u) bound in [1] cannot be
improved in general. Their examples carry randomness and arithmetic structures at
different scales. Chen [8] extended this idea to provide, among other things, for all
a € [0,1], examples of upper regular a-Salem measures on the real line for which
F does not map L? to L?(u) for any p > ig:gg. Recently, Hambrook and Laba [13]
obtained related sharpness results in higher dimensions which involve examples of
measures whose supports have Hausdorff dimension greater than d — 1.

All these examples still do not exclude the Mockenhaupt scenario of a larger
p-range for the L? restriction estimate for other types of Salem measures. The ques-
tion was explicitly posed in a recent survey paper by Laba [21]. We show an optimal
result when « is of the form d/n with some integer .

Theorem A Given a = d[n wheren € N, n > 2, there exists an upper regular a-Salem

measure such that F: LP (R?) — L?() is bounded in the optimal range 1 < p < 29—

Remark  Shmerkin and Suomala [30] have independently obtained a similar result
for d = 1, @ > 1/2. Their method also covers the cases d = 2,3, d/2 < a < 2. Their
approach is quite different from the methods used here.

It would be of great interest to find Ahlfors-David regular a-Salem measures, i.e.,
besides (1.1) and (1.2), we would also have a lower bound u(B) 2 rad(B)“ for all
balls B with radius < 1 that are centered in the support of y. This question has been
raised by Mitsis [24]; see also the list of problems in Mattila [23]. We remark that the
examples by Shmerkin and Suomala [30] for the non-endpoint L> — L* restriction
estimate (with & > 1/2) are Ahlfors-David regular. However the measures satisfying
Theorem A are necessarily not Ahlfors-David a-regular; see §4.
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A variant of Theorem A can be used to derive new results on a class of Fourier mul-
tipliers of Bochner-Riesz type as considered by Mockenhaupt [25]. In what follows
we let M} to be the space of all m ¢ 8'(R?) for which f > F~'[mf] extends to a

bounded operator from L? (R%) to LI(R?). The norm on My, is the operator norm,
ie,
[mlyg = sup [T [mf]],.
feS(RY)
1£1,<1
Mockenhaupt [25] introduced a class of Fourier multipliers associated with general
measures that reflect the properties of Bochner-Riesz multipliers in the case when y
is the surface measure on a smooth hypersurface.
Given a compactly supported a-upper regular Borel measure, A > & — d, and y €
C(RY), the function

13) ma() = [ x(E=mlE= " dun)

is well defined as an L' function. Mockenhaupt showed that in the range 1 < p <

ig:ig (the Fourier restriction range in [1, 25]), the multiplier m, belongs to MZ if
11

A>d (E -3)- d‘T"‘ (the case p = g was explicitly stated in [25]). Theorem A enables
us to prove a better range for certain a-regular Salem measures, and an endpoint result
in some cases. This endpoint result relies on special properties of our Salem measures
and fails, for example, for the surface measure of the unit circle in R?, for any g < 2.

In §4 we prove the following theorem.

Theorem B Leta = d/nwheren € N, n > 2, and A > 0. There exists an upper regular
a-Salem measure on R? so ﬂzl‘hatforl <p< % and p < q <2 we have m, € Mg if
. 1 1 —

and only if A > d(E -3) -5

We now discuss estimates for self-convolutions of certain Salem measures and how
they are used in the proof of Theorem A. Let y*" be the convolution of # copies of y;
more precisely, we set 4*° = & (the Dirac measure at 0), u*' = y,and p*" = pxp* ("
for n > 2. The proof of the Fourier restriction result of Theorem A for « = d/n is
based on a regularity result for self-convolutions of suitable Salem measures as stated
in Theorem C below, and the inequality

14) [ EErrdgs e [ lgG)Pdu)",

is a special case of an inequality in [6], closely related to a result by Rudin [26].

For n = 2, Korner [18] proved the existence of a compactly supported probabil-
ity measure on R, supported on a set of Hausdorff dimension 1/2 for which y * p
is a continuous function. Moreover, given 1 < a < 1, there exists a Borel probabil-
ity measure p on R supported on a compact set of Hausdorff dimension & such that
u* e CTV2(R); here C¥7V2 is the standard Hélder class and C* /2 is the sub-
space consisting of compactly supported C*~"/2 functions; see the discussion of re-
lated classes in the next paragraph. Korner thus substantially improved and extended
previous results by Wiener-Wintner [36] and Saeki [27] on convolution squares for
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singular measures. Note that by taking adjoints, inequality (1.4) for n = 2 shows that
F:L*? — L?(u); for a < 2/3 this yields a range larger than [1, =22 ], the largest range
that could be proved from [1]. It is not stated in Korner’s paper that the measures
constructed there have the appropriate Fourier decay properties but as we shall see
this is not hard to accomplish.

For integers k > 0, let C¥(R?) be the space of functions whose derivatives up to
order k are continuous and bounded; the norm is given by | f|lcx = Xjaj<k 0% f ] co-

Let y:[0,00) — [0, 00 ) be a nondecreasing bounded function satisfying
ltir% fy(t) =00, €>0

and, for some Cy, > 0,

(1.5) v(t) < Cyy(t/2), t>0.

For a function f on R, define

o e @)
(1.6) v (f) x,ye@id PR
x#y

and CPY(R?) = {f € C(R?) : w,,(f) < oo}. If p > 1, define
CP¥(RY) = { f e CPIRT) 0 f e CPIPbY(RY), || = |}

For 0 < p < 1, the choice of y(t) = 1yields the usual Holder spaces C* (R?). Only
the definition of y for small ¢ is relevant. Other suitable choices for y are

(1) w(t) =exp(—/logt?)fort<e,
(i) w(t)=1/(logt™)fort<e', or
(iii) w(t) =1/(loglogt™) fort<e™®.
We extend Korner’s constructions to prove the following result for higher convo-
lution powers of upper regular a-Salem measures.

Theorem C Givend >1and 0 < « < d, there exists a Borel probability measure y on
RY satisfying the following properties.
(i)  y is supported on a compact set of Hausdor{f and lower Minkowski dimension a.

(i) Forall§ e RY,|E[ 21, [H(&)] s w(|€ )¢/
(iii) Forallx eR4,0<r<l,1<n<d/a u™(B(x,r)) S w(r)r.

. *1 %"'»W d
(iv) Forn>d/a, y" € C, (R%).

Note that under the dimensional restriction, the Fourier decay exponent, the up-

per regularity exponents na, and the Holder exponent % for y*" are all optimal
(cf. §2.6 for the latter).

Notation = We write O; $ O, to indicate that O; < CO, for some constant 0 < C < oo
that is independent of the testing inputs, which will usually be clear from the context.
For a measurable subset E of R? or T¢ we let |E| denote the Lebesgue measure of E.

https://doi.org/10.4153/CJM-2016-019-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-019-6

288 X. Chen and A. Seeger

Structure of the paper The proof of Theorem C is given in the next two sections.
The restriction and multiplier theorems are considered in §4.

2 Korner’s Baire Category Approach

This section contains the extensions of Kérner’s arguments adapted and extended to
yield Theorem C. The results will be stated in the periodic setting and followed by a
relatively straightforward transference argument.

To fix notations, we write T = R/Z and T¢ = T x --- x T. We occasionally denote
by A the uniform probability measure on T¢. While A is usually identified with the
function 1, we shall also identify a continuous function g with the measure gA. A
subset J c T is called an interval if it is connected. A rectangle is of the form R =
J1 % -++ x J; where J; are intervals; R is called a cube if these intervals have the same
length. If 4 is a finite Borel measure on T, the Fourier transform of y is defined as

A= [, e du(o),

where r € Z?. Here as usual we have identified T¢ with [0,1)¢. Note that #(0) =
u(T?) and A(r) = 8o (r). Let  and v be two finite Borel measures on T%, y % v is the
finite Borel measure on T with Fourier transform 7i(r)%(r). Finally, we equip T¢
with the usual group structure and the intrinsic metric which will be denoted by

d

== (- i),

i=1
where x = (x1,...,%4), ¥ = (J1,--.> ¥a), and |x; — y;| denotes the intrinsic metric on
T. We will also fix an orientation of T so that derivatives are uniquely defined. With
this distance the expression w,,, (f) in (1.6) and the spaces C*¥ can be defined in the
same way on T¢.

For each integer # > d/a we fix a finite smooth partition of unity on T¢, indexed
byieJ,

(21) 0" = {(x{"}e5,
so that each X,(") is supported on a cube of side length smaller than (2n) .
2.1 A Metric Space

Let £ be the collection of closed subsets of T¢ which form a complete metric space
with respect to the Hausdorft distance

dg(Ki, Ky) = sup dist(x, K, ) + sup dist(y, K;) = sup inf |x — y| + sup inf |x — y|;
xeK; yeK, xeK, Y€Kz yeK, xeKy

see [31]. We now consider metric spaces of pairs (K, ¢) where K is a compact subset
of T% and y is a nonnegative Borel measure supported on E. These measures are
assumed to satisfy

(2.2) lim Pl

0.
Iri=>ee y()
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Moreover, for n > d/a and for each n-tuple i = (1y,...,1,) € J%, the n-fold convolu-
tion ( X,(l") p) #eex( Xz(:) @) is absolutely continuous and we have

(2.3) (A ex () = g0, with g7 e C

na—d

Sy

We let 20 be the set of all (K, u) where K ¢ T is closed, and y is a nonnegative Borel
measure supported in K satisfying (2.2) and (2.3). A metric on 20 is given by

dan (K1, ph), (Ka, p2))

al2| =~
- da(K Ko) 4 [R(0) - B0+ sup T IAD — ()
reZd\{0} w(Ir™)

£ 2 min{L, Y g% - g
n>d/a ieJ

RS

n
n

Lemma 2.1 (1) (20,day) is a complete metric space.

(ii) For every nonnegative C* function f and every compact set K containing
supp(f), the pair (K, f) belongs to 20.

(iii) Let U be the subspace of 20 consisting of (K, p) satisfying

(2.4) u(Q) < y(lQ)lQm/?

for all cubes Q and 1 < n < d]a. Then 0 (with the metric inherited from 283) is a
closed subspace of 20.

(iv) Let By be the subset of U consisting of pairs (K, g) € B with g € C*(T4) and let
B, be the closure of Uy in Y with respect to the metric dyy. Then By isa complete
metric space and for every nonnegative g € C*(T?) there is a C > 0 so that for
all compact K > supp(g) the pair (K, g/C) belongs to T.

Proof The theorem of Banach-Alaoglu is used to identify a limit measure of a
Cauchy sequence. The proof is a straightforward modification of the arguments in
[18,20]; see also [5,19,31]. [ |

In order to prove a version of Theorem C, we wish to show that there are pairs
(K, ) € By such that y is supported in a set of lower Minkowski dimension and
Hausdorff dimension a. This will be deduced from a Baire category argument, as
follows.

Theorem 2.2 Suppose a < y < d and & > 0. Let B¢ be the subset of Uy consisting of
pairs (K, u) for which there are cubes Qy, ..., Qu with

M d
(2.5) KcUQ; and |Q|=-=|Qu|l<eM ™.
j=1
Then 07¢ is open and dense in .
The Baire category theorem gives the following.

Corollary 2.3 3., V*YNN s g dense Gy set in B.
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Let dim,,(K), dimg (K) denote the lower Minkowski dimension and Hausdorff
dimension, respectively. Then dimy (K) < dim,, (K). If (K, u) € N, GOH/NN,
then dim,, (K) < « and hence also dimy (K) < a. On the other hand, (2.2) implies
dimy (K) > « (see [37, Corollary 8.7]). Thus we obtain the following corollary.

Corollary 2.4  The set of (K, u) € Uy satisfying dim,;(K) = dimu(K) = a is of
second category in 3.

Concerning the proof of Theorem 2.2, it is easy to see that the sets U, . are open
subsets of . The remainder of this section is devoted to proving that they are dense.

2.2 Averages of Point Masses

For large N let I'y be the finite subgroup of T of order N, consisting of {k/N : k =
0,1,...,N —1}. Let I‘I‘f, be the d-fold product, a subgroup of 4.

The following result yields measures on T¢ which are sums of point masses sup-
ported on points in 1"1‘\1, and satisty properties analogous to (2.2), (2.3), and (2.5).

Proposition 2.5 Given 0 < f8 < d and an integer n > 2, there exist No(f,n) > 1,
Ci = Ci(d), Cy = Cy(B,d), and C3 = C5(p, d,n) such that for all N > No (8, n) with
ged(nl,N) = 1, P := |[NP| there is a choice of xi, ..., xp with x; € T3, such that the
following properties hold for the measure y = 3 Zle O,

(i) ForallreTg~ {0},

(2.6) [E(Nr)| < CiN"F/2(log N)'/.
(i) For1< €< d/p and forall cubes Q with |Q| < N~¢F,
(2.7) #(Q) < ;N logN.

(iii) Ford/B<e<n,

N-?(logN) %"

*£ -d
(2.8) i?gw ({uh) -N| <G N (B2

While this result is not optimal (in particular with respect to the powers of the
logarithm), it is all we need for the proof of Theorem 2.2. The proof of Proposition 2.5
will be given in §3.

2.3 Transference

For N > 1, we will write Ny = Ndﬂ[_l/z’l/z)d (Nt)dt and
1
N = W Z 8]/N
jerg

Recall that A is the uniform probability measure, i.e., normalized Lebesgue measure,
on T¢,
We start with some simple observations.
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Lemma 2.6  The following holds true for N > 1.

(i) I‘l;,e*TN:AfOT’€=1,2,....

(i) TN(r) =1forre (NZ)4, and Ty(r) = 0 otherwise.
(iii) Fn(r)=0forre (NZ), r#0.

Proof (i) follows by direct computation of the convolution (it is also a consequence
of (ii) and (iii)). For (ii) notice that if r ¢ (NZ)4,

Z _2mir-j/N d 1 e 0
e =[[=——————=0.
jelm il N e—2mirk/N _1

1

W) = 52

sin(nrg/N)

Otherwise 7y (r) = 1. For (iii) just notice that Fix (r) = T1{_, i

In what follows we let v be a nonnegative smooth function with support in
(-1/2,1/2)% such that [ v(t)dt = 1, and let vy = N9v(N-). Thus vy generate a
standard smooth approximation of the identity. We now convolve the point masses
obtained in Proposition 2.5 with My and the mollifier vy.

Lemma 2.7  Let y be as in Proposition 2.5 and let f = vy * My * y. Then f is a smooth
function satisfying the following properties.

(i) Forl=0,1,..., |V fle < C(I)N9*!. There are cubes Q;, j = 1,...,| NP | with
side length 2/ N such that supp(f) c UEleBJ Q.
(i) ForreZ\{0},A>0

A

(2.9) ()] < C(logN) 2N /2 min ( Co(ANT 1).
1]

(iii) For all cubes Q

(2.10) fo*"(t) dt <29Q""?10gN, 1<n<d/p.

(iv) Forl=0,1,2,...,

Lepxn (log N) nTH 1
(2.11) [V (f 1)H°°SC(Z)C(ﬁ’n)iN(nﬁ—d)/zN’ d/f<n<n
Proof The assertion about the support follows immediately from the definition. Let

g(t) =y + u(t) = [ra n(t —s) du(s). The mollifiers satisfy
on(r) < NYmax{1, C(A)(N/|r)*}

for any A > 0. We thus observe that the estimates for f are implied by the following
estimates for g.

(2.12) sup |g(r)| < C(log N)/2NF/2,
reZd\{0}
2.13) f (1) dt <27Q"?10g N, n<d/p,
Q
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for all cubes Q,

n+l

on (logN) ™=
(2.14) felqlrg|g () -1 <C(fn)——=7 N2 d/f<n<n,
and
(2.15) sup |g(t)] < N4.
teT4

To show (2.12), notice that g(r) = fAx(r)@(r). If r € (NZ)9, then g(r) = 0, by
Lemma 2.6 (ii). Otherwise use the trivial bound |fiy(r)| < 1 and (2.6) together with
the observation that i is N-periodic.

To show (2.13), we consider separately the three cases |Q| < N™¢, N4 < |Q| <
N~ and |Q| > N7"A,

Casel: |Q| < N9 Notice that, as in the proof of (2.15), we have
log N

My * () = N ({u}) < NYM(P) NB

Thus

*n log N
" (Q) <IN M(B) T

= Q"M (|QINT) M (B)log N < M(B)|Q|"F/Mlog N

by our assumption on |Q|.
Case2: N9 <|Q|< N7, In this case, by (2.7)
Joerwde= [ meprdrs max w(Q)
Q Q Q:|QI=N-"#
< M(B)N""PlogN < M(B)|Q|"*/?log N.

Case3: |Q| > N~"F.In this case we can split Q into no more than 2¢ N"#|Q| cubes
of size at most N™"F. Applying (2.7) to each cube, we may bound x*"(Q) by

log N
drnp g
N QDMB)ES
Since g = My * u*", (2.13) follows also in Case 3.

To show (2.14), notice that by Lemma 2.6 (i) and (2.8),

= 2 M(B)[Q|log N < 2¢M(B)|Q|" log N.

*n *n *n

_ n
g _HN *TN+|_IN

(" —y) = ANy s (W - 1)

and

o (logN)™*"
|[" - TN| < C(ﬁ ) N (B d)/2

Now g*" is continuous and we get

(lOgN) n+1
*n NS
|g - 1| < C(ﬁ>n) N(nﬁ d)/2

and thus (2.14).
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To show (2.15), notice that for any ¢ € T, g(t) = N®u({u}) where u is the unique
point in T'# contained in the cube (¢ —1/(2N), t +1/(2N)]%. Now (2.15) follows from
(2.7) with n = 1 and Q containing u. [ |

Definition  Let f be a smooth function on T¢ and let p € N. We let the p-periodiza-
tion Per,, f be the unique smooth function on T which is 1/ p-periodic in each of the
d variables and satisfies Per, f(t) = f(pt) for0<t; < p™',i=1,...,d.

The following lemma is analogous to a crucial observation about periodized func-
tions in [18].

Lemma 2.8 LetpeN.
(i) Let f e C=(T?). Then

—

F(k) ifr=kp,keZ?,

0 otherwise.

Per; (1) - {

(i) LetR =[ay, a1+p)x---x[ag,aq+p), forsomea € R4, andforv=1,...n,let P, be
a trigonometric polynomial with frequencies in R, i.e., P, is a linear combination
of the functions x ~ exp(2mi{k,x)) with k €e RN Z%. Let fi, ..., f, be smooth
functions on T4 and let G, = Per,, f,. Then

(GIPI) ook (ann) = (G1 *"'*Gn)(Pl *"'*Pn)-

Proof This follows easily by Fourier expansion using the fact that every k € Z¢ can

be written in a unique way as k = pl + k, where [ € Z% and k" € R. ]
Lemma 2.9 Letn >0, >« and let k be an integer with k > l‘;‘%‘i Then there exists

mo = mo(a, B0, 1, ¥, k) > No(B,n) such that for all m > mo with ged(n!, m) =1, the

following hold with N = m* and f as in Lemma 2.7.

(i)  The (2m+1)-periodization of f, Fyy = Perymy1 f, is smooth with [, Fp,(t) dt =1,
and for 1 =0,1,...,L

(2.16) |V (Fin) oo < C(L)m*kd* kDL,
Moreover, there are cubes Q; j = 1,..., (2m +1)%|m*? |, of side length m™*~",
such that
(2m+1)? | m*#)
2.17) supp(Fm)c U Q.
j=1

(i) ForreZ%\{0},

af21 7

y(1/|r])
(iii) For all cubes Q with side length at most 2/~/m,
(2.19) f FE() dt < qu(lQDIQI"™4, 1< n<d/a.
Q
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(iv) Forn>d/a, letp, = %. Then
(2.20) |Fpt =1 conv <1, d]a<n<n.

(v)  For all rectangles R of side lengths at least 1/\/m.
(2.21) f FX () dt < (14 n)|R], n < dfa.
R

Proof Part (i) is straightforward given Lemma 2.7. We only need to give the proof
of (ii).

We first recall from Lemma 2.8 that F,, ((2m+1)k) = f(k) for k € Z¢,and F,,(r) =
0 for r not of this form. Thus for r # 0, by (2.9)

_ V8log?(8m*) ./ C(A)m*(2m +1)A
|[Fm (7)) < g mm( E ,1)
log”?m  , mkDA
< Cak kB2 mm( PL ,1)
e 10g1/2 m W(m—k—l)—l w(m—k—l) min( m (kDA 1)
AR (k(B-a)-a)/4 py (k(B-a)-a)/4 py(k+1)a/2 I
W(m_k_l)_l I//(m_k_l) ' m(k+1)A
(2.22) S ) -a)]a gy (kiD)af2 min( ER 1)

provided that > m > m and my is chosen large enough. We separately consider the
cases 0 < |r| < m** and |r| > m**1, In the first case we obtain (2.18) directly from
(2.22), provided that my is large enough. Now let 2! < r/m**! < 2!*! with [ > 0. Then
by the monotonicity of ¥ and the doubling condition (1.5),

y(m™) <y @A™ < ¢y (™),

and we see in this case that (2.22) is estimated by

M (I+)a ~l+1H-1A “1y [ |-a/2
ﬂm(k(ﬁ*a)fa)/zlz CW 2 I//(|7’| )|r| .

Thus if we choose A so large that 2°**"*C,, < 1, we can sum in I. Then by choosing
my large, we obtain (2.18) for all r # 0.

Proof of (iv). Notice that by (2.11) and our assumption on k,
B = Uiy < NCreteebs

for some € > 0 and sufficiently large m. Setting G = VU’"J(F;,” — 1), it remains to
show w,, |, |.v(G) < n/2 for m > mg and large enough my.

Again by (2.11), we have |G|/co + N7!|VG| oo < N-(Pr=lPnD=¢ for some € > 0 and
sufficiently large m. Now if 0 < |h| < 1/N, then by the mean value theorem, for any
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xeT?,
G(x +h) = G(x)| _|G(x+h) =~ G(x)| [n[""be~len])

|hjpn=Lealy(|h|) || v(|h)
< Nl‘(”"‘“’"J)‘eCu,E|h|l‘(”"‘“’"J)‘€/2

< Cy N <2,
provided that m is chosen large enough. If |h| > 1/N, then
Gx+h) -G(x)| . 2|Glw —(puLpn])—e

<2 <
[HpeloaTy(Ihl) = Tl Loy (i) y(1/N)
provided that m, is chosen large enough. This proves (2.20).

an_lpnj

n/2

Proofs of (iii) and (v). In what follows we say that a fundamental cube is a cube of
the form H?=1[2,;i+1’ 2itL) where v; € {0,...2m} foreachi =1,...,d.
We first consider the claim (v). Let R be a rectangle with side lengths [; > --- > I,

and assume that I; > m~Y/2. Notice that R is contained in a union of no more than

Cm+1)% -1+ Ca(2m + 1)y 1y

many fundamental cubes of size 1/(2m +1)?. Since the integral of F;" over any fun-
damental cube is equal to (2m +1)~%, we see that

fF;:n(x) dx <l---1;+Cy(2m + 1)_1l1--~ld_1
i
L
(2m +1)l
Thus (2.21) is satisfied if m is chosen large enough.

In order to show (iii), we separately consider the two cases where the side length
of Q is larger or smaller than (2m +1)".

Casel: (2m+1)7' <|Q|Y® <2m™"/2. In this case the argument above shows
[ Eraxsarcalal

and (2.19) will follow if (1 + C4)|Q| < 7w (|Q|)|Q|"*/%. But this is indeed the case if
|Q| < 2/\/m < 2/\/mq and my is large enough.

Case2: |Q|Y/4 < (2m+1)~". We first assume that Q is contained in a [0, (2m +1)"")“.

S 7 IRI<IR[+

\/%

Then by (2.10)
fQF;,"(x)dx: mfmmf*"(t) dt
sﬁzd(@mm QD) " og

provided that m, is chosen large enough. If |Q["#/? < ny(|Q])|Q|"*/?, (2.19) will
follow. But this is the case if |Q|'/ < 1/(2m +1) < 1/my is small enough. By period-
icity the above argument holds true if Q is contained in any fundamental cube of size
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(2m + 1)79. Moreover if Q is any cube of size < (2m +1)~%, then we can split Q into
24 rectangles supported in fundamental cubes and apply the same argument to each
such rectangle.

This finishes the proof of (iii). |
2.4 Approximation

We are now ready to prove Theorem 2.2. It remains to show that for every y € (a, d)
and every ¢; > 0, the set 07! is dense in . This reduces to approximating (K, g) €
0, where g is smooth. We may further assume that there exists a small constant ¢ > 0
such that g satisfies

(2.23) ng*"(x) dx < (1- ) y(|Ql)|Q|"*/

for all cubes Q and 1 < # < d/a. This is because otherwise we can approximate (K, )
by (K, (1-c¢)g) and let ¢ — 0.

Lemma 2.10 Supposea <y <d, e >0, ce(0,1), (K, g) € By where g is a smooth
function satisfying (2.23). Let € > 0. Then there exists a compact set F and a smooth
function f such that (F, fg) € BV and dyy ((K, g), (F, fg)) <e.

Proof Welet ¢’ = ¢/100. Fix  with a < 8 < y. Choose n = n(e) = 1+ [log, %] so
that
(2.24) Y2 <e

n>n

Fix an integer k such that k > %.

With these parameters we consider the functions F,, as constructed in Lemma 2.9.
Welet A be a finite ¢’ -net of K, i.e., a finite set of points in K such that K is contained
in the union of balls of radius ¢’ centered at points in A.,. We shall show thatif # > 0
is chosen small enough and if m > my(a, §, 5, ¥, k) is chosen large enough, then the
choice (H, F,g) with H = supp(F,,g) U A will give the desired approximation of

(K, g)-

Notation  In this proof we shall write B; < B, for two nonnegative quantities By, B,
if By < CB; where C may only depend on a, §, y, &1, k, d, and € and on the function
g (so C will not depend on # or m). We shall call such a C an admissible constant.

To show that (H, F,,gA) € 0?*, we only need to verify (2.4) and (2.5). We post-
pone (2.4) to a later part of the proof and now verify (2.5). By (2.17)

supp(Fmg) € UQ;»
j
where Qj, j = 1,..., (2m + 1)?|[m*? |, are cubes with side length m™*~!. Thus H =

supp(F,,g) U Ae can be covered by M = (2m +1)%|m*#| + (#A.) cubes of side
length m~%1. To verify (2.5), it now suffices to show m k1 < &, M~V which follows
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from 39 m*P+ 4+ (#A) < &Y m*’*7. Since k > %, the last inequality holds provided
that m is large enough.

We need to show that for sufficiently large m day ((K, gA), (H, Fug))) < €. Since
supp(F,ng) c supp(g) c K, we have H = supp(F,g) U A ¢ K. Thus the Hausdorff
distance of H and K satisfies dg(H,K) < ¢'.

To handle the other components of dgy, we set L = 10nkd and we will use the fact
that, since g is smooth, there exists an admissible constant C > 0 such that

(2.25) > I E(r) < Cm et
[7|oo =m
for all m > 1. By the periodicity of F,,, we have
2(0) - Frg(0)| = | . P (-)3(w)| < 3 [g(u)| < O™
u#0 |u|,, >m

and hence |g(0) - F,,g(0)| < ¢’ provided that m is large enough.
For the nonzero Fourier coeflicients we have

[8(r) = Fug(r)] = | 2 Fu(r - w)g(w)|

u#r
Sl l% IFZ(r—u)§(u)l+‘ ‘% B (r = w)g(w)).

ur

By (2.18), this is estimated by

nCyy(Ir )22l 3 g+ (1) Y [g(w)]

jul<Tr)2 T2
S (I DI + e 7) Sy (™12,

and this is < y(|r|™)|r|"*/?¢’ provided that # > 0 is chosen small enough. With this
choice of # we have proved

| |a/2

sup [8(r) - Fug(n)| <€,

rezd\{0} w(|r|™)

if n is sufficiently small and m is sufficiently large.
It remains to show that (2.4) holds for y = F,, gA, i.e.,

(2.26) fQ(Fmg)*"(x)dxSt//(|Q|)|Q|”“/d, 1<n<d/a
and that ford/a <n <n,

227) Y [ ig) * e () = S Emg) x5 (G )| gy <€

In
1seees

provided that # is small enough and m is large enough. Notice that by the definition
of the metric dgy and by (2.24), the corresponding terms for n > n can be ignored.

Proof of (2.26). Following [18], we write Py, (x) = Xj,j_ < 8(7) e?mi{r¥) By (2.25)
we have, for sufficiently large m,

(2.28) |g = Pullcr < Cm~ "Dt <1,
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We first verify that for everyn =1,...,n,
(2.29) lg™" = (Pw)™"lcr < m™,
(2.30) [(Fng)™ = (FiuPm) ™" oo < m™,

provided that m is chosen large enough. To see this we write

&7 = ()" = (g~ Pn) + ) = ()"
=(g-Pa) "+ () g Py 1 ()™

Therefore, using (:) = i(";l) for1<v <n-1and(2.28),

n-v

. . n—1 n
I = (Pa)lcs < g = Pules X () 1Pul
v=0 \V
n-1

<Jg=Pullcr (14 |Pulloe) " ns mn(2+[gle) "

and this gives (2.29) provided that m is large enough.
By (2.16) and the first estimate in (2.28) we have

| Em (P = &)llct S [ Emllcr [P = gllcx
< mkd+(k+1)Lm—(k+2)L < kad—L <1

for sufficiently large m The same argument as above then gives

* * n-1
[(EmPon)™" = (Eng)*" |t < |Em(Pm = @) crn(1+ |Fmgles) ™ m
S mH (L m* | gllo)" g m T (L4 | glleo)"

and this gives (2.30) provided that m is large enough.
As a consequence of Lemma 2.8 (ii) we have

(2.31) (FnPp)™" = (Fn) ™" (Pp)™".
Now for fixed n < d/a and a cube Q, we have by (2.31) and (2.30)

fQ(pmg)*"(x)dxg|fQ(F,,,pm)*"(x) dx|
#| [ ((Fg) " () = (FuP) " () d
<| [ (F)" () (Pu) " (x) | + m7 )
<| [ (Ew)" () (Ba) " () dx| + o y(QDIQI"™
<| [ (En) " () (Pa) " (x) ] + Sw(lQD Q"

for sufficiently large m. Thus, in order to finish the proof of (2.26), we must show that

e32) [ (Fn) @) (Ea) () dx < (1-5) w(QDIQI™.
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If the side length of Q is < 2/\/m, then
|fQ(Fm)*"(x)(Pm)*"(x) dx| < | (Pu) "o fq(Fm)*"(x) dx
< (1+ g Lo )nu(QDIQI™
< (- Hwiablal™,

where in the last inequality # is chosen sufficiently large (the second inequality follows
from (2.19)).

If the side length of Q is > 2/y/m, then Q can be split into rectangles R of side
lengths between 1/y/m and 2/\/m. Writing

agp = ][g*”(x) dx and bp= ][(Pm)*”(x) dx,
R R
we then have
[(Po)*™ = bR~ (ry $ m 72| (Pu)*" 1 s m™/2

and
lbr — ar| < [g*" = (Pm) "o <m™,

by (2.29). Now
| (En) ") (Ba) " ()
<| 8 [ )" (an ]
+|;fR(Fm)*n(x)(bR—aR)dx|
|5 L E" () o= ()" ()
S%:QR(1+?])|R|+(;+\/CW) %:[R(Fm)*"(x)dx
S(1+f1)ng"”(x)dx+f%fQ(RH)*"(x)azx,

where C’ is admissible. By (2.21) and (2.23) the last expression is less than or equal to

@) oyl + \%(HW)IQI

<= 5o+ = )wiiaDiar < - Hwqaiar

provided that # is small enough and m is large enough.
In either case we have verified (2.32), and this concludes the proof of (2.26).

Proof of (2.27). Fix n with d/a <n <nand i = (11,...,1,) € (J,)". Write

g=x"g
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2mi(r,x)

for j = 1,...,n,and Pju(x) = Ypj<cm &(1)e . Equation (2.27) reduces to

estimating

[gu - gn = (Fmg1) - % (Fmgn) | conv
< g% gn =P x P oy
+ [Py - % Py = (FmPrm) * -+ % (EmPam) | conv
+ |(FmPrm) * -+ % (FnPum) = (Fug1) * -+ % (Fugn)| conv-
Arguing as before (cf. (2.25)), we have, for sufficiently large m,
i~ giler <Cm B DE <1 and [y (P - )l e < Ok <1

Using the continuous embedding C* ~ CP»¥, we get, for sufficiently large m,
n
lg1 %% g Pun 5% Punllcms < Co D 11+ gy o) <
]:

and

|(FinPim) * - % (FuPum) = (Fug) * -+ % (Fmgn) | conw

n
< Cm"kd Ly Hl(l +]gjlo) <m™
j=

On the other hand, using Lemma 2.8 (ii), again we have

(FmPim) # -+ #% (FyPum) = (Fn) ™ (P * -+ * Pym).
Thus, by (2.20)
| Prm * + = # Py = (EmPrm) * -+ % (FmPom) | conv
= Cl(1=F") (Pom -+ % Pom) | conv
S 1=F" cony [ Prm * -+ % Po,m cony
Sl Pum# - x Pumllcr S (L@ * gullc) S,
provided that m is sufficiently large.
Combining the above estimates, we get
1% * gn = (Fmgr) * -+ (Fmgn)lcony S " + 1.

This guarantees (2.27) if 4 is chosen sufficiently small and m is chosen sufficiently
large. This completes the proof of Lemma 2.10. ]

2.5 Conclusion of the Proof of Theorem C

The result is about measures on R? rather than T. We use that every measure on T¢
that is supported on a cube of sidelength < 1 can be identified with a measure that is
supported on a cube of diameter < 1in R?. We take a measure y as in Corollary 2.4.
After multiplying it with a suitable CZ° function, we may assume that it is supported
on a cube of diameter < 1. For each n we may decompose g using the partition of
unity (2.1). The regularity properties (iii) and (iv) in Theorem C follow immediately
from (2.3) and (2.4). The compact support of y and the decay property (2.2) on 74
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imply the decay property in (ii). This is a standard argument (see [15, p. 252] with
slightly different notation). ]

2.6 Optimality of the Holder Continuity

Following the argument in [18], we show that the Holder continuity obtained in The-
orem C is the best possible.

Proposition 2.11  Let u be a Borel probability measure on R? supported on a compact
set of Hausdor{f dimension 0 < & < d. Suppose u*" € C*(R?), where n € N, n > 2, and
0<A<oo. Then A < 24

Proof Define by €,(u) = [| |x =y du(x)du(y) = c [ [@(§)P|¢]~*dE, the y-di-
mensional energy of u. Recall from [37, p. 62] that the Hausdorft dimension of E is
equal to the supremum over all y for which there is a probability measure v supported
on E with €, (v) < co. Thus it suffices to show that €, (¢) is finite for y < (d +21)/n.

Since u*" is compactly supported it also belongs to the Besov space B} , and thus,
by Plancherel, we have, for R > 1, /g [#(§)[" d& < R, Nowlet 0 < y < d. By
Hoélder’s inequality,

[m(&P < py-d f v AV pd (1) < py-dfn-2A/n
L\mR |E|d-y dfs R ( AR|P‘(£)| df) R SR )

Letting R =2/, j = 0,1,..., we see that &, () is finite if y < (d +21)/n, and the proof
is complete. ]

3 Random Sparse Subsets

The purpose of this section is to prove Proposition 2.5 and, in fact, to establish a better
quantitative version of this proposition.

3.1 Assumptions and Notations

In this section x, X3, . . . will be independent random variables uniformly distributed
on ¢, That is, for any m € N and subsets Ay, ..., A, of [, the probability of the
event that x, € A, for v = 1,...,m is equal to N~4" [T card(A, n I‘I‘f,). We denote
by Fy the trivial o-algebra and by F; the o-algebra generated by the (inverse images)
of the random variables xi, ..., x;.

Given random Dirac masses Jy,, v = 1, ..., m, we define the random measures y,
and 0, by 0 = o = 0, 0 = S xps i = M 0, m=1,2,.. ..

3.2 A Fourier Decay Estimate

The Fourier transform 7 is defined on Z¢; or, after scaling, on T, and we have

1 & ;
Um(Nu) = — Z e 2miINGwx;) oy e 1"1‘\1,.
m 5
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Lemma 3.1 Leth >1. The event

_ 4 logl/2 (8N9+H)
31 {u:{l&){(o} [ (Nu)| < T}

has probability at least 1 - N~",

Proof The proof is essentially the same as in the classical paper by Erdds and
Rényi [9]. Fix u € T$\{0}, and consider the random variables X, = e 27N{wx:),
Then X,, v = 1,..., m are independent with |X,| < 1 and EX; = 0. Thus by Bern-
stein’s inequality (see Corollary A.4) for all £ > 0, P(|E(Nu)| > t) < gemi/4, Setting
t = 2m 2 log"? (AN9*"), we get P{|i(Nu)| > t} < N~%~". Allowing u « I'{ to vary,
we see that P{(3.1) fails} < N7". [ |

Regularity of Self-convolutions

We begin with a few elementary observations. Let A; , = G;e - 0]7’7‘)1, so that

m
(3.2) onf=>"Aje.
j=1

Lemma 3.2 (i) For j>1, Aj, is a positive measure, and we have for € > 2,

-1
¢ .
(3.3) Aje=08px; + kz—:l (k)5(e7k)x,» * Uj-kl
£-1 ¢
(3.4) = (Sij + Z (k) Z 6(€—k)xj+xvl+~~+ka .
k=1 1<V, <j-1

(i) Assume that gcd(€!,N) = 1. Let m > 2 and let Q be a cube of sidelength > N~".
Then for j; < --- < jk,

P{ AJI,Z(Q) 74 0, cee ’AjK,f(Q) 7{ 0} S (2d+1|Q|m€_l)K.
In particular, for each u € T8,

P{Aje({u}) #0,...,8je({u}) # 0} < @N"“mt K,

(iii) Assume that gcd(€!,N) = 1. For j=0,...,m—1let &; be a given event in F;. Let

o7t = oG =N - (j-1)) oné&j,
0 on 8?_1.

Then E[Yj|Fj1] = 0. Let Wy = 0 and W; = Z{,zl Y,, for j = 1,...,m. Then
{W;}, is a martingale adapted to the filtration {F;}'",.

Proof Part (i) follows immediately from the binomial formula. For part (ii), note
that by the assumption ged(€!, N) = 1, the random variables (€ - k)xj, 1 < k < ¢,
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are uniformly distributed. Observe that for any fixed a, the probability of the event
{(€~-k)x, — aeQ} isat most 2¢|Q|. Thus the probability of the event that

(L-k)xg—acQ
for some choice of a = x,, + -+ + x,,, 1 < ¥1,..., v, < j—1, does not exceed
271QI(j - 1)* .

Hence P{A;,(Q) # 0} < 2%|Q| Ttz m* < 2#*1|Q|m*™". Now the assertion in part
(ii) follows. The second assertion in (ii) is proved similarly.
For (iii), clearly {W;}7", is adapted to the filtration {F;}",,. By assumption, the

random variable gx; is uniformly distributed on Iy, for 1 < q < ¢. Given fixed
X1>en- ,x]'_l, by (34),

Bloy“ ({u}) = o5 ({u]) s 11

NS (g)u— =N - (- 1)),
q=0

Since €;; € Fj1, we get E[Y;1¢,,|F;1] = 0 in this case. On 8?_1 we have Y; =

0, which also implies E[Yj1zc |Fj-1] = 0. Hence E[Y;|F;_;] = 0 and this shows
j-1

{W;}, is a martingale. [ |

We shall use (a small variant of) an elementary inequality from Ko6rner’s paper

[18, Lemma 11] which is useful for the estimation of sums of independent Bernoulli
variables.

Lemma 3.3 ([18]) LetO<p<1l, m>2and2mp< M < m. Then

k=M

In particular, if mp <land if Y1, ..., Yy, are independent random variables with
P{Y;=1}=p and P{Y;=0}=1-p,

then P{T", Y; > M} < 20

A

Proof Set uy = (7)p*. Then uj.i/uy = ’Z—jp £ < 2 for k > M and thus the

TS
sum is estimated by

2 M
Z ur <2up < %
k=M M!
The second assertion follows since P{}.72; Y; > M} = Yty P{YX7,Y; = k} <
ZIT:M Ug. | ]
For ¢ = 0,1,2,...,0 < € < d and h € N, define recursively positive numbers
M(¢,¢,h) by
(3.5) M(0,e,h) =1 and M(€, & h)=U(eh)x(Lh), €21,
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where

(3.6) U(e, h) := max{[e?"?|,[e}(2d + h +1)]},

(37) k(6. h) = ezl(g)M(q,d(l—q/E),h+1).
q=0 q

The growth of these constants as functions of £ and h is irrelevant for our purposes.
For the sake of completeness we give an upper bound.

Lemma 3.4 Let£ € Nu{0},0 < e < d, and h € N. The numbers defined in (3.5)-(3.7)
satisfy M(€,e,h) < e7'(e43¢2(h + ¢))~.

Proof We argue by induction with the case £ = 0 being trivial. For the induction

step we use (;) = ﬁ(t’;l) and estimate
-1 -1 d+3 2 1 q
(3.8) K(e,h)guzi(" )(e g (hr1+q))
af-q\ g d(1-3%)
2 Se-1 d+3 2
<e Z( )(e (6=1)2(h+£))d
q=0 q

<P(eMP(e-1)2(h+0)+1)7,

where in the last line we have used (1 + x)"/* < e* for 0 < x < 1. Thus

(3.9) k(€ h) < e2e2 (e3¢ (h+ ).
Now one checks that U(e, h) < e?*2he™" and (3.9) yields for £ > 1
M(8, e, h) < e he (e, h) < e (e (h + £))". [ |

Lemma 3.5 Let£ecNu{0},0<e<d, andheN. Let M(¢,¢, h) be asin (3.5). Let
N be an integer such that N > 2¢ and gcd(N, €!) = 1. Let E,, (¢, ¢, h) be the event that
0:£(Q) < M(#, ¢, h) holds for all cubes of measure at most m™*N~¢, and let E(¢, ¢, h)
be the intersection of the E,, (¢, ¢, h) where m < N“E*. Then E(¢, ¢, h) has probability
at least1- N7",

Proof We argue again by induction on £. If £ = 0, then 0*° = &, and the statement
clearly holds with M(0,¢,h) = 1, for e > 0 and h € N. Assume that the statements
hold for 0,1, ..., € — 1; we prove that it also holds for €. Let

-1 q
F=F(-1h)=NE(qeqe.h+1), witheq,e:d(l—z).
q=1

By the induction hypothesis, the event FC has probability at most N1 < %N -h
since we assume N > 2¢. We now proceed to estimate the probability of E(¢, &, h)CnF.
Fix m < N“¢, and fix a cube Q, with N < |Q| < N~¢m*. Notice that

é_d—sq’g
¢ q
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Therefore, if k(¢, h) is as in (3.12), we see, using (3.3), that A; »(Q) < «(¢, h) holds
onF,forj=1,...,m. Nowlet U > 29+2 pe an integer and let Ag)m be the event that

(3.10) > Aje(Q) > Uk(e, h).
j=1

Now by (3.2) and (3.5) the event E,, (¢, ¢, h)C is contained in the union over the
AS(S)h))m when Q ranges over the cubes with measure at most N~m~*. Let Q be
the collection of all cubes of measure N~¢m ¢, that have corners in T Then #(Q) <
(2N)?. Notice that every cube of measure less than N=¢m~¢ is contained in at most

34 cubes in 9. Hence

(3.11) P(E,u (6,6, h)® N F) < (6N)? réleagP(.Ale(s)h))m nF).

Now in order to estimate IF’(AS)m NF), we observe that if (3.10) holds on F, then there
are at least U indices j with Aj ,(Q) # 0. Thus we may assume m > U. Now we see
from Lemma 3.2 (ii), that for U < k < m and for any choice of indices1 < j; < -+ <
jk<m,P{A;, o(Q) #0,v=1,....k} < (29|Qm*")*. Thus

P(A2, nF)< 3 (’”)(zd+1|Q|mf-1)k.
" kv \k

Now let p := 2441|Q|m®™!. Since |Q| < m~¢, we have mp < 2%, Since we assume
U > 2%*2, we get from Lemma 3.3,

-~ (M d ek 2(mp)Y 227NV
2 () omt '« S50 « S
Thus we get from (3.11)

2(2d+1N7£)U(£,h)
P(En(6,e,h)CNF)<(6N)* 22— 2
(Em(&,&,h)* nF) < (6N) (e, h)!

64.2(2%+1)V
U!

It is not difficult to check that < 1for U > e?*? — 1; this can be verified by

taking logarithms and replacing log U with the smaller constant flU_l In(t) dt. Since
in addition U = U(¢, h) > [%], we then get N4~V < IN~4"" and thus

1
P(E(8e h)CNF) < 5N*’““’.

We have already remarked that P(FC) < %N " Thus,
P(E(6,e,h)®) <P(FC)+ > P(En(fe,h)°nF) <N".

mSN(d_£>/e

This completes the proof. ]

Lemma 3.6 Letf e N,0< f3<d/t andh € N. Let N be an integer such that
N > max{2¢, e } and gcd(N, €!) = 1. Let &,,(¢, B, h) denote the event that

0:1(Q) < (BO) (10712 (e + ) 28N

loglog N
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holds for all cubes of measure at most N“F¢, and let E(€, B, h) = Nyt Em (& 5 h).
Then E(¢, B, h) has probability at least 1 - N~",

Proof Let
~ Se
(312) RO Bk =3 (q)M(q,ﬁ(e —qhh+1)
q=0
and let V > 2481 be a positive integer. Let E,, (¢, h, V') denote the event that
log N
“£(Q) < R(L, B h)V —B_
Um (Q) —K( ﬁ ) lOglOgN

holds true for all cubes with measure at most N~¢#. We shall show that for sufficiently
large V, the complement of this event has small probability.
We condition on the event

~ t-1
F-Ne@pe-a).h+1)
q=

{U’Zq(Q) <M(q,B(-q),h+1)
vQwith [Q] < m INFED 1< m < NW}.

By Lemma 3.5, P(FC) < ¢eN~"' < IN7h,
We shall now estimate P(E,, (¢, h, V)¢ n F). The assumptions m < NF, |Q| <

d-p(e-q)

N~ with § < d/¢ imply for g < € —1that m < N 1 (since d — f¢ > 0) and
|Q| < m™IN~(¢=DF_ Thus we can use (3.3) to see that A ,(Q) < %(¢, 3, h) on F, for
j=1. o m.

Let Ag)m be the event that

m _ log N
. : .. 1), where Viy = | Vi—=—|.
(3.13) ;A;,e(Q)z"NK(fﬁ )» where Vi = | loglogNJ

Let jfv,m be the event that (3.13) holds for some cube with measure at most N~¢5.
Arguing as in the proof of Lemma 3.5 we find that

— - 2(d+1)VN
P(Ay,,nF)<2-(6N)4
Vn!
We need to verify that
2(d+l)VN
(3.14) 2-(6N)4 < Nd-1h
Vy!

for V > ¢2¥*8h and N > e". We take logarithms and replace log V! with the lower
bound fIVN_l logtdt =(Vy-1)log(Vy —1) — Vi + 2. Then (3.14) follows from

(3.15) log2+dlog6+ Vy(1+(d+1)log2)-2-(Vy-1)log(Vy-1)
<-(h+1+d)logN.
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Since, by assumption, V > €2?*1% and N > ¢, crude estimates show that (3.15) is
implied by

VN
(3.16) TIOg(VN—l) >(d+h+1)logN.

For N > e we have logloglogN < %loglogN and therefore log(Vy - 1) >
2loglog N. Thus (3.16) is implied by V' > 4(h + 2 + d), which holds since we as-
sume V > e2¥*8hand N > ¢ Thus (3.14) holds. We thus get P(E,, (¢, h, V)¢ nF) §
N~4"1and hence

P( U En(&,h,V)°)SP(FC)+ > P(En(&h,V)°nF)

m<NP m< NP

SAINTh 4 NBd-hL o NTH

1
2
It remains to show that

(3.17) V(e B, h) < é(10d+1€2(€+h))e

for V = ¢24*10 For %(¢, 8, h) we have, by Lemma 3.4,
-1 _ d+3 2 q
RO ) <143 4 (8 1)(e q*(h+1+q))
s1f-q\ q B(€-q)

and the right-hand side is estimated by (3€) 'x. (¢, h), where ., (¢, h) is the expres-
sion in line (3.8). The estimation that follows in the proof of Lemma 3.4 yields

(6B h) < el/zg(ed+3ez(h L o))t
and thus clearly (3.17) follows. [ |

Lemma 3.7 LetfeN, heN, and B > 1. There exist positive constants No(B, £) and
My (B, ¢, h,d) so that for N > No(¢, B), the event

max max a;f({u}) < Mo(¢, B, h,d)log N
m<(BN9log N)V/¢ yerg

has probability at least 1 - N™",

Proof If ¢ > 2, we may assume that

(3.18) BlogN < N7 for N > No(¢, B).
Let
-1 0 d q
7(e,h) = ( )M 2 2(1-2) he1).
& (“)uta 0D
and let
(3.19) V>2d+h+1+20B.

Let E,, (¢, h,"V) denote the event that 05¢({u}) < (&, h)V1og N holds true for all
u € T¢. We condition on the event F = ﬂg;} E(q, %(1 — 1), h +1), again with the sets
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on the right-hand side defined as in the statement of Lemma 3.5. Then the event FC
has probability at most EN~"~1 < IN"H.

It remains to estimate Y, <(pnd 10g N)V/¢ P(E,. (& h, V)C n F). If we apply the con-
dition E(q, %( — ), h +1) only for cubes of measure N4, then we see that

ot Mg 2(1- D) he1), meNEHiggce-t

In order to apply it for all m < (BN“logN)"¢, we must have (BN?log N)V¢ <
N#*3 which is implied by (3.18).

By (3.3) we have A o({u}) <®(&,h) onF, for j=1,...,m. Let A%, be the event
that

(3.20) orf({u}) = i Aje({u}) > Vy%(¢&, h), whereVy=|VIogN]|,
j=1

and let ﬁv,m be the event that (3.20) holds for all u € Ff,.

Now we estimate jl\”vm on F. Notice that if (3.20) holds on F, there are at least Vy
indices j so that Aj ,({u}) # 0 (and we may assume m > Vy). We argue as in the
proof of Lemma 3.5 using Lemma 3.2 (ii) to see that

P(AY < o (m ~d -1k
Eep P s 3 ()N

In order to apply Lemma 3.3 we must have Vy > 2mp with p = 2N~¢m®"!, and this
is certainly satisfied if V > 8B. Under this condition we thus get

“dmb)Vn . 2(2Blog N)V¥

— 2(2N
P(AY F) <
( V,m n /) - VN! VN!

We use the inequality

n

(3.21) — < e, forT>1land n > e?T.
n!

To verify this, one takes logarithms and uses log(n!) > nlogn — n + 1. Thus the
inequality follows from n(log T - log n) < —2n which is true for n > e*T.

We apply (3.21) with T' = 2Blog N and n = Vy. Note that by the assumption (3.19)
we get Vy > e?T. Therefore

2(2Blog N)V~ B

N Ze—VN SZQI_VIOgN SN_(2d+h+l+IOB).
N-

Thus

P( U B (&hVC)<PE)+ Y Y PAY,, nF)
m<(BN4log N)V¢ m<(BN9log N)V/¢ yerd

S %N—h + (BNd logN)l/eNdN—loBN—Zd—h—l
<N7"

and we get the assertion of the lemma. ]
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Remark  Itisalso possible to give a proof of Lemma 3.7 based on the second version
of Hoeftding’s inequality (A.2) in the appendix (cf. [7]).

The following proposition can be seen as a discrete analog to Theorem C (iv).

Proposition 3.8  Given integers k > 1, £ > k + 1 and h > 1, there exists N, (¢, h) > 1
and M (¢, h,d) > 0 such that for all N > N, (¢, h) with gcd(€!, N) = 1, the event

(3.22) max max |a,§€({u}) _ mEN_d|

eN-d\1/2
mé(N"’logN)ﬁ uely (I’I’l N )/

< M, (6 h,d)(logN)'*2

has probability at least 1 - N™",

Proof We prove this by induction on .

The case k = 1. Let By > d + h + 1, sufficiently large. We first remark that for m® <
BoN*log N, inequality (3.22) is implied by Lemma 3.7, provided that N is sufficiently
large. We thus may assume that

(3.23) m > (BoN*log N)/¢.

Following [18], we will treat the telescopic sums
m
() = mN = Yo7 o} N - (1))
e

as a sum of martingale differences with respect to the filtration of 0-algebras J;, with
J; generated by the random variables xy, ..., x;j; see Lemma 3.2 (iii).
By Lemma 3.7, there is a constant My = My (¢, By, h, d) so that

P( max max max o 1({u}) < MglogN) >1— N2(@+h+1)
( 1<q<€-11<j<(BoN¥ log N)a uerd 7 ({u}) 0708 )
provided that N is large enough. Note that

(BoN%log N)"¢ < min (BoN“logN)Y1,
1<g<e-1
provided that N is large enough. Let £;_; denote the event
(3.24) &= {a;_ql({u}) <MplogNforl<g<f-landallue Fl’f,}.

Then ]P’( Ulsjs(Nd log N) 21 8?) < N~2(d+h+)) Define for fixed u € FI‘f,

01—t - N = (j=1)") onéj,

0 on 8?_1.

'We shall apply Lemma 3.2 (iii) to the martingale { W}, with Wy = 0 and W} =
>’ _, Y, for j > 1. We prepare for an application of Hoeffding’s inequality (Lemma

A.1) and estimate the conditional expectation of e/ given fixed xi, ..., x;_1.
Claim: For |A| < (2°MylogN)™,
(3.25) E[ei|xy, ..., xj1] < exp ( 3m* N2 My)? (log N)*A?).
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Proof of (3.25). Given (xi,...,xj-1), if inequality (3.24) does not hold, then we have
Y; = 0 and thus E[e*"i|x;,...,xj_;] = L. Thus in this case (3.25) holds trivially. We
thus need to bound (3.25) on & ;_;. First observe

NG = (G-1°) <N <em* N~ < tlogN
by assumption. By (3.3) and (3.24),
-1 £
0]?*5({u}) - o]?*_el({u}) <y (k)Mo log N < 2°MjlogN.
k=0

Hence we get |Yj| < 2°M,logN. On the other hand, writing Z; = Aj.({u}) =
a]f*e({u}) - a;fl({u}), we have, by (3.4),

-1
P(Zj #0lx1,...,xj21) < N"ES (G -1k <2m® N,

We use these observations to estimate, for 0 < || < (26 My log N) 7, the term E[e* 7],
which in the following calculation is an abbreviation for the expectation conditional
on xi, ..., xj_1. Since the expectation of Y; with respect to x; is zero, we obtain

o AkE[Yk] o /\"IE[Y"]

LT TUE TR

|A|’<E[|Y|k | Z; = 0]

=1+P(Z; _0)2 0
AFE[]Y*] Z; %0]
+P(Z; #O)Z 0
We have m®!N~¢ < log N and thus
AFE[|Y;)¥ | Zz;=0] & |A|3mf 1N )k
I
k=2 : k=2
a2 & |Alog NIK .
< (\em®'N d)ZkZ;z'k‘? < (AemtIN"9)2,
Also
MFE[IY;* | Z; # = |12¢ My log N|¥
Bz £0)3, WP 21£0] pg, 40) 55 112 Molog NI
! = !

<2m*IN"9(12° My log N)?.
Combining the two estimates we get
E[e* | x1,...,xjo0] <1+ 3m* N2 My log N)?
<exp(3m“IN"4(2°Mylog N)?),

thus proving (3.25).
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We now apply Hoeftding’s inequality (cf. (A.1)) with the parameters

aJZ- =6m‘'N"9(2*Mylog N)?,

m
A=) a;=6m*N"¥(2’MylogN)?,
j=1
8=(2"MglogN)™,

t=2v/A(d+h+1)logN = M;(m*N~2(log N)*/2,

where M; = M2%\/24(d + h +1). For (A.1) to hold, we must have t < A8 which one
checks to be equivalent with (d + h + 1) logN < %mfN_d, and thus valid by (3.23).
Thus, by (A.1),

B(13;

j=1

> Ml(meN_d)l/z(logN)3/2) < 2exp(—t*/24)
=2exp(-2(d+h+1)logN)
_ 2N_2(d+h+1).

Allowing u € T and m < (N¢log N) 1 to vary, we see that

P( max max M > Ml(logN)3/2)
uely ms(N”’logN)ﬁ (mfN—d)l/z -

<ON"422Nd (N9 Jog N) 71 < N72h1

if N is large enough. Now ¢:f ({u}) -m*N~9 - Y Yju = 00n Nigjem € -1 and thus

#0)

< > P(€C ) < (N log N) #iN“2(@hD) < -2t

1<j-1<(N4 log N)ﬁ

m

*f en7—d

IP’( max max ‘Um {u}-m‘N"=>"Y;,
uely m<(N4log N) 1 Jj=1

if N is large enough. This establishes the assertion for x = 1.

The induction step. We now assume x > 2, £ > «k + 1, and that the assertion holds for
1<«’ <k Leth>1landfix jwith1< j< (N9logN)e=.
Define the event E;_; = E;_1(¢, k — 1, N) by the following three conditions:
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(3.26) maxa;_ql({u}) <ClogN forl<g<€—x.
rd
(3.27) maxa “({u}) <ClogN

forthoseqw1th€—x+l<q<€—1,andj—1§ (N?log N4,

1 j—1)1\1/2 «
G29 x|t - L < e UE)  og
for those ¢, k" with k" < x, g < £,
(N¥log N) 77 < j—1< (N¥logN)# .

Then by Lemma 3.7 and by the induction hypothesis, there exist N,_; = N,_;(£) and
€ = Cx_1(6 h,d) > 1so that for all N > N,_,, the event E;_; has probability at least
1- N~2(h+d+1) We define

=y = {gj“({u}) =075 ({u) N - (j-1")  onEj,

on EJC.:_1
and claim that
mé1\1/2 il
(3.29) 1Y)l < ezm(v) (log N)™" .

To see (3.29) we decompose using (3.3)

i . e —x —
e e J (-1 ¢ (1—1)‘1
gj ‘- Uj—el - N4 = Z (q)a(ffq)xj‘ Z ( )

q=0
-1 Y . ( '_1)q
+ Z (q)é(e a)x; ¥ ( ]ql N4 )

q=C-x+1

Now we have m < (N?log N)#= and thus Z ( )(] D! < 2tmtN- < 2¢log N.
On E?—l we have by (3.26) Zq: (q)(?(g_q)xj H({u}) <2ClogN. If -k +1<
q < €—-1,each jwith j—1< (N?logN)#= satisfies either (j—1) < (N?log N )4 or
(N?log N)a++ < j—1< (N%logN)+~ for some «’ with 1 < x’ < «. If

(j-1) < (N*log N)"4,
we use (3.27) to bound [0 {u} — (] D by (C+1)log N. If
(N4log N)77 < j—1< (N%log N) 7+,

we use (3.28) to bound |07 {u} - (];]—},)q| by €((j-1)IN"?)Y?(log N)'**'/? and hence
by C(m*'N9)/2(logN)*3' . Now sum and combine everything to get (3.29).
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Now given (3.29) we can apply the Azuma-Hoeftding inequality (Corollary A.3)
with
-1 x4l

mé1\1/2 w1
aj:22+ze(v) (logN)*%,

™Mz

-
Il
—_

A= a? _ (2€+2€)2m€N_d(logN)K+1,

t = /2A(2d + 2h + 2)log N = M, (m*N~%)/*(logN)'**

with M (€, h,d) = (2d + 2h + 2)/22¢42C,_, (¢, h, d). We get

> Mx(meN_d)l/z(logN)”%)

#([$:x.

<2exp(~t*/2A) = 2exp(-2(d + h +1)log N) = oN~2(d+h+1)

To conclude we argue as in the beginning of the induction. Allowing u € I'# and
m < (N?log N) 7= to vary, we see that

HD( | Z] =1 j,l¢| > M (] I]) +—‘)
max max ez ’ iIN1/2 = K Og
IN m<(N’1 OgN)e—" ( ) /

< QN~2d-2h-2pd (Nd log N) = < N~2h-1
if N is large enough. Moreover

*0 mf 1+5
P(mazc max #|0 ({u}) - W| > M, (logN) 2)
Uel} m<(N4log N) T+

—2h-1 C ~h
<¢N + > 1 P(E7,) <N
1<j<(N4logN) &=«

if N > N,(¢) is large enough. [ |
Proof of Proposition 2.5 Let P = m = | N |, with N large. Then the inequalities for

op and P~1op in Lemma 3.1, Lemma 3.6, and Proposition 3.8 hold with positive (and
high) probability. Proposition 2.5 is an immediate consequence. ]

4 Fourier Restriction and Multiplier Estimates

Proof of Theorem A The restriction estimate is equivalent with the bound

(41) 188 L may S 1812 -

If u*" € L (R%), then (4.1) for p = 521 follows from a special case of an inequality
in [6], namely | |37 < ™" | o | gl 73, ,)- In conjunction with Theorem C this proves
Theorem A. ]
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4.1 Multipliers of Bochner—Riesz Type

For p < g < 2 we formulate L? — L4 versions of the multiplier Theorem B stated in
the introduction. The main result is the following.

Theorem 4.1 Let1< p < q<2 andlet N> d(1/q—1/2) be an integer. Let y be a
Borel probability measure on R?, and assume that the Fourier restriction theorem holds:

. 1/2
(4.2) sup (/ Tk d‘u) <Ap < oo.
[ £llp<1
Forr <1, let
(4.3) @(r) = sup u(B(x,7)),
xeR4

and let n, € C*° be supported in {&: r[4 < |&| < r} and satisfy the differential inequal-
ities 111 0P 1y, | oo < 1 for all multiindices B with || < N. Let h = 5, + u. Then for
all f e LP(R?), |F ' [hf] lq S rd*%AP((D(r))l/2 | f | p» where the implicit constant is
independent of r and 1.

Proof The proof is an adaptation of the argument by Fefferman and Stein [10]. Let
® € C*(R?) supported in {x, |x| < 1} so that ®(x) =1 for |x| < 1/2. Let
®o,(x)=D(rx) and @, (x)=DQ2"rx) - O ""rx), n>1L

Then we decompose h = 3,5 hy, where F [ h,](x) = F[h](x) Dy, (x).
We first examine the L norm of h,, = h * ®,, ,. Observe by the support property
of #, and || s < 1that [h(&)| < u(B(&, 7)) < @(r). Moreover,

ha(®)] <a(r) [ [Brs(y)ldy s a(r)

since the L! norm of 6,“ is uniformly bounded in n and r. For n > 1, the last estimate
can be improved, since then @, , vanishes near 0 and therefore all moments of ®,, ,
vanish. This allows us to write

mn(® = [ 80,0 [ [(E=w =)= 2 (0T n(E-w)] du(o) dy
j=0J*
S ) [ sy =) du() dys,
Assuming N; > N + d, this gives
nly d
@] < a0 (2" G0

and then
(4.4) hnlleo < Cn27"™N@(r).

Since F[h,] is supported on a ball of radius 2" 77!, we get the estimate

(4.5) 157 hal = flg s Q" DG D)5 [0, ] 5 £,
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To see this, one decomposes f = ¥ fq,n» Where the cubes Q form a grid of cubes
of sidelength 2" /r with fq supported in Q, and F~![h,] * f supported in the cor-
responding double cube. In view of this support property, | Yo F'[h,] * fq <
Ca(Xq 1F [ha] * f[|3)Y9 and (4.5) follows by Holder'’s inequality.

Next, by Plancherel’s theorem,

T 0] * 13 = 13 < [l [ FC@PIRA()IdE
and

[ TP @lag< [ TR [ In+Bur(E-w)ldu(w)dé

= [ e+ 80O [ 1T+ w)Pdu(w) dé

< AQlny * @l £15
where for the last inequality we have applied the assumed Fourier restriction inequal-
ity to the function fe~ "),

Now | #, * @,r1 S |11 $ ¥ and for n > 1, we also get (using Taylor’s theorem
as above) |7, * @ 1 < [ (3, VI¥yl1|®o.r (»)|dy $ 27¥"r?. The above estimates
yield

|57 ] fla $ Ima| L2 N2 2 A4, | £, < 272 @(r) Ay f 1,
by (4.4). We combine this with (4.5) to get
57 ] * fllg 5 274G o) Ay ]

and finish by summing in #. ]

Asa corollary we get one direction of the statement in Theorem B for the multiplier
m as in (1.3)

Corollary 4.2 Let u be a Borel probability measure on R, @ as in (4.3), and assume
that @(r) < C.r* ¢ forall e > 0. Let y € C=°(RY) and define, for A > 0,

ma() = [ x(E=m)lE= ' dun).
Assume that 1 < p < q < 2 and that (4.2) holds. Then the inequality

(4.6) 157 [maf1lq 5 1f 1
holds for A > d(é - 1y - &2 If in addition, fol[t‘"‘a)(t)]l/2 4t < oo, then (4.6) holds
forA>d(:-1y- 4«

q

Proof Decompose y(&)|¢}~% = X0 277 =9) . (£) where (for a suitable'constant
Cy) the function Cy'n; satisfies the assumption of Theorem 4.1 with r = 27/. Thus

270 5 gy 5 271G o (2 ).

The corollary follows. u
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We now discuss the necessity of the condition on A. One may test the convolution
operator on a Schwartz function whose Fourier transform equals 1 on the (compact)
support of m,. Therefore, the condition m € Mg implies F~'[m, ] € L.

Lemma 4.3 Let u be a Borel measure supported on a set of Hausdor{f dimension a
and assume that |fi(x)| < C,(1+ |x|)7*/? for every y < . Let A > & — d, m) be as in
(1.3), and x € C° with y nonnegative and 3(0) > 0. Let K) = F'[m;],1< q < 2, and
assume Ky € L1, Then A > d(é -3)- d%"‘.

Proof We argue as in Mockenhaupt [25]. The positivity conditions on y and for-

mulas for fractional integrals imply that for y < « there exist ¢ > 0, ¢, > 0, such
2(A+d—a)
that for [x| > 1, |[Ky (x)| > c[x|**~9|a@(x)| > ¢|#(x)[""~ 7. The second inequal-

ity follows by the assumption on 7 and A > a — d. The displayed inequality and
the condition K, € L7 implies @ € L", for r > q(1+2(A +d — a)a™). It was
shown in [28] that i € L" implies r > 2d/a; indeed this follows from the fact that
dimg (supp #) = « implies that the energy integral Ig(u) is infinite for > «, and

Holder’s inequality. We now have the condition % <(1+ 2A+d-a) )gq, which is equiv-
Y

alent with A > d(% - 1) - d%"‘ - (a- y)(aiq — 1) This holds for all y < « and the

assertion follows. |

4.2 Failure of Ahlfors—David Regularity

Before closing this section, we note that the measures for which the endpoint L%
L*(u) restriction estimate hold cannot be Ahlfors-David regular. This can be seen as
a consequence of a result of Strichartz [32]. For the convenience of the reader we give
a short direct proof. We remark that some related results also appear in the recent
thesis by Senthil Raani [29].

Proposition 4.4  Let y be a Borel probability measure supported on a compact set
E cR? and for p > 1, let

By = ([ ., WO 6™,

Suppose that there exist 0 < a < d and a constant ¢ > 0 such that u(B(x,r)) > cr® for
allx e Eand 0 < r < 1. Then

(i) limsup, ., By(p)>0.
(ii) F does not extend to a bounded operator from L% (RY) to L*(u).

Proof Let y be a nonnegative C* function so that y(x) = 1for |x| <land y(x) =0
for |x| > 2. Let R > 1 and observe that, by assumption,

R < [ u(B(x. R du(x) < [ ((R(x=y)) du(y)du(x)
= (@ wx(R)) = [ FEOPRT(RE) dE.
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And therefore, R*™* < Cy [ [a(&)*(1 + R7|&)) "N d&. Let Ag = B(0,1) and A; =
B(0,27) ~ B(0,2/7") for j > 1. Then

R <on( [ R e Y min(l, (2R ™) /, Imr dg)

(4.7) < Cy(1+ Y min{1, (/R N} OBy, (4)?),

j21

by Hoélder’s inequality.

Now in order to prove (i), we argue by contradiction and assume that (i) does not
hold, i.e., lim,_,o, B, (p) = 0. Since y is compactly supported, the expressions B, (u)
are all finite, and by our assumption it follows that sup p B, (1) < B < oco. Weuse (4.7)
for some N > d — a and obtain for R > 1

R < Cy o (14 BPRT + R sup B,(u)?),
pZ\/E

and letting R — oo, this yields a contradiction.

To prove (ii) we observe that by duality (4.1) holds with p’ = 2d/«a. We take g €
C* so that ¢ = 1 on supp(u), and it follows that @ € L?>¥/*. This in turn implies
lim,_, ., B,(¢) = 0 in contradiction to the result in (i). [ |

A Some Standard Probabilistic Inequalities

For the convenience of the reader we include the proof of some standard probabilis-
tic inequalities used in this paper. We will need the following version of Hoeftding’s
inequality, a slight variant of the one in [18].

Lemma A.1 Let {WJ}}”IO be a bounded real-valued martingale adapted to the filtra-
tion {F;}1,. Suppose that aj > 0 for 1 < j < m and that

E[ Wi Wim)|F, ] < e“!z'lz/zfor all |A| < 6.
Let A= Y7, a3. Then
(A1) P(|Wp — Wol 2 1) <2e73, 0<t<AS,
(A.2) P(|Wp - Wo| 2 t) < 2041270 45 A,

Proof Observe thatif0< A <6,
Eel(Wm—Wo) _ E[e/\(Wm—l—Wo)E[ezl(Wm—Wm—l) | gjm—l]]

< euanZ/ZE[e)L(Wm_l—Wo)].

By iterating this step, we get Ee?(Wn="0) < AV/2,

Now P{W,, - Wy > t} = P{e*(Wn=W0) > ¢A*} and Tshebyshev’s inequality gives

P{W,, - Wy >t} < e MR A (Wn=Wo) o e—/\t+A/12/2.

https://doi.org/10.4153/CJM-2016-019-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-019-6

318 X. Chen and A. Seeger

If0 <t < AS, wesetd = t/A, and if t > AS, we set A = 8. For these choices the
displayed inequality gives

e_% for0 <t <Ad
A3 P{Wn-Wo2t}<{ . ’
(A3) { W = Wo > 1} {e“w 2¢7%t for t > AS.
Similarly, still for 0 < X < 8, P{W,, - Wy < —t} = P{e"Wn=Wo) > A} and argue as
above to see that P{W,,, — Wy < —t} is also bounded by the right-hand side of (A.3).
This implies the asserted inequality. ]

To verify the assumption in Lemma A.], the following calculus inequality is useful
[14, Lemma 1].

Lemma A.2  Let X be a real-valued random variable with |X| < a < co and E[ X|F] =
0. Then for any t € R, E[e'X | F] < e® /2,

Proof Replacing t by at and X by X/a, it suffices to consider the case a = 1. By the
convexity of the function x +— e**, for x € [-1,1] we have

1-x x+1
e < —"e Tt 4 Tet = cosh t + x sinh(¢),

and thus E[e'*|F] < cosh £ + sinh tE[ X|F]. The last summand drops by assumption.
Finally use that cosh t < e’/ for all t € R, which follows by considering the power

series and the inequality (2k)! > 2¥k!. [ |

A combination of Lemma A.l and Lemma A.2 yields the following corollary.

Corollary A.3 (Azuma-Hoeflding inequality) Let {WJ};":0 be a bounded real-val-
ued martingale adapted to filtration {F;}.,. For1< j < mlet aj > 0 and suppose that
|Wj = Wji| < aj. Writing A = Y7, a3, we have P(|W,, — Wol > t) < 2071124 for all
t>0.

As a consequence, we obtain a version of Bernstein’s inequality.

Corollary A.4 (Bernstein’s inequality) Let X;,..., X,, be complex valued indepen-
dent random variables with EX; = 0 and |X;| < M € (0,0) forall j=1,...,m. Then,
forallt>0
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