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Character Sums Over Bohr Sets

Brandon Hanson

Abstract. We prove character sum estimates for additive Bohr subsets modulo a prime. _ese esti-
mates are analogous to the classical character sum bounds of Pólya–Vinogradov and Burgess. _ese
estimates are applied to obtain results on recurrence mod p by special elements.

1 Introduction

Let p be a prime number and let Fp be the ûnite ûeld with p elements. A non-trivial
multiplicative character modulo p is a homomorphism χ∶F×p → C× which is non-
constant. We may abuse notation and view χ as a function on the integers deûned by
n ↦ χ(n mod p) and χ(n) = 0 when p ∣ n. Given a subset A ⊂ Fp , we are interested
in the sum

S(χ) = ∑
a∈A

χ(a).

Since χ takes values on the unit circle, it is always true that ∣S(χ)∣ ≤ ∣A∣ and when
A is a subgroup of F×p this bound is best possible. However, for the typical set A we
expect that ∣S(χ)∣ is about

√
∣A∣. So, to some extent, the size of S(χ) is a measure of

multiplicative structure of A. For instance, the number of solutions to ab = cd with
all variables in A is given by 1

p−1 ∑χ ∣S(χ)∣
4.

_ere are classical estimates for S(χ) when A is an interval. _e ûrst result in this
direction is due independently to Pólya and Vinogradov. Before stating it, we recall
Vinogradov’s asymptotic notation. For sequences Xn and Yn , we take Xn ≪ Yn to
mean that Xn/Yn ≤ c for some positive constant c (we shall also write Xn = O(Yn) to
mean the same thing). For sequences Xn and Yn , we take Xn = o(Yn) to mean that
Xn/Yn → 0. _e following results should be thought of as p →∞.

_eorem (Pólya-Vinogradov) Let χ be a non-trivial multiplicative character mod-
ulo p. _en

∣ ∑
M≤n≤M+N

χ(n)∣ ≪ √
p log p.

_is estimate is better than the trivial estimate provided N ≫ √
p log p and is

simple to prove. In [P], Paley proved that the bound is, in fact, nearly sharp. One
needs to work harder to get non-trivial estimates for shorter intervals. _e best result
in this direction is due to Burgess.
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_eorem (Burgess) Let χ be a non-trivial multiplicative character modulo p. _en
for any positive integer k and ε > 0, we have

∣ ∑
M≤n≤M+N

χ(n)∣ ≪k ,ε N 1−1/k p(k+1)/4k2
+ε .

_is result is better than trivial provided N ≫ p1/4+δ , which can be seen by taking
the parameter k to be suõciently large. Obtaining estimates for even shorter intervals
remains a major open problem in analytic number theory. _e interested reader is
referred to [IK, Chapter 12].

It is invariance under small translations that allows one to prove such theorems.
Similar theorems are proved for arithmetic progressions using the same methods. In
this paper we prove analogous theorems for sets exhibiting strong additive structure,
namely additive Bohr sets.

2 Statement of Results and Applications

2.1 Main Results

Given a subset Γ ⊂ Fp and a parameter ε > 0, we deûne the Bohr set

B = B(Γ, ε) = {x ∈ Fp ∶ ∥
xr
p
∥ ≤ ε for each r ∈ Γ} .

Here ∥ ⋅ ∥ denotes the distance to the nearest integer. Elements x ∈ B(Γ, ε) dilate Γ
into a short interval, and the additive structure of this interval carries over to B. Bohr
sets will be discussed further in Section 2.

In Section 3 we obtain the following analog of the Pólya–Vinogradov estimate; it
is non-trivial for large Bohr sets.

_eorem 2.1 (Pólya–Vinogradov for Bohr sets) Let B = B(Γ, ε) be a Bohr set with
∣Γ∣ = d. _en for any non-trivial multiplicative character χ,

∣ ∑
x∈B

χ(x)∣ ≪d
√

p(log p)d .

_is result is comparable to [Sh] in which a Pólya–Vingradov estimate is estab-
lished for generalized arithmetic progressions of rank d. For non-trivial estimates
when the Bohr set is on the order of

√
p or smaller, we appeal to Burgess’ method.

We are able to prove non-trivial results provided the Bohr set satisûes a certain nice-
ness condition known as regularity; see Deûnition 3.5.

_eorem 2.2 (Burgess for Bohr sets) Let B = B(Γ, ε) be a regular Bohr set with
∣Γ∣ = d. Let k ≥ 1 be an integer and let χ be non-trivial multiplicative character. When
∣B∣ ≥ √

p, we have the estimate

∣ ∑
x∈B

χ(x)∣ ≪k ,d ∣B∣ ⋅ p5d/16k
2
+o(1)( ∣B∣

εd p
)
5/16k

( p
∣B∣ )

−1/8k
.
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When ∣B∣ < √
p, we have the estimate

∣ ∑
x∈B

χ(x)∣ ≪k ,d ∣B∣ ⋅ p5d/16k
2
+o(1)( ∣B∣

εd p
)
5/16k

( ∣B∣5
p2 )

−1/8k
.

_e statement appears complicated, but usually one has ∣B∣ ≈ εd p, so the middle
factor in the estimate is harmless. If the rank d is bounded, one can take k much larger
than d and obtain a non-trivial estimate in the range ∣B∣ ≫ p2/5+δ for some positive δ.
_is is comparable to character sum estimates of M.-C. Chang for generalized arith-
metic progressions of comparable rank proved in [C]. As in her proof, we make use
of sum-product phenomena in Fp .

2.2 Applications

Recall that Dirichlet’s approximation theorem states that for real numbers α1 , . . . , αd
there is an integer n ≤ Q so that maxk{∥nαk∥} ≤ Q−1/d . Schmidt proved in [Sch]
that, at the cost of weakening the approximation, we can take n to be a perfect square.
Speciûcally, he proved the following theorem.

_eorem Given real numbers α1 , . . . , αd and Q a positive integer, there is an integer
1 ≤ n ≤ Q and a positive absolute constant c such that

max
1≤k≤d

{∥n2αk∥} ≪ dQ−c/d2 .

_is result was also proved by Green and Tao in [GT] and extended to diòerent
systems of polynomials in [LM]. An elementary proof of a slightly weaker estimate
was also given in [CLR].

When Γ is a subset of Fp and ε > 0, then the elements of B(Γ, ε) are precisely the
elements guaranteed by Dirichlet’s approximation theorem. Here we are replacing
approximation in the continuous torusR/Z with approximation in the discrete torus
Fp . We will prove the following Fp analog of Schmidt’s theorem.

_eorem 2.3 (Recurrence of k-th powers) Let Γ be a set of d integers and let p be a
prime. _ere is an integer x ≤ p for which

max
r∈Γ

{∥xk r
p
∥} ≪d p−1/2d log p ⋅ k1/d .

In a similar fashion, we can prove a result about recurrence of primitive roots.

_eorem 2.4 (Recurrence of primitive roots) Let Γ be a set of d integers and let p be
a prime. _ere is an integer 1 < x < p that generates F×p and such that

max
r∈Γ

{∥x r
p
∥} ≪d

p1/2d log p
ϕ(p − 1)1/d .

_e remainder of this article is structured as follows. In the next section we re-
call necessary facts from Fourier analysis in Fp , character sums, Bohr sets and their
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properties, and sum-product theory. In Section 3 we give the proof of _eorem 2.1
and in Section 4 the proof of_eorem 2.2. In Section 5 we present the applications to
recurrence.

3 Preliminaries

In this section we describe necessary results from discrete Fourier analysis, character
sums, the theory of Bohr sets, and sum-product theory in Fp .

3.1 Discrete Fourier Analysis

_eresults in this section are standard. _e interested reader is referred to [TV, Chap-
ter 4]. We deûne ep(a) = e2πia/p , which is p-periodic as a function on Z and so
well-deûned on Fp . For f ∶Fp → C and q ≥ 1 we have the Lq norm

∥ f ∥q = ( 1
p
∑
x∈Fp

∣ f (x)∣q)
1/q

.

_e Fourier transform of a function f at t ∈ Fp is deûned as

f̂ (t) = ∑
x∈Fp

f (x)ep(−tx).

Lemma 3.1 (Properties of the Fourier Transform) Let f , g∶Fp → C; then we have

(i) Fourier inversion: f (x) = 1
p ∑t∈Fp f̂ (t)ep(tx).

(ii) Parseval’s identity: ∑x∈G f (x)g(x) = 1
p ∑t∈Fp f̂ (t)ĝ(t).

(iii) Plancherel’s identity: ∑x∈G ∣ f (x)∣2 = 1
p ∑t∈Fp ∣ f̂ (t)∣2.

3.2 Character Sums

Herewe recall well-known facts concerning complete character sums over ûnite ûelds.
For details, we refer the reader to [IK, Chapter 11]. Suppose χ is a non-trivial multi-
plicative character. For x ∈ Fp the Fourier transform of χ at x is

τ(χ,−x) = ∑
y∈Fp

χ(y)ep(−xy),

which is known as the Gauss sum. By expanding the square modulus, it is not hard
to prove the following lemma.

Lemma 3.2 For non-zero x ∈ Fp we have ∣τ(χ,−x)∣ =
√

p and τ(χ, 0) = 0.

In the proof of _eorem 2.2 we shall need Weil’s estimate for character sums with
polynomial arguments.
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_eorem (Weil) Let f ∈ Fp[x] be a polynomial with r distinct roots over Fp . _en if
χ has order l and provided f is not an l-th power over Fp[x], we have

∣ ∑
x∈Fp

χ( f (x))∣ ≤ r
√

p.

3.3 Bohr Sets

_e material here can be found in [TV, Section 4.4]. Suppose Γ ⊂ Fp and ε > 0 is a
parameter; then the Bohr set B(Γ, ε) is deûned as

B(Γ, ε) = {x ∈ Fp ∶ ∥
xr
p
∥ ≤ ε for each r ∈ Γ} .

Here ∥ ⋅ ∥ is the distance to the nearest integer, which in this case will be a rational
number with denominator p. _ere are a few ways to view Bohr sets. If we let I be the
integer interval [−εp, εp] ∩ Z (thought of as a subset of Fp), then B(Γ, ε) consists of
those elements x ∈ Fp such that xΓ = {xr ∶ r ∈ Γ} ⊂ I. Since ∥θ∥ ≈ ∣e2πiθ − 1∣, another
way to view B(Γ, ε) is as the set of x ∈ Fp such that ∣ep(xr) − 1∣ ≪ ε for r ∈ Γ. In this
way, B(Γ, ε) is approximately the kernel of the homomorphism T ∶Fp → Td given by
T(x) = (ep(rx))r∈Γ . Since Fp has no non-trivial additive subgroups, Bohr sets are
o�en used as a close approximation.

We have the following estimates on the size of a Bohr set.

Lemma 3.3 Let Γ ⊂ Fp with ∣Γ∣ = d and ε > 0. _en

∣B(Γ, ε)∣ ≥ εd p and ∣B(Γ, 2ε)∣ ≤ 4d ∣B(Γ, ε)∣.

Since B(Γ, ε) + B(Γ, ε) ⊂ B(Γ, 2ε) by the triangle inequality, we can immediately
deduce the following bound.

Corollary 3.4 Let Γ ⊂ Fp with ∣Γ∣ = d and ε > 0. _en

∣B(Γ, ε) + B(Γ, ε)∣ ≤ 4d ∣B(Γ, ε)∣.

Given Γ ⊂ Fp , there are certain values of ε for which ∣B(Γ, ε + κ)∣ varies nicely for
small values κ. More precisely, we deûne a regular Bohr set as follows.

Deûnition 3.5 Suppose Γ ⊂ Fp is a set of size d; we say ε is a regular value for Γ if
whenever ∣κ∣ < 1

100d we have

1 − 100d∣κ∣ ≤ ∣B(Γ, (1 + κ)ε)∣
∣B(Γ, ε)∣ ≤ 1 + 100d∣κ∣.

We say the Bohr set B(Γ, ε) is regular.

_e natural ûrst question to ask is if a given Γ has any regular values. In fact, a
result due to Bourgain ([B]) shows that one can always ûnd a regular value close to
any desired radius.
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Lemma 3.6 (Bourgain) Let Γ be a set of size d and let δ ∈ (0, 1). _ere is an ε ∈
(δ, 2δ) that is regular for Γ.

_e crucial property of regular Bohr sets is that they are almost invariant under
translation by Bohr sets of small radius. _is allows us to replace a character sum
over a Bohr set by something “smoother”.

Corollary 3.7 Let B(Γ, ε) be a regular Bohr set with ∣Γ∣ = d. If η ≤ δε/200d for some
0 < δ < 1, then for any natural number n ≥ 1 and y1 , . . . , yn ∈ B(Γ, η) and we have

∑
x∈Fp

∣1B(Γ,ε)(x + y1 + ⋅ ⋅ ⋅ + yn) − 1B(Γ,ε)(x)∣ ≤ nδ∣B(Γ, ε)∣.

Proof By the triangle inequality it suõces to prove the result for n = 1. For y = y1,
the value of ∣1B(Γ,ε)(x + y) − 1B(Γ,ε)(x)∣ is 0 unless exactly one of x and x + y lies in
B(Γ, ε) in which case there is a contribution of 1. However, if the latter happens, then
x ∈ B(Γ, ε + η) ∖ B(Γ, ε − η). Owing to the regularity of B(Γ, ε), for any y ∈ B(Γ, η),
there is a contribution of at most

∣B(Γ, ε( 1 + δ
200d

))∣ − ∣B(Γ, ε( 1 − δ
200d

))∣ ≤ δ∣B(Γ, ε)∣ .

3.4 A Sum-product Estimate

In order to execute a Burgess type argument for character sums, we shall need esti-
mates on what is known as multiplicative energy. For two sets A, B ⊂ Fp we call

E×(A, B) = ∣{(a1 , a2 , b1 , b2) ∈ A× A× B × B ∶ a1b1 = a2b2} ∣

the multiplicative energy between A and B. We observe that if

r×(x) = ∣{(a, b) ∈ A× B ∶ ab = x}∣ ,

then
E×(A, B) = ∑

x∈Fp

r×(x)2 .

_ese quantities appear regularly in additive combinatorics and are closely related to
∣A ⋅ B∣. Speciûcally, we shall need to bound the multiplicative energy between two
Bohr sets. To achieve this, make use of the following estimate from [R].1 _e estimate
presented here is not explicitly mentioned, but it is proved on the way to proving
_eorem 1 of that article.

_eorem 3.8 (Rudnev) Let A ⊂ Fp satisfy ∣A∣ < √
p. _en

E×(A) ≪ ∣A∣∣A+ A∣7/4 log ∣A∣.

1Recently, Rudnev’s sum-product estimate was improved in [RNRS]. Turning this bound into an
energy estimate may give a small improvement on _eorem 2.2. However, sum-product estimates are
still far from optimal, and an approach incorporating the structure of Bohr sets would likely be more
eòective.
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4 The Pólya–Vinogradov Argument

_e Pólya–Vinogradov argument is an eòective way of obtaining good character sum
estimates over sets whose Fourier transform has a small L1 norm. Indeed, suppose
A ⊂ Fp ; then by Parseval’s identity and the Gauss sum estimate we have

∣ ∑
a∈A

χ(a)∣ = ∣ 1
p
∑
x∈Fp

1̂A(x)τ(χ,−x)∣ ≤
√

p∥1̂A∥1 .

One can get a fairly strong estimate on this L1 norm of Bohr sets. We do so now and
establish _eorem 2.1.

Proof of_eorem 2.1 Write Γ = {r1 , . . . , rd} and r = (r1 , . . . , rd). Since x ∈ B if and
only if rx ∈ [−εp, εp] = I, for each r ∈ Γ, we have

1̂B(y) = ∑
x∈B
ep(−yx) = ∑

x∈Fp

d

∏
k=1

1I(xrk)ep(−yx)

= 1
pd
∑
x∈Fp

d

∏
k=1
∑

vk∈Fp

1̂I(vk)ep(vkrkx)ep(−yx)

= 1
pd
∑
v∈Fd

p

1̂Id (v) ∑
x∈Fp

ep(x(v ⋅ r − y)) = 1
pd−1 ∑

v∈Fd
p

v⋅r=y

1̂Id (v).

Here we have set Id = I
×d× ⋅ ⋅ ⋅ × I and

1̂Id ((v1 , . . . , vd)) = 1̂I(v1) ⋅ ⋅ ⋅ 1̂I(vd).

Plugging this in, we obtain

∥1̂B∥1 ≤
1
pd
∑
y∈Fp

∑
v∈Fd

p
v⋅r=y

∣1̂Id (v)∣ =
1
pd
∑
v∈Fd

p

∣1̂Id (v)∣ = ∥1̂I∥d1 .

As in the classical proof of the Pólya–Vinogradov inequality,

∣1̂I(v)∣ = ∣
N

∑
k=−N

ep(−kv)∣ = ∣
2N+1

∑
k=0

ep(−kv)∣ = ∣
ep(v(2N + 2) − 1

ep(v) − 1
∣ ≪ p

v
.

It follows that ∥1̂I∥1 ≪ log p, and the theorem is proved.

Remark If one takes Γ = {1} and ε = N/p for some positive integer N , then
B(Γ, ε) = [−N ,N], thought of as a subset of Fp . _is recovers the classical Pólya–
Vinogradov estimate

∑
∣n∣≤N

χ(n) ≪ √
p log p.
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5 The Burgess Argument

In this section we prove _eorem 2.2. _e method is the same as in the proof of
Burgess’ estimate for character sums over an interval, which can be found in [IK,
Chapter 12]. _e main diòerence lies in estimating the multiplicative energy between
two Bohr sets and for this we use the sum-product result quoted in Section 2. Sum-
product estimates were used for the same purpose in [C] with methods taken from
[KS]. It is likely that the argument presented here is not eõcient. Indeed, Bohr sets
are highly structured, and the current sum-product estimates are expected to be sub-
optimal. For example, one of the energy estimates proved in [C] was improved in [K]
using the geometry of numbers. Wewere unable to adapt that argument to the present
situation.
First, we establish a general version of Burgess’ argument, which is an application

of Hölder’s inequality and Weil’s bound.

Lemma 5.1 Let A, B,C ⊂ Fp and suppose χ is a non-trivial multiplicative character.
Deûne

r(x) = ∣{(a, b) ∈ A× B ∶ ab = x}∣ .
_en for any positive integer k, we have the estimate

∑
x∈Fp

r(x)∣∑
c∈C
χ(x + c)∣ ≤ (∣A∣∣B∣)1−1/kE×(A,A)1/4kE×(B, B)1/4k

× ( ∣C∣2k2k√p + (2k∣C∣)k p) 1/2k
.

Proof Call the le�-hand side above S. Applying Hölder’s inequality,

∣S∣ ≤ ( ∑
x∈Fp

r(x))
1−1/k

( ∑
x∈Fp

r(x)2)
1/2k

( ∑
x∈Fp

∣∑
c∈C
χ(x + c)∣

2k
)

1/2k

= T 1−1/k
1 T 1/2k

2 T 1/2k
3 .

Now T1 is precisely ∣A∣∣B∣, and T2 is the multiplicative energy E×(A, B). By the
Cauchy–Schwarz inequality, we have

E×(A, B) ≤
√
E×(A,A)E×(B, B).

Expanding T3 and using that χ(y) = χ(yp−2), we have
T3 = ∑

c1 , . . . ,c2k∈C
∑
x
χ((x − c1) ⋅ ⋅ ⋅ (x − ck)(x − ck+1)p−2 ⋅ ⋅ ⋅ (x − c2k)p−2)

= ∑
c∈C2k
∑
x
χ( fc(x)) .

Here fc(t) is the polynomial

fc(t) = (t − c1) ⋅ ⋅ ⋅ (t − ck)(t − ck+1)p−2 ⋅ ⋅ ⋅ (t − c2k)p−2 .

By Weil’s theorem, ∑x χ( fc(x)) ≤ 2k
√

p unless fc is an l-th power, where l is the
order of χ. If any of the roots c i of fc is distinct, it occurs with multiplicity 1 or p − 2,
both of which are prime to l since l divides p− 1. Hence fc is an l-th power, provided
all of its roots can be grouped into pairs. So, for all but at most (2k)!/2kk! ≤ (2k∣C∣)k
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vectors c, we have the estimate 2k
√

p for the inner sum. For the remaining cwe bound
the sum trivially by p. Hence,

T3 ≤ ∣C∣2k2k√p + (2k∣C∣)k p.

Proof of_eorem 2.2 Suppose Γ ⊂ Fp has size d, and ε is a regular value for Γ. We
may as well assume that Γ ≠ 0, for otherwise B = Fp and the result is trivial. Write
B = B(Γ, ε) and let χ be a non-trivial character of F×p . _en we wish to estimate

S(χ) = ∑
x∈B

χ(x).

We begin by ûrst using Corollary 3.7. Let η = p−1/kε/(200d) and let y ∈ B(Γ, η). For
any natural number n ≤ p1/2k , we have

S(χ) = ∑
x∈Fp

1B(x)χ(x) = ∑
x∈Fp

1B(x + ny)χ(x) + O(n∣B∣p−1/k)

= ∑
x∈B

χ(x − ny) + O(n∣B∣p−1/k) .

Averaging this over all values 1 ≤ n ≤ p1/2k and all values y ∈ B′ = B(Γ, η) ∖ {0},
we obtain

S(χ) ≪ 1
p1/2k ∣B′∣ ∑x∈B

∑
y∈B′

∑
1≤n≤p1/2k

χ(x − ny) + O( ∣B∣p−1/2k) .

It remains to estimate

T(χ) ≪ 1
p1/2k ∣B′∣ ∑x∈B

∑
y∈B′

∑
1≤n≤p1/2k

χ(x − ny).

We begin by assuming that ∣B∣ < √
p. _en, applying Lemma 5.1 (where r(x) is

now the number of ways of writing x as ab with a ∈ B and b ∈ (B′)−1), we have

∣T(χ)∣ ≪ 1
p1/2k ∣B′∣ ∑x∈Fp

r(x)∣ ∑
1≤n≤p1/2k

χ(x − n)∣

≤ (∣B∣∣B′∣)1−1/kE×(B, B)1/4kE×(B′ , B′)1/4k

p1/2k ∣B′∣

× (2kp3/2 + (2k)k p3/2) 1/2k

≤ ∣B∣(∣B∣∣B′∣)−3/4k(∣B + B∣∣B′ + B′∣)7/16k(log p)1/2k
√

kp1/4k

a�er applying _eorem 3.8. Applying Corollary 3.4, we get the bound

∣T(χ)∣ ≪ ∣B∣(∣B∣∣B′∣)−5/16k47d/8k(log p)1/2k
√

kp1/4k .

Using Lemma 3.3,

∣B′∣ ≥ ηd p = ( ε
p1/k200d

)
d
p

so that

∣T(χ)∣ ≪d ,k ∣B∣ ⋅ p5d/16k
2
+o(1)( ∣B∣

εd p
)
5/16k

( ∣B∣5/2
p

)
−1/4k

.
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Now if ∣B∣ ≥ √
p, ûrst split B into disjoint sets B i with

√
p ≪ ∣B i ∣ <

√
p. _en

∣T(χ)∣ ≪ ∣B∣
√

p
⋅ 1
p1/2k ∣B′∣ maxi

∑
x∈B i

∑
y∈B′

∣ ∑
1≤n≤p1/2k

χ(x − ny)∣ .

Proceeding as before, this time bounding ∣B i ∣ <
√

p and ∣B i + B i ∣ ≤ ∣B + B∣, we obtain

∣T(χ)∣ ≪ ∣B∣(√p∣B′∣)−3/4k(∣B + B∣∣B′ + B′∣)7/16k(log p)1/2k
√

kp1/4k

= ( ∣B∣
√

p
)

3/4k
( ∣B∣( ∣B∣∣B′∣)−3/4k( ∣B + B∣∣B′ + B′∣) 7/16k)

× ((log p)1/2k
√

kp1/4k)

≪d ,k ∣B∣ ⋅ p5d/16k
2
+o(1)( ∣B∣

εd p
)
5/16k

( p
∣B∣ )

−1/8k
.

It is worth remarking that the Burgess estimate just proved gives a genuine im-
provement over the Pólya–Vinogradov estimate in some cases. To see this, we need a
Bohr set whose size is ∣B∣ ≈ εd p ≈ pγ with 2/5 < γ < 1/2. To ûnd such a set, we need
only note that the bound in Lemma 3.3 is sharp on average. Averaging over all subsets
of Fp of size d, we have (where I is the interval [−εp, εp])

1
(p
d)
∑
∣A∣=d

∣B(A, ε)∣ = 1
(p
d)
∑
∣A∣=d

∑
x∈Fp

∏
a∈A

1I(ax)

= 1
(p
d)
∑
∣A∣=d

∑
x∈F×p
∏
a∈A

1x−1 I(a) + O(1)

= 1
(p
d)
∑
x∈F×p

∑
∣A∣=d
∏
a∈A

1x−1 I(a) + O(1).

_e inner sum vanishes unless A ⊂ x−1I in which case it contributes (∣I∣d ). _us the
total sum is roughly (∣I∣d )(

p
d)
−1

p ≍ εd p. It follows that for the typical choice of A of
size d and appropriate choice of ε, which we can take to be regular by Lemma 3.6, we
ûnd a regular Bohr set with size in the desired range.

6 Application to Polynomial Recurrence

We are now going to prove_eorem 2.3 and_eorem 2.4. _eir proofs will follow the
standard method of counting with characters. First we prove an analog of Schmidt’s
theorem for squares. _is proof is quite simple and does not need character sums, but
it will give a good idea of what to aim for when we move to higher powers.

Let Γ ⊂ Fp be a set of size d and let ε > 0 be a parameter. _en B = B(Γ, ε) contains
a non-zero square provided ε2d p > 1. To see this, observe that Bohr sets have the
dilation property xB = B(x−1Γ, ε), which follows immediately from the deûnition of
a Bohr set. If the non-zero elements of B are all non-squares, then for any non-square
element x, xB(Γ, ε) ∩ B(Γ, ε) = {0}. But this intersection contains B(Γ ∪ x−1Γ, ε)
which has size at least ε2d p by Lemma 3.3, yielding a contradiction. It follows that
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there is a non-zero integer 1 ≤ a < p such that

max
r∈Γ

{∥ a2 r
p
∥} ≪ p−1/2d .

_e above argument does not immediately generalize to higher powers, because
there is no dichotomy; an element can be in any of the k cosets of the set of k-th
powers. Instead, we will use_eorem 2.1 to ûnd higher powers and primitive roots in
Bohr sets.

Proof of_eorem 2.3 Write B for B(Γ, ε). Observe that when (k, p − 1) = l then
the k-th powers are the same as the l-th powers. So we suppose k∣(p− 1) and K is the
subgroup of F×p consisting of the k-th powers. _is group has index k. _e problem
is then showing that B(Γ, ε) ∩ K is non-empty. Let K⊥ be the group of multiplicative
characters that restrict to the trivial character on K. _is group has size ∣K⊥∣ = k. _e
Poisson Summation Formula, which can be found in [TV, Chapter 4], states that

1K(x) =
1
k
∑
χ∈K⊥

χ(x).

_us,

∣K ∩ B∣ = 1
k
∑
χ∈K⊥
∑
b∈B
χ(b).

A�er extracting the contribution from the trivial character χ0, we have

∣ ∣K ∩ B∣ − ∣B∣
k

∣ ≤ max
χ

∣S(χ)∣,

where S(χ) = ∑b∈B χ(b) and the maximum is taken over all non-trivial characters
χ ∈ K⊥. _us if we can show that the maximum value of ∣S(χ)∣ is at most ∣B∣k , then
B must contain an element of K. By _eorem 2.1, B contains a k-th powers provided
∣B∣ ≫d kp1/2(log p)d , which is certainly the case when εd ≫d kp−1/2(log p)d in view
of Lemma 3.3. _us,

max
r∈Γ

{∥xk r
p
∥} ≪d p−1/2d log p ⋅ k1/d .

We now turn to primitive roots.

Proof of_eorem 2.4 We can also ûnd primitive roots in a Bohr set. Recall that the
group F×p is cyclic and a primitive element of Fp is a generator of this group. Denote
the primitive roots of Fp by P. _e characteristic function of P has a nice expansion
in terms of characters, due to Vinogradov (see [LN, Exercise 5.14]):

1P(x) =
ϕ(p − 1)
p − 1

∑
d ∣(p−1)

µ(d)
ϕ(d) ∑χd

χ(x),

where ϕ is Euler’s totient function and ∑χd is the sum over all characters with order
exactly d. Summing over the elements of a Bohr set B and extracting the contribution
from the trivial character, we obtain

∣ ∣B ∩P∣ − ∣B∣ϕ(p − 1)
p − 1

∣ ≪d
√

p(log p)d .
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We deduce that B will contain a primitive root whenever

ε≫ p1/2d

ϕ(p − 1)1/d ⋅ log p0.

_us there is a primitive root 1 < x < p with

max
r∈Γ

{∥x r
p
∥} ≪d

p1/2d log p
ϕ(p − 1)1/d .

We close by mentioning that use of _eorem 2.2 would allow for smaller choices
of ε but for the factor (∣B∣/εd p)k appearing in the estimate. As we mentioned in the
preceding section, this factor is usually harmless, but we wanted uniform results for
all sets Γ, which comes more easily by way of _eorem 2.1.
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