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On the Fitting ideals of anticyclotomic
Selmer groups of elliptic curves with good
ordinary reduction

Chan-Ho Kim

Abstract. We give a short proof of the anticyclotomic analogue of the “strong” main conjecture of
Kurihara on Fitting ideals of Selmer groups for elliptic curves with good ordinary reduction under
mild hypotheses. More precisely, we completely determine the initial Fitting ideal of Selmer groups
over finite subextensions of an imaginary quadratic field in its anticyclotomic Zp-extension in terms
of Bertolini–Darmon’s theta elements.

1 Introduction

1.1 The statement of the main result

Let E be an elliptic curve of conductor N overQ and p ≥ 5 be a prime of good ordinary
reduction for E such that
(Im) the mod p Galois representation ρ ∶ GQ = Gal(Q/Q) → AutFp(E[p]) ≃

GL2(Fp) is surjective, and
(Ram) ρ is ramified at every prime dividing N, so p does not divide Tamagawa

factors of E.
Let K be an imaginary quadratic field of odd discriminant−DK < −4 with (DK , Np) =
1 such that
(Spl) p splits in K, and
(Na) ap(E) /≡ 1 (mod p).
Write

N = N+ ⋅ N−,

where a prime divisor of N+ splits in K and a prime divisor of N− is inert in K.
(Def) Assume that N− is a square-free product of an odd number of primes.
Let K∞ be the anticyclotomic Zp-extension of K and Kn be the subextension of K in
K∞ of degree pn for n ≥ 0. Let Λn = Zp[Gal(Kn/K)] ≃ Zp[X]/((1 + X)pn − 1) be the
finite layer Iwasawa algebra. Under (Def), denote by
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θ(E/Kn) = ∑
σ∈Gal(Kn/K)

aσ ⋅ σ ∈ Λn .

Bertolini–Darmon’s theta element of E over Kn which interpolates the square-roots
of L(E/K , χ, 1) for finite order characters χ on Gal(Kn/K). It is reviewed in Section 2.
For the natural projection map πn ,n−1 ∶ Λn → Λn−1, let νn−1,n ∶ Λn−1 → Λn be the map
defined by σ ↦∑πn ,n−1(τ)=σ τ. For 0 ≤ m ≤ n, we write νm ,n = νn−1,n ○ νn−2,n−1 ○ ⋯ ○
νm ,m+1. Then we have the equality of ideals of Λn (Lemma 2.1)

(θ(E/Kn), νn−1,n (θ(E/Kn−1))) = (νm ,n (θ(E/Km)) ∶ 0 ≤ m ≤ n) ,

and it is a principal ideal under (Na) (Lemma 2.2).
The goal of this article is to prove the following anticyclotomic analogue of the

“strong” main conjecture of Kurihara [14, Conjecture 0.3], which refines the “weak”
main conjecture of Mazur and Tate [15, Conjecture 3].

Theorem 1.1 Under the assumptions mentioned above, i.e., (Im),(Ram),(Spl),(Na),
and (Def), the theta elements over Km with 0 ≤ m ≤ n generate the initial Fitting ideal
of dual Selmer groups over Kn , i.e., we have equality of ideals of Λn

(θ(E/Kn), νn−1,n (θ(E/Kn−1)))2 = FittΛn (Sel(Kn , E[p∞])∨) ,

which is indeed a principal ideal, where Sel(Kn , E[p∞]) is the classical Selmer group of
E[p∞] over Kn and (−)∨ means the Pontryagin dual.

Since theta elements interpolate the square-roots of twisted Rankin–Selberg
L-values, it is natural that the square of the ideal generated by theta elements appears
in the equality.

The strategy of our proof follows that given in [11] and we also add some details
on the “p-destabilization” process and on the comparison of various anticyclotomic
Selmer groups of elliptic curves.

2 Bertolini–Darmon’s theta elements and anticyclotomic p-adic
L-functions

We quickly review the construction of Gross points of conductor pn , theta elements,
and anticyclotomic p-adic L-functions. See [4, 5, 10] for details.

2.1 Gross points

Let K be the imaginary quadratic field of odd discriminant −DK < −4. Define

ϑ ∶= DK −
√
−DK

2
so that OK = Z +Zϑ. Let BN− be the definite quaternion algebra over Q of discrim-
inant N−. Then there exists an embedding Ψ ∶ K ↪ BN− [20]. More explicitly, we
choose a K-basis (1, J) of BN− so that BN− = K ⊕ K ⋅ J such that β ∶= J2 ∈ Q× with
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Fitting ideals of Selmer groups 3

β < 0, J ⋅ t = t ⋅ J for all t ∈ K, β ∈ (Z×q)
2 for all q ∣ pN+, and β ∈ Z×q for all q ∣ DK . Fix

a square root
√

β ∈ Q of β. For a Z-module A, write Â = A⊗ Ẑ. Fix an isomorphism

i ∶= ∏ iq ∶ B̂(N−)
N− ≃ M2(A(N−∞))

as follows:
• For each finite place q ∣ N+p, the isomorphism iq ∶ BN− ,q ≃ M2(Qq) is defined by

iq(ϑ) = (trd(ϑ) −nrd(ϑ)
1 0 ), iq(J) =

√
β ⋅ (−1 trd(ϑ)

0 1 )

where trd and nrd are the reduced trace and the reduced norm on B, respectively.
• For each finite place q ∤ pN+, the isomorphism iq ∶ BN− ,q ≃ M2(Qq) is chosen so

that iq (OK ⊗Zq) ⊆ M2(Zq).
Under the fixed isomorphism i, for any rational prime q, the local Gross point
ςq ∈ B×N− ,q is defined as follows:
• ςq ∶= 1 in B×N− ,q for q ∤ pN+.

• ςq ∶= 1√
DK

⋅ (ϑ ϑ
1 1) ∈ GL2(Kq) = GL2(Qq) for q ∣ N+ with q = qq in OK .

• ς(n)p = (ϑ −1
1 0 ) ⋅ (pn 0

0 1) ∈ GL2(Kp) = GL2(Qp) where p = pp splits in K.

Let Ψ̂ ∶ K̂ ↪ B̂N− be the adelic version of Ψ. We define xn ∶ K̂× → B̂×N− by xn(a) =
Ψ̂(a) ⋅ ς(n) ∶= Ψ̂(a) ⋅ (ς(n)p ×∏q≠p ςq). The collection {xn(a) ∶ a ∈ K̂×} of points is
called the Gross points of conductor pn on B̂×N− . The fixed embedding K ↪ BN−

also induces an optimal embedding of On = Z + pnOK into the Eichler order BN− ∩
ς(n)R̂N+(ς(n))−1 where RN+ is the Eichler order of level N+ under the fixed isomor-
phism i.

2.2 Theta elements

Let f (z) = ∑n≥1 an qn ∈ S2(�0(N)) be the cuspidal newform of weight two with
rational Fourier coefficients corresponding to E via the modularity theorem [3]. Let
ϕ f ∶ B×N−/B̂×N−/R̂×N+ → C be the Jacquet–Langlands transfer of f. Since B×N−/B̂×N−/R̂×N+
is a finite set and f is a Hecke eigenform, we are able to and do normalize

ϕ f ∶ B×N−/B̂×N−/R̂×N+ → Zp ,

such that the image of ϕ f does not lie in pZp . This integral normalization is related
to the congruence ideals [9, 12, 16]. Let

θ̃n(E/K) = ∑
[a]∈Gn

ϕ f (xn(a)) ⋅ [a] ∈ Zp[Gn],

where Gn = K×/K̂×/Ô×n and [a] is the image of a ∈ K̂× in Gn . Then Bertolini–
Darmon’s theta element θ(E/Kn) of E over Kn is defined by the image of θ̃n(E/K)
in Λn
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Zp[Gn] �� Λn = Zp[Gal(Kn/K)]
θ̃n(E/K) � �� θ(E/Kn),

where the map is naturally induced from the quotient map Gn → Gal(Kn/K). It is
known that θ(E/Kn) interpolates “an half of ” L(E , χ, 1) where χ runs over characters
on Gal(Kn/K). See [5, Remark (iii) after Theorem A] for the precise meaning of “an
half of ”. Because θ(E/Kn) depends on the choice of Gross points, θ(E/Kn) is well-
defined only up to multiplication by Gal(Kn/K).

2.3 p-adic L-functions

Let α, β be the roots of the Hecke polynomial X2 − ap X + p of f at p. Since f is
ordinary at p, one of them, say α, is a p-adic unit.

The p-stabilization fα ∈ S2(�0(Np)) of f is defined by

fα(z) = f (z) − β ⋅ f (pz)

whose Up-eigenvalue is α. Then the theta element of fα over Kn is characterized by
the following relation:

θ( fα/Kn) =
1

αn ⋅ (θ(E/Kn) −
1
α
⋅ νn−1,n(θ(E/Kn−1))) .(2.1)

It is known that theta elements of E satisfies the three term relation (e.g., [6, Lemma
2.6])

πn+1,n (θ(E/Kn+1)) = ap ⋅ θ(E/Kn) − νn−1,n (θ(E/Kn−1))(2.2)

and the theta elements of fα satisfy the norm compatibility

πn+1,n (θ( fα/Kn+1)) = θ( fα/Kn).(2.3)

Let ι be the involution on Λn defined by inverting group-like elements, so we have

ι( ∑
σ∈Gal(Kn/K)

aσ ⋅ σ) = ∑
σ∈Gal(Kn/K)

aσ ⋅ σ−1 .

We define the anticyclotomic p-adic L-function of E by

Lp(E/K∞) = lim←,
n

(θ( fα/Kn) ⋅ ι(θ( fα/Kn))) ∈ Λ = lim←,
n

Λn .

This element is well-defined. The functional equation for Bertolini–Darmon’s theta
elements yields the equality of ideals of Λ (e.g., [1, Proposition 2.13], [2, Lemma 1.5])

(θ( fα/Kn)) = (ι(θ( fα/Kn))) .(2.4)

We prove two useful lemmas.

Lemma 2.1 We have an equality of ideals of Λn

(θ(E/Kn), νn−1,n (θ(E/Kn−1))) = (νm ,n (θ(E/Km)) ∶ 0 ≤ m ≤ n) .
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Proof From the three term relation (2.2), we have

νn−1,n (πn ,n−1 (θ(E/Kn))) = ap ⋅ νn−1,n (θ(E/Kn−1)) − νn−2,n (θ(E/Kn−2))

for n ≥ 2. Since νn−1,n (πn ,n−1 (θ(E/Kn))) = fn ⋅ θ(E/Kn) for some fn ∈ Λn , we have

νn−2,n (θ(E/Kn−2)) ∈ (θ(E/Kn), νn−1,n (θ(E/Kn−1))) ⊆ Λn .

In the same manner, we can obtain

νn−3,n−1 (θ(E/Kn−3)) ∈ (θ(E/Kn−1), νn−2,n−1 (θ(E/Kn−2))) ⊆ Λn−1 .

By taking νn−1,n , we have

νn−3,n (θ(E/Kn−3)) ∈ (νn−1,n (θ(E/Kn−1)) , νn−2,n (θ(E/Kn−2)))
⊆ (θ(E/Kn), νn−1,n (θ(E/Kn−1)))
⊆ Λn .

By applying this argument recursively, the conclusion follows. ∎

Lemma 2.2 Under (Spl) and (Na), we have an equality of ideals of Λn

(θ(E/Kn), νn−1,n (θ(E/Kn−1))) = (θ( fα/Kn)) .

Proof By the definition of the p-stabilization (2.1), we have one inclusion ⊇. Hence,
we focus on the opposite inclusion. By the interpolation formula of the anticyclotomic
p-adic L-functions [5, Theorem A] under (Spl), we have the comparison of (the
square-roots of) L-values

θ( fα/K) = (1 − 1
α
) ⋅ θ(E/K).

Under (Na), we have equality in Zp

(1 − 1
α
)
−1
⋅ θ( fα/K) = θ(E/K),

so we have (θ(E/K)) ⊆ (θ( fα/K)). In fact, they are the same ideal. From (2.1) and
(2.3), we have

θ( fα/K1) =
1
α
⋅ (θ(E/K1) −

1
α
⋅ ν0,1(θ(E/K)))

= 1
α
⋅ (θ(E/K1) −

1
α
⋅ ν0,1((1 − 1

α
)
−1
⋅ θ( fα/K)))

= 1
α
⋅ (θ(E/K1) −

1
α
⋅ (1 − 1

α
)
−1
⋅ ν0,1(π1,0(θ( fα/K1))))

= 1
α
⋅ (θ(E/K1) −

1
α
⋅ (1 − 1

α
)
−1
⋅ f1 ⋅ θ( fα/K1))

for some f1 ∈ Λ1. This shows that θ(E/K1) = g1 ⋅ θ( fα/K1) for some g1 ∈ Λ1.
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We suppose that θ(E/Kn−1) = gn−1 ⋅ θ( fα/Kn−1) for some gn−1 ∈ Λn−1.

θ( fα/Kn) =
1

αn ⋅ (θ(E/Kn) −
1
α
⋅ νn−1,n(θ(E/Kn−1)))

= 1
αn ⋅ (θ(E/Kn) −

1
α
⋅ νn−1,n(gn−1 ⋅ θ( fα/Kn−1)))

= 1
αn ⋅ (θ(E/Kn) −

1
α
⋅ gn−1 ⋅ νn−1,n(πn ,n−1(θ( fα/Kn))))

= 1
αn ⋅ (θ(E/K1) −

1
α
⋅ gn−1 ⋅ fn ⋅ θ( fα/Kn))

for some fn ∈ Λn . This shows that θ(E/Kn) = gn ⋅ θ( fα/Kn) for some gn ∈ Λn . By
induction, we have inclusion

(θ(E/Kn)) ⊆ (θ( fα/Kn)),

so we also have

(νn−1,n (θ(E/Kn−1))) ⊆ (νn−1,n (θ( fα/Kn−1))).

Since νn−1,n (θ( fα/Kn−1)) = fn ⋅ θ( fα/Kn), we have

(νn−1,n (θ( fα/Kn−1))) ⊆ (θ( fα/Kn)).

The conclusion follows. ∎

3 Comparison of Selmer groups

3.1 Local properties of Galois representations

Let ρ ∶ GQ → AutQp(V) = GL2(Qp) be the two-dimensional Galois representation
associated with E.
• Since E is good ordinary at p, we have

ρ∣GQp
∼ (χ−1

α ⋅ χcyc ∗
0 χα

)

where χα is the unramified character sending the arithmetic Frobenius at p to α.
• For � dividing N exactly, we also have

ρ∣GQ�
∼ (±χcyc ∗

0 ±1) .

For a rational prime v dividing N−p, we consider the following subspaces:
• For v = p, let F+V ⊆ V be the subspace on which the inertia subgroup Iv acts by

χcyc.
• For a rational prime v dividing N−, F+V ⊆ V be the subspace on which the inertia

subgroup Iv acts by χcyc or χcycτv where τv is the non-trivial unramified quadratic
character of GQv .
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Let L be an algebraic extension of K. For a prime w of L dividing N−p, we define the
ordinary local condition of V at w by

H1
ord(Lw , V) = ker (H1(Lw , V) → H1(Lw , V/F+V)) .

Denote by T = lim←,k
E[pk] the p-adic Tate module of E, so we have T ⊗Zp Qp = V ,

and by E[p∞] = lim,→k
E[pk] the p-power torsion points of E. Then the same local

conditions for T, T/pk T , E[p∞], and E[pk] are defined by propagation.

3.2 N−-ordinary (residual) Selmer groups

Let Σ be the finite set of places of Q consisting of the places dividing Np∞, and KΣ
be the maximal extension of K unramified outside Σ. We write
• Σ+ ⊆ Σ to be the subset of Σ consisting of the places not dividing p∞ which split in

K/Q, and
• Σ− ⊆ Σ to be the subset of Σ consisting of the places not dividing p∞ which are

inert in K/Q.
For a place w of K∞, we write w ∈ Σ± if w divides a rational prime � contained in
Σ±, respectively. For every k ≥ 1, we define the N−-ordinary (and N+-strict) Selmer
group of E[pk] SelN−(K∞, E[pk]) by the kernel of the map

H1(KΣ/K∞, E[pk]) → ∏
w∤Σ+

H1(K∞,w , E[pk]) × ∏
w∈Σ− or w∣p

H1(K∞,w , E[pk])
H1

ord(K∞,w , E[pk]) ,

and define SelN−(K∞, E[p∞]) = lim,→k
SelN−(K∞, E[pk]). This is the Selmer group

used in the bipartite Euler system argument [2, Definition 2.8].

3.3 Minimal and Greenberg Selmer groups

We follow the convention of [16, Section 3.1]. The minimal Selmer group
Selmin(K∞, E[p∞]) of E[p∞] is defined by the kernel of the map

H1(K∞, E[p∞]) → ∏
w∤p

H1(K∞,w , E[p∞]) ×∏
w∣p

H1(K∞,w , E[p∞])
H1

ord(K∞,w , E[p∞]) ,

and the Greenberg Selmer group SelGr(K∞, E[p∞]) of E[p∞] is defined by the
kernel of the map

H1(K∞, E[p∞]) → ∏
w∤p

H1(I∞,w , E[p∞]) ×∏
w∣p

H1(K∞,w , E[p∞])
H1

ord(K∞,w , E[p∞]) ,
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where I∞,w is the inertia subgroup of GK∞,w . Under (Ram), ρ is ramified at every
prime dividing N, so p does not divide any Tamagawa factors. Then by using [16,
Lemma 3.4], we have an isomorphism

Selmin(K∞, E[p∞]) ≃ SelGr(K∞, E[p∞]).(3.1)

3.4 The comparison

We recall the final displayed equation in the proof of [16, Proposition 3.6]:

0 �� SelN−(K∞ , E[pk]) �� Selmin(K∞ , E[p∞])[pk] �� ∏w
(E[p∞])GK∞,w

pk(E[p∞])GK∞,w

where w runs over the primes of K∞ dividing N+. The local conditions at primes
dividing N− of minimal Selmer groups and N−-ordinary Selmer groups coincide
since such primes split completely in K∞/K. Thus, we have inclusion

SelN−(K∞, E[pk]) ⊆ Selmin(K∞, E[p∞])[pk]

which is of finite index and is independent of k.

Proposition 3.1 If SelN−(K∞, E[p∞]) is Λ-cotorsion with vanishing of μ-invariant,
then Selmin(K∞, E[p∞]) is also Λ-cotorsion with vanishing of μ-invariant.

Proof We have SelN−(K∞, E[p∞])[p] = SelN−(K∞, E[p]) since N−-ordinary
Selmer groups of E[p∞] are defined as the injective limit of N−-ordinary Selmer
groups of E[pk]. By the assumption, SelN−(K∞, E[p]) is finite as noted in the proof
of [13, Corollary 2.3]. Since the inclusion SelN−(K∞, E[p]) ⊆ Selmin(K∞, E[p∞])[p]
is of finite index, Selmin(K∞, E[p∞])[p] is also finite. By the same reasoning, the
conclusion follows. ∎

Proposition 3.2 Under (Im), if Selmin(K∞, E[p∞]) is Λ-cotorsion, then Selmin(K∞,
E[p∞]) has no proper Λ-submodule of finite index. Thus, we have

charΛSelmin(K∞, E[p∞]) = FittΛSelmin(K∞, E[p∞]),
Selmin(K∞, E[p∞]) ≃ SelN−(K∞, E[p∞]).

Proof This follows from [7, Proposition 4.14], which covers the cyclotomic case
actually, but the argument generalizes to our setting as mentioned in the proof of
[16, Proposition 3.6]. ∎

The following corollary follows from (3.1) and the above two propositions.

Corollary 3.3 Under (Im) and (Ram), if SelN−(K∞, E[p∞]) is Λ-cotorsion with
vanishing of μ-invariant, we have isomorphisms

SelN−(K∞, E[p∞]) ≃ Selmin(K∞, E[p∞]) ≃ SelGr(K∞, E[p∞]).
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4 The proof of the main theorem via Iwasawa theory

We first gather some tools from Iwasawa theory and give a proof of Theorem 1.1.

4.1 Iwasawa theory

The anticyclotomic main conjecture for (E , p, K) is now completely known for our
setting.

Theorem 4.1 Under (Im),(Ram),(Spl),(Na), and (Def), we have the following state-
ments.
(1) Lp(E/K∞) is non-zero.
(2) μ(Lp(E/K∞)) = 0.
(3) SelN−(K∞, E[p∞]) is Λ-cotorsion with vanishing of μ-invariants.
(4) (Lp(E/K∞)) = charΛ (Sel(K∞, E[p∞])∨).

Proof
(1) It is proved in [18].
(2) It is proved in [19].
(3) This follows from (1), (2), and the Euler system divisibility

(Lp(E/K∞)) ⊆ charΛ (SelN−(K∞, E[p∞])∨)
obtained from the bipartite Euler system argument [2, 16]. Condition (Na)
is implicitly used in the Euler system argument. See [13, Assumption 1.1 and
Remark 1.4] for this issue.

(4) By using (3) and Corollary 3.3, we can identify SelN−(K∞, E[p∞]) with the
minimal Selmer group. By [7, Proposition 2.1], the minimal Selmer group also
coincides with the classical Selmer group. The opposite divisibility

(Lp(E/K∞)) ⊇ charΛ (Sel(K∞, E[p∞])∨)
follows from [17]. Condition (Spl) is needed only for this last statement to
invoke [17]. ∎

Corollary 4.2 Under (Im),(Ram),(Na), and (Def), the classical Selmer group
Sel(K∞, E[p∞]) has no proper Λ-submodule of finite index; thus,

charΛSel(K∞, E[p∞]) = FittΛSel(K∞, E[p∞]).

Proof By Theorem 4.1.(3), SelN−(K∞, E[p∞]) is Λ-cotorsion. By Proposition 3.1,
Selmin(K∞, E[p∞]) is also Λ-cotorsion. The conclusion follows from Proposition 3.2
and the identification of the minimal Selmer group and the classical Selmer group. ∎

We recall the control theorem.

Proposition 4.3 (Control theorem) Let ωn = ωn(X) = (1 + X)pn − 1 ∈ Zp⟦X⟧ ≃ Λ.
Under (Im), (Na), and (Def), the restriction map

Sel(Kn , E[p∞]) → Sel(K∞, E[p∞])[ωn]
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10 C.-H. Kim

is injective with the finite cokernel whose size is bounded independently of n. If we further
assume (Ram), then it is an isomorphism.

Proof See [4, Proposition 1.9] with the identifications of Selmer groups in Corol-
laries 3.3 and 4.2. ∎

4.2 The proof of Theorem 1.1

By the anticyclotomic main conjecture (Theorem 4.1), we have

(Lp(E/K∞)) = charΛ (Sel(K∞, E[p∞])∨) .

By Corollary 4.2, the above equality becomes

(Lp(E/K∞)) = FittΛ (Sel(K∞, E[p∞])∨)
Under the quotient map Λ → Λn = Λ/ωn , it becomes

((θ( fα/Kn) ⋅ ι(θ( fα/Kn)))) = FittΛn ((Sel(K∞, E[p∞])[ωn])∨)
since Fitting ideals are compatible with base change. By using the functional equation
of theta elements (2.4) and the control theorem (Proposition 4.3), we have

(θ( fα/Kn))2 = FittΛn (Sel(Kn , E[p∞])∨) .

Theorem 1.1 now follows from Lemma 2.2, and the ideal is principal thanks to the
above equality.
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