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Homotopy of Knots and the Alexander
Polynomial
David Austin and Dale Rolfsen

Abstract. Any knot in a 3-dimensional homology sphere is homotopic to a knot with trivial Alexander poly-
nomial.

1 Introduction

A knot K in a homology 3-sphere M has a well-defined symmetrized Alexander polynomial
∆K(t) in the ring Z[t±1] of Laurent polynomials. This polynomial is an invariant of the
ambient isotopy class of K in M. It is natural to ask whether the homotopy class [K] ∈
π1(M) imposes a constraint on the Alexander polynomial ∆K (t). In this note, we will
prove that there is no constraint.

Theorem 1 If K is a knot in a homology sphere M3, then K is homotopic to a knot K1 ⊂ M
with trivial Alexander polynomial: ∆K1 (t) = 1.

The homotopy may be assumed to fix a given basepoint. This is a consequence of a more
general result regarding Seifert forms. As is well-known, any oriented knot K in an oriented
homology sphere M3 is the boundary of an oriented surface F2 ⊂ M whose genus we call
g. Associated with F is the Seifert form V , which may be considered as a 2g × 2g matrix
with integer entries, once a basis for H1(F) is chosen.

Theorem 2 Let K, M, F and V be as above and W any 2g × 2g integral matrix such that
W −W T = V − V T, where V T is the transpose of V . Then K is homotopic in M to a knot
with Seifert form W .

According to Seifert [S], the classical knot polynomials are exactly those Laurent poly-
nomials p(t) with integer coefficients satisfying

p(1) = 1, p(1/t) = p(t).(1)

Corollary 3 Within any homotopy class of knots in a homology sphere, the set of Alexander
polynomials realized is exactly the set of integral Laurent polynomials satisfying (1).

Corollary 3 can be seen to follow from Theorem 2, or directly from Theorem 1 by using
the trick of adding a small local classical knot (by a homotopy). Freedman [F] proved that
any homology 3-sphere M is the boundary of a contractible topological 4-manifold W ,
although there may not be such a smooth 4-manifold. In addition, Freedman-Quinn [FQ]
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showed that a knot in M with trivial Alexander polynomial is topologically slice, so we have
the following application.

Corollary 4 Suppose that K is a knot in M, a homology 3-sphere which bounds the con-
tractible topological 4-manifold W . Then K is homotopic in M to a knot which bounds a
topologically locally-flat disk embedded in W .

In the following sections we give an application to computation of certain generalized
signatures, review basic definitions and, in the last section, prove Theorems 1 and 2. We
would like to thank the referee for correcting a mistake in the first version of this paper.

2 Application to SU(2)-Signatures

The original motivation for considering this question comes from a skein theoretic pre-
sentation of an invariant for K in M. In [A], the invariant γK is introduced by counting
SU(2)-representations of π1(M−K) with prescribed monodromy around a meridian of K,
so that

γK : IK → Z

is a continuous function from IK , the unit circle in the complex plane minus the square
roots of roots of∆K (t), into the integers. Two relations hold:

γK+ (α)− γK−(α) = H
(
−∆K+ (α2)∆K−(α2)

)
γK(1) = 4λ(M)

(2)

where H(z) is the Heaviside function (that is, H(z) = 1 if z ≥ 0 and H(z) = 0 if z < 0), and
λ(M) is the Casson invariant of M. Here K+ and K− denote knots in M which are identical,
except in a ball in which the oriented strings of the knot form a simple crossing which is
positive or negative, respectively, using the usual conventions. The transition K− ↔ K+

is realized by a homotopy of the knot in M, and indeed knot homotopy is generated by
such moves, together with ambient isotopy. Given a knot K ⊂ M, the knot K1 provided by
Theorem 1 can be used as the basis for an inductive calculation of γK .

Corollary 5 For a knot K in a homology sphere M, the skein relations (2) uniquely determine
the invariant γK .

3 Seifert Surfaces and the Alexander Polynomial

Suppose that M is an oriented homology 3-sphere, that is, a compact 3-manifold with
integral homology groups H∗(M) ∼= H∗(S3). Let K be a knot in M and let X denote the
complement of a tubular neighborhood of K in M. Then by Alexander duality, H1(X) ∼=
Z. The kernel of the Hurewicz map π1(X) → Z defines a covering X̃ → X whose deck
transformation group Aut(X̃) is infinite cyclic. Denoting a generator of Aut(X̃) by t , we
see that H1(X̃) is a Z[t±]-module, whose order defines the Alexander polynomial ∆K (t).
That is, ∆K (t) may be taken to be the determinant of a presentation matrix of H1(X̃) as a
Z[t±1]-module. See, for example, [M] or [R] for further details.
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A practical means of computing ∆K (t) is provided by a Seifert surface. We first recall
a construction (see [K]) for the reader’s convenience. Consider a map f : ∂X → S1 such
that the preimage of any point is the longitude of the knot K. Now remember that there are
natural correspondences H1(X) ∼= [X, S1] ∼= Z and H1(∂X) ∼= [∂X, S1] ∼= Z⊕ Z and that
we have the exact cohomology sequence

· · · → H1(X)→ H1(∂X)→ H2(X, ∂X)→ · · · .

This implies that our map f : ∂X → S1 extends to a smooth map f̄ : X → S1. Then
f̄−1(p), for some regular value p ∈ S1, is a 2-sided surface. Extending to the tubular neigh-
borhood of K and discarding superfluous components, we obtain a connected orientable
surface F2 ⊂ M with K = ∂F, called a Seifert surface for K.

There is a map H1(F) → H1(M − F) given by pushing a 1-cycle in F along the positive
normal bundle. We denote the image of a 1-cycle α by α+. The Seifert form associated to F
is the bilinear form:

V : H1(F)×H1(F)→ Z

V (α, β) = lk(α+, β)

where lk(·, ·) denotes the linking number of two 1-cycles in M. Once a basis is chosen for
H1(F), we may write V as a 2g × 2g matrix with integer coefficients.

Two important properties of the Seifert form are well known. First, V − V T is the
intersection form on H1(F) and is hence unimodular. This means that in a canonical (sym-
plectic) basis for H1(F),

V −V T =




0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0



≡
⊕

g

[
0 1
−1 0

]
.

This shows that the Seifert form is completely determined by its entries on and above the
diagonal.

Secondly, tV −V T , or equivalently, t1/2V − t−1/2V T , is a presentation matrix for H1(X̃)
as a Z[t±1]-module, and so

∆K (t) = det(t1/2V − t−1/2V T).

Example 1 In S3, the surface of Figure 1 has genus g and unknotted boundary.
In fact, if we choose the natural symplectic basis for H1(F), for this example

V =
⊕

g

[
0 0
−1 0

]
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Figure 1: A Seifert surface for the unknot.

so, of course,∆K (t) = 1.

Example 2 Suppose that K is a knot in S3 and M the result of 1/n surgery on K; that is,
M = S3 − N(K) ∪h (S1 × D2) where h : S1 × S1 → ∂N(K). If we let L = S1 × {0} ⊂ M,
then∆L = ∆K . Although it is by no means obvious, we will see that we can change L by a
homotopy within M so that the Alexander polynomial of the new knot is trivial.

4 Proof of Theorems 1 and 2

As before, let K be a knot in a homology 3-sphere M and choose a basepoint ∗ in K. If
F ⊂ M is a Seifert surface for K, then F has a 1-dimensional spine consisting of a bouquet
of disjoint simple loops based at ∗. A collapse of F to a neighborhood of the spine may be
covered by an ambient isotopy of M. This means that F is ambient isotopic (with ∗ fixed)
to a small disk with 2g ribbons, which we denote by R1, . . . ,R2g , attached to the boundary.

We now describe a move on the ribbons. Suppose that parts of Ri and R j are contained
in some 3-ball in M as shown in the left half of Figure 2. Consider the move that changes
the embedding to be as in the right side of the figure. This local move may change the
embedded surface F and the knot K and is generally not realizable by an ambient isotopy.
It is, however, realized by a homotopy of K in M, and in fact a regular homotopy of F. This
move was used by Kauffman [Ka], where it is called a pass equivalence; he noted that the
Arf invariant of a knot is unchanged by this move.

This pass equivalence move changes the Seifert form associated with F in a simple way.
We will let ri ∈ H1(F) be the cycle defined by Ri . We can assume that the collection {ri}
forms a canonical basis for H1(F). If we let V be the Seifert form before the move and V ′

the Seifert form after, then we have, if i 6= j

V ′(ri , r j) = V (ri, r j)± 1, V ′(r j , ri) = V (r j , ri)± 1

while all other entries in the Seifert form are unchanged.
If i = j the corresponding entry is changed by ±2. However, a different move, intro-

ducing a simple twist in the ribbon Ri has the effect of changing V (ri, ri) by ±1, and can
also be accomplished by a knot homotopy.
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Ri R j

Ri

R j

Figure 2: A move on ribbons.

Earlier we noted that in a canonical basis, the condition

V −V T =
⊕

g

[
0 1
−1 0

]

implies that the entries on or above the diagonal determine the Seifert form. The moves
described above have the effect of changing exactly one entry on or above the diagonal, by
±1. This means that given W , a 2g × 2g matrix with integer entries satisfying

W −W T =
⊕

g

[
0 1
−1 0

]
,

we may find a sequence of these moves to modify K and F by a homotopy so that the
Seifert form becomes W , and Theorem 2 follows. In particular, we may realize the form of
Example 1, and Theorem 1 is proved.

Remark on Genus One should note that, although the Seifert form may be modified rad-
ically by a homotopy, the size 2g × 2g of the form will not, in general, be reduced. Indeed,
within the homotopy class of K in M, a lower bound for the genus g is the algebraic genus.
For any element k in the commutator subgroup of a group G, we can define its algebraic
genus to be the minimal n for which there is an expression k =

∏n
i=1 xi yix

−1
i y−1

i , xi , yi ∈ G.
It is an easy observation that if K bounds a surface of genus g in M, then its homotopy class
[K] has an expression as a product of g commutators in π1(M).

References
[A] D. Austin, SU(2)-representations and the twisted signature of knots. In preparation.
[F] M. Freedman, The topology of four-dimensional manifolds. J. Differential Geom. 17(1982), 357–454.
[FQ] M. Freedman and F. Quinn, The Topology of 4-manifolds. Princeton University Press, 1990.
[Ka] L. Kauffman, Formal Knot Theory. Math. Notes 30, Princeton University Press, 1983.
[K] M. Kervaire, Les nœuds de dimensions supérieures. Bull. Soc. Math. France 93(1965), 225–271.

https://doi.org/10.4153/CMB-1999-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-031-6


262 David Austin and Dale Rolfsen

[M] J. W. Milnor, Infinite cyclic coverings. Topology of Manifolds (Michigan State University, 1967), Prindle
Weber Schmidt, Boston, 1968.

[R] D. Rolfsen, Knots and Links. Mathematics Lecture Series 7. Publish or Perish, 1976.
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