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Turbulent drag reduction (DR) through streamwise travelling waves of the spanwise
wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part
1, wall-resolved large-eddy simulations in a channel flow are conducted to examine
how the frequency and wavenumber of the travelling wave influence the DR at friction
Reynolds numbers Reτ = 951 and 4000. The actuation parameter space is restricted to the
inner-scaled actuation (ISA) pathway, where DR is achieved through direct attenuation of
the near-wall scales. The level of turbulence attenuation, hence DR, is found to change
with the near-wall Stokes layer protrusion height �0.01. A range of frequencies is identified
where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation
and thickening the viscous sublayer; in this range, the DR increases as �0.01 increases up
to 30 viscous units. Outside this range, the strong Stokes shear strain enhances near-wall
turbulence generation leading to a drop in DR with increasing �0.01. We further find that,
within our parameter and Reynolds number space, the ISA pathway has a power cost that
always exceeds any DR savings. This motivates the study of the outer-scaled actuation
pathway in Part 2, where DR is achieved through actuating the outer-scaled motions.
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1. Introduction

Flow control aims to reduce drag on vehicles, enhance their efficiency, manoeuvrability
and possibly modify the heat transfer. Techniques for flow control cover a variety of fields,
and have been extensively reviewed (White & Mungal 2008; Dean & Bhushan 2010;
Luchini & Quadrio 2022). Flow control devices are usually divided into two groups:
passive devices that are fixed in place and do not change their shape or function in
time, such as vortex generators (Lin 2002; Koike, Nagayoshi & Hamamoto 2004; Aider,
Beaudoin & Wesfreid 2010) and riblets (García-Mayoral & Jiménez 2011, 2012; Endrikat
et al. 2021a,b; Modesti et al. 2021; Endrikat et al. 2022; Rouhi et al. 2022), and active
devices that can be actuated in some way, such as targeted blowing (Abbassi et al. 2017)
or intermittent blowing and suction (Segawa et al. 2007; Hasegawa & Kasagi 2011;
Yamamoto, Hasegawa & Kasagi 2013; Schatzman et al. 2014; Kametani et al. 2015).

Here, we are interested in a particular form of active control for drag reduction (DR) in
wall-bounded flows based on spanwise oscillation of the surface, leading to the generation
of a streamwise travelling wave (Jung, Mangiavacchi & Akhavan 1992; Quadrio, Ricco &
Viotti 2009; Viotti, Quadrio & Luchini 2009; Quadrio 2011; Quadrio & Ricco 2011; Gatti
& Quadrio 2013, 2016; Ricco, Skote & Leschziner 2021). The wall motion is described by

ws(x, t) = A sin (κxx − ωt), (1.1)

where ws is the instantaneous spanwise velocity of the wall surface, A is the amplitude
of the spanwise forcing, ω is the angular frequency of oscillation and κx = 2π/λ is the
wavenumber of the travelling wave with wavelength λ. Negative frequencies result in
an upstream travelling wave, and vice versa. With an appropriate choice of A, κx and ω,
turbulent DR beyond 40 % can be achieved (Quadrio & Sibilla 2000; Quadrio et al. 2009;
Hurst, Yang & Chung 2014; Gatti & Quadrio 2016). The actuation mechanism (1.1) has
been mostly investigated in a turbulent channel flow. So far, the only studies that investigate
this mechanism in a turbulent boundary layer are the numerical work by Skote (2022), and
the experimental work by Bird, Santer & Morrison (2018) and Chandran et al. (2023) in
Part 2.

The amount of DR is defined as

DR = Cf0 − Cf

Cf0
, (1.2)

where Cf ≡ 2τw/(ρU2
b,∞) and Cf0 ≡ 2τw0/(ρU2

b,∞) are the skin-friction coefficients
of the drag-reduced flow (with wall-shear stress τw) and the non-actuated flow (with
wall-shear stress τw0) and ρ is the fluid density. The overbar in τw and τw0 indicates
averaging over the homogeneous directions and time. In a fully developed channel flow
(considered here in Part 1), the averaging dimensions are the streamwise and spanwise
directions, as well as time, and in a boundary layer (considered in Part 2), the averaging
dimensions are the spanwise direction and time. Furthermore, in a channel flow the
drag-reduced flow and the non-actuated flow are exposed to the same bulk velocity Ub
(present Part 1, Quadrio et al. 2009; Gatti & Quadrio 2013) or pressure gradient (Quadrio
& Ricco 2011; Ricco et al. 2012), however, in a boundary layer the two flows are exposed
to the same free-stream velocity U∞ (Part 2, Bird et al. 2018). Accordingly, there are two
friction velocities uτ ≡ √

τw/ρ and uτ0 ≡ √
τw0/ρ, corresponding to the drag-reduced and

non-actuated cases, respectively, leading to two choices of normalisation. In the current
study, following Gatti & Quadrio (2016), the viscous-scaled quantities that are normalised
by uτ0 are denoted by the ‘+’ superscript, and those normalised by uτ are denoted by
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LES of turbulent drag reduction by spanwise wall forcing

the ‘∗’ superscript. The friction Reynolds number Reτ in a channel flow (Part 1) is
defined based on uτ0 and the channel half-height h (Reτ ≡ uτ0h/ν). In a boundary layer
(Part 2), Reτ is defined based on uτ0 and the boundary layer thickness δ (Reτ ≡ uτ0δ/ν).
By dimensional analysis (Gatti & Quadrio 2016; Marusic et al. 2021) we obtain

DR = DR
(
κ+

x , ω+, A+, Reτ

)
, (1.3)

where κ+
x = κxν/uτ0, ω+ = ων/u2

τ0
and A+ = A/uτ0 .

Quadrio et al. (2009) studied this flow control problem using direct numerical
simulations (DNS) of a turbulent channel flow. Their study acted as a proof of concept
for (1.1) to demonstrate that the introduction of a streamwise travelling wave achieves
higher DR than a purely oscillating wall mechanism (κx = 0). They fixed Reτ = 200
and A+ = 12, and populated a map of DR(ω+, κ+

x ) for 0 ≤ κ+
x ≤ +0.04 and −0.3 ≤

ω+ ≤ +0.3. Gatti & Quadrio (2016) extended this work to Reτ = 1000 and a broader
range of actuation parameters (0 ≤ κ+

x ≤ +0.05, −0.6 ≤ ω+ ≤ +0.6 and 3 ≤ A+ ≤ 15)
to construct isosurfaces of DR(ω+, κ+

x , A+) in the three-dimensional actuation parameter
space (figure 4 in Gatti & Quadrio 2016). They observed that this type of actuation
appears to modify the mean velocity profile through a Reynolds number-invariant additive
constant, 	B, in the logarithmic region as

U∗ = 1
κ

ln( y∗) + B + 	B, (1.4)

where U∗ ≡ U/uτ and y∗ ≡ yuτ /ν are the viscous-scaled velocity and wall distance, κ and
B are the von Kármán and additive constants for the non-actuated channel. This behaviour
in U∗ implies that the actuation is primarily acting on turbulent structures in the near-wall
region and that the outer flow effectively perceives the modified inner layer as one that
has a lower stress. This behaviour is similar to the flows over riblets and rough surfaces
(Chan et al. 2015; Squire et al. 2016; Endrikat et al. 2021b) and Gatti & Quadrio (2016)
used this assumption to propose the modified friction law (hereafter called GQ’s model)
given by

	B =
√

2
Cf0

[
(1 − DR)−1/2 − 1

]
− 1

2κ
ln (1 − DR). (1.5)

In this framework, the Reynolds number dependence of the flow is captured by Cf0 ,
provided that there is a well-defined logarithmic region in the mean velocity profile. The
behaviour of the log region is modified by the actuation solely through the offset parameter
	B; this parameter is independent of Reynolds number and can be parameterised by the
dimensionless actuation parameters so that 	B = 	B(κ∗

x , ω∗, A∗). The model therefore
predicts DR at arbitrarily high Reynolds numbers for a given set of actuation parameters.
The model also predicts that DR decreases monotonically with increasing Reτ , regardless
of the actuation parameters. To date, the predictions from this model have been found
to be largely consistent with the existing low-Reynolds-number simulations of travelling
wave DR (Baron & Quadrio 1995; Yudhistira & Skote 2011; Ricco et al. 2012; Touber &
Leschziner 2012; Hurst et al. 2014).

The findings reported so far are based on DNS of a turbulent channel flow. Experiments
have also reported the efficacy of spanwise wall forcing for turbulent DR. The
experimental set-ups are mainly turbulent boundary layer (Choi, DeBisschop & Clayton
1998; Choi & Clayton 2001; Ricco & Wu 2004; Bird et al. 2018) or pipe flow (Choi
& Graham 1998; Auteri et al. 2010) configurations. The experiments mostly consider
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uniform spanwise wall oscillation (i.e. κx = 0 in 1.1). The exceptions are Auteri et al.
(2010) and Bird et al. (2018) that attempt to mimic the travelling wave motion. Auteri
et al. (2010) subdivide the pipe wall into thin slabs that rotate independently, and Bird
et al. (2018) pneumatically deform a compliant structure. The experimental findings are
consistent with the DNS findings. They report DR between 21 % (Bird et al. 2018) to 45 %
(Choi & Clayton 2001). They also observe the shift in the log region (1.4) that underlies
GQ’s model (Choi et al. 1998; Choi & Clayton 2001; Ricco & Wu 2004). The DNS and
experimental studies reviewed so far consider Reτ � 1500.

Marusic et al. (2021) recently investigated the parameter space (1.3) at much
higher Reynolds numbers by conducting experiments up to Reτ = 12 800 and
wall-resolved large-eddy simulations (LES) up to Reτ = 2000. By covering such a
large-Reynolds-number range, they were able to explore the increasing contribution of
turbulent scales in the log region and beyond to the total drag (Marusic, Mathis &
Hutchins 2010; Smits, McKeon & Marusic 2011; Mathis et al. 2013; Chandran, Monty
& Marusic 2020). In contrast to previous studies, the DR was found to occur via two
distinct physical pathways. The first pathway, which Marusic et al. (2021) referred to
as the ‘small-eddy’ actuation strategy, was applied in previous studies. It will be more
aptly termed inner-scaled actuation (ISA) in the present work because DR is achieved
by actuating at frequencies associated with the near-wall cycle and the near-wall peak in
turbulent kinetic energy. For example, ω+ ≈ −0.06 equates to a time period of oscillation
of T+

osc = 2π/|ω+| = 100. The DR obtained under this pathway was found to follow GQ’s
model. The second pathway, which Marusic et al. (2021) referred to as the ‘large-eddy’
actuation strategy, was new. It involved actuating at frequencies comparable to those of
the inertia-carrying eddies in the logarithmic region and beyond (T+

osc � 100). It will
be more aptly termed outer-scaled actuation (OSA) in the present work. Unlike the ISA
pathway, the OSA pathway achieves DR that increases with Reynolds number, and requires
significantly less input power due to the lower actuation frequencies that are required to
target the inertia-carrying eddies. Marusic et al. (2021) considered actuation frequencies
with T+

osc < 350 to be primarily along the ISA pathway, and those with T+
osc > 350 to be

primarily along the OSA pathway.
In conjunction with Part 2 (Chandran et al. 2023), we investigate the DR (1.3) over

a range of parameters that have not been investigated previously, covering both the ISA
and OSA pathways, and explain the physics behind the variation of DR with Reτ , κ+

x and
ω+. In this Part 1, we focus on the ISA pathway and use wall-resolved LES to extend the
parametric study of Gatti & Quadrio (2016) at Reτ ≈ 1000, generating a new map of DR
at Reτ = 4000 over 0.002 ≤ κ+

x ≤ 0.02 and −0.2 ≤ ω+ ≤ +0.2 for A+ = 12. Accurately
populating the DR map required a careful study of the LES set-up in terms of the
subgrid-scale (SGS) model, grid and computational domain size, to ensure the accuracy of
the simulations and computational tractability. The resulting map at Reτ = 4000 is used
to evaluate the predictive accuracy of GQ’s model, and by using turbulence statistics,
triple decompositions, spectrograms and flow visualisations, we identify and explain the
regimes of the flow at different regions of the DR map. We find that the flow regimes
change with the extent of the Stokes layer generated by the surface motion. As the
Stokes layer grows in size, up to the optimal range of 20–30 viscous units, the near-wall
turbulence is damped, and there is a corresponding increase in DR. In contrast, growth
beyond 30 viscous units amplifies the near-wall turbulence, leading to a decrease in DR.
Finally, we examine the power cost at Reτ = 4000 over the range of parameters considered
here.
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Figure 1. Various domain sizes for LES in a channel configuration: (a) medium 2.0h × 0.6h, (b) large 4.0h ×
1.2h and (c) full 6.6h × 3.2h. For each domain size, the instantaneous streamwise velocity (u) field is visualised
at about 15 viscous units above the bottom wall. The grey-shaded zones indicate the wall heights up to which
the flow is resolved for each domain size (yres 	 0.4Lz, Chung et al. 2015).

2. Numerical flow set-up

2.1. Governing equations and solution method
We solve the filtered equations for a channel flow (figure 1) of an incompressible fluid with
constant density ρ and kinematic viscosity ν,

∂ ûi

∂xi
= 0,

∂ ûi

∂t
+ ∂ ûiûj

∂xj
= − 1

ρ

∂ p̂
∂xi

+ ν
∂2ûi

∂x2
j

− ∂τij

∂xj
+ Gδi1. (2.1a,b)

The hat ̂(· · · ) indicates the filtered quantity; x1, x2 and x3 (also referred to as x, y and z)
are the streamwise, wall-normal and spanwise directions, corresponding to the velocity
components û1, û2 and û3 (or û, v̂ and ŵ), respectively. The pressure gradient in (2.1b) is
decomposed into the domain and the time-averaged driving part −ρG, and the periodic
(fluctuating) part ∂ p̂/∂xi. By averaging (2.1b) in time and over the entire fluid domain,
we obtain G = τw/(ρh) = u2

τ /h, where h is the (open) channel height; G is adjusted
based on a target flow rate (i.e. target bulk Reynolds number Reb ≡ Ubh/ν) that is
matched between the actuated and non-actuated cases. The unresolved SGS stresses τij =
ûiuj − ûiûj are modelled using the dynamic Smagorinsky model (Germano et al. 1991)
incorporating Lilly’s improvement (Lilly 1992). For the model coefficient, we perform
xz-plane averaging of the inner products of the identity stresses (Eq. (11) in Lilly 1992).

Equations (2.1a,b) are solved using an LES extension of the DNS code by Chung,
Monty & Ooi (2014). We perform wall-resolved LES in a channel flow (figure 1) by
applying periodic boundary conditions in the streamwise and spanwise directions. At the
bottom wall we apply û = v̂ = 0 and ŵ(x, z, t) = A sin(κxx − ωt), and at the top boundary
we apply free-slip and impermeable conditions (∂ û/∂y = ∂ŵ/∂y = v̂ = 0). The present
channel flow, with free-slip top boundary conditions and domain height h, is also called
open channel flow (Yuan & Piomelli 2014; MacDonald et al. 2017; Endrikat et al. 2021b).
This configuration is different to the open channel known in hydraulics, as a channel filled
with water with the top wavy surface interacting with air (Chaudhry 2008; Yoshimura &
Fujita 2020). The present open channel configuration cannot be replicated experimentally.
However, its flow physics and statistics up to the logarithmic region are very similar to
the conventional channel flow with no-slip top boundary conditions and domain height
2h (also known as full channel flow). The advantage of open channel flow is its lower
computational cost compared with the full channel flow. As a result, it is employed to
study turbulent flows over complex surfaces (Yuan & Piomelli 2014; MacDonald et al.
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Figure 2. (a) Profiles of the mean velocity U∗ for the LES of the actuated case at Reτ = 4000, A+ = 12, κ+
x =

0.02 and ω+ = −0.05 (blue solid line, blue dashed-dotted line), and LES of the non-actuated case at Reτ =
4000 (black solid line, black dashed-dotted line). The viscous-scaled quantities U∗ and y∗ are scaled by the
actual values of uτ for each case. The resolved portion of each LES profile ( y∗ � 750) is shown with a solid
line, and the unresolved portion ( y∗ � 750) is shown with a dashed-dotted line. The unresolved portion of
each profile appears as a fictitious wake and is due to the medium-domain size (figure 1a). We reconstruct the
unresolved portion using the composite profile for channel flow by Nagib & Chauhan (2008) (the dashed lines
for y∗ � 750). We compare the resolved (black solid line) and reconstructed (black dashed line) portions of the
non-actuated LES with the DNS of Lozano-Durán & Jiménez (2014) at Reτ = 4200 (�, red). (b) Difference
between the actuated and non-actuated profiles 	U∗ = U∗

act − U∗
non-act (blue and black profiles in a) up to the

maximum resolved height y∗
res 	 750. To reconstruct the actuated profile beyond y∗

res 	 750 using the composite
profile suggested by Nagib & Chauhan (2008), we set the log-law shift 	B as the value of 	U∗ at y∗

res.

2017; Rouhi, Chung & Hutchins 2019; Endrikat et al. 2021b). Yao, Chen & Hussain
(2022) compare DNS of open channel flow with full channel flow up to Reτ = 2000.
At Reτ = 2000, the mean velocity profiles between open channel flow and full channel
flow yield identical diagnostic functions y+ dU+/dy+ up to y+ 	 400 (their figure 2).
Furthermore, the turbulent stresses are similar between the two channel configurations
(their figure 3). In figure 2(a) we obtain good agreement in the mean velocity profiles
between our LES of open channel flow at Reτ = 4000 (black solid line) and DNS of
full channel flow at Reτ = 4200 by Lozano-Durán & Jiménez (2014) (filled squares),
with only 1 % difference in Cf . Therefore, for our considered range of Reτ ≤ 4000 with
the ISA pathway, we speculate marginal differences between open channel flow and full
channel flow. Similarly, we speculate small differences between open channel flow and
the boundary layer when we focus on the ISA pathway. This is supported by extensive
comparisons of the channel flow with the boundary layer (Mathis et al. 2009; Monty et al.
2009; Chin, Monty & Ooi 2014). The two configurations have identical mean velocity
profiles up to the end of the logarithmic region (see figure 1a in Monty et al. 2009). Up
to the fourth-order statistics are in agreement between the two configurations to a height
of half the boundary layer thickness (half the channel height), e.g. see figure 3 in Mathis
et al. (2009). However, differences appear in the outer region due to the differences in the
large-scale motions. Nevertheless, in the ISA pathway these large-scale motions do not
contribute to DR.

2.2. Simulation cases
Table 1 lists all the simulations completed for Reτ = 951 and Reτ = 4000, where Reτ ≡
uτ0h/ν represents the friction Reynolds number of the non-actuated case. At each Reτ , a
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parametric sweep of 7 × 8 combinations of streamwise wavenumber (κ+
x ) and oscillation

frequency (ω+) is conducted over 0.00238 ≤ κ+
x ≤ 0.02 and −0.2 ≤ ω+ ≤ +0.2. The

spanwise velocity amplitude is fixed at A+ = 12. The seven non-zero values of ω+ give
the oscillation time periods T+

osc = 126, 63, 42 and 31 (all within the ISA pathway), and
ω+ = 0 corresponds to a time-invariant standing wave in the streamwise direction. In
table 1, N/A denotes the specifications of the non-actuated simulation that serves as the
reference case for calculating DR. For each actuated case, DR is computed by matching
the bulk Reynolds number Reb = Ubh/ν between the actuated and non-actuated cases
and substituting the respective values of Cf and Cf0 into (1.2). We consider matched
bulk Reynolds numbers Reb = 19 700 and 94 450, which correspond to Reτ = 951 and
4000 for the non-actuated channel flow. Quadrio & Ricco (2011) and Ricco et al. (2012)
compute Cf and Cf0 at matched Reτ (instead of matched Reb) by driving the actuated and
non-actuated cases with a constant pressure gradient. Several differences exist between
matching Reb (constant flow rate) and matching Reτ (constant pressure gradient); see
Quadrio & Ricco (2011), Quadrio (2011) and Ricco et al. (2012). With matched Reb,
Cf and Cf0 are obtained at different Reτ . However, for our considered parameter space,
the maximum DR is about 30 %, which leads to a maximum deviation of about 16 %
in Reτ between Cf and Cf0 . Another source of difference between matched Reb and
matched Reτ is in the actuation amplitude A (1.1). With constant A+ = 12, A∗ = 12 for
the actuated cases with matched Reτ . However, with matched Reb, A∗ > 12 when DR > 0,
and vice versa. Nevertheless, DR weakly depends on A∗ � 12 (Quadrio et al. 2009; Gatti
& Quadrio 2016; Chandran et al. 2023). Overall, we speculate marginal differences in DR
between matched Reb and matched Reτ for our parameter space. According to Frohnapfel,
Hasegawa & Quadrio (2012), in internal flows, operation of a drag-reducing mechanism
with matched Reb compared with the non-actuated case, saves the pumping energy but
maintains the flow rate. On the other hand, operation with matched Reτ maintains the
pumping energy but increases the flow rate, hence reducing the time to transport fluid
along the duct. Depending on the application, saving both energy and time could be
important. Frohnapfel et al. (2012) propose that operation of a drag-reducing mechanism
with matched power input (τwUb = const.) leads to simultaneous saving of pumping
energy (due to the reduction in τw) and time (due to the increase in Ub).

The grid resolutions were chosen based on extensive validation studies as presented in
Appendices A and B. In these appendices we compare our LES results with DNS data
of Gatti & Quadrio (2016) at Reτ ≈ 1000, experimental data of Marusic et al. (2021)
at Reτ = 6000 and our self-generated DNS data at Reτ = 590. For DR and the mean
velocity profile, we used the same viscous-scaled grid resolution at Reτ = 951 and 4000,
corresponding to the streamwise and spanwise grid sizes of Δ+

x × Δ+
z 	 21 × 31 (the first

seven rows at each Reτ in table 1). At this grid resolution, the difference in DR between
the LES and DNS was found to be within 2 %, and similarly good agreement was found for
the mean velocity profile. However, for the Reynolds stresses and spectra at Reτ = 4000,
we used a finer grid resolution with Δ+

x × Δ+
z 	 14 × 21 (the last two rows in table 1).

Our nominal LES filter width Δ+ = (Δ+
x Δ+

y Δ+
z )1/3 is 7 � Δ+ � 34 for the coarser grid

and 5 � Δ+ � 22 for the finer grid. However, given our anisotropic grid, we estimate
our effective filter width from the two-dimensional energy spectrograms (figure 16e, f ).
Our maximum filter width is in the spanwise direction and is about 50 and 35 viscous
units for the coarser and finer grids, respectively, equivalent to the cutoff wavenumbers
k+
	z

	 0.12 and 0.18. These wavenumbers are 6 and 9 times larger than our maximum
actuation wavenumber κ+

x = 0.02. We estimate our cutoff frequency from Taylor’s frozen
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turbulence hypothesis (Taylor 1938). The most challenging zone in terms of resolution is
the buffer region (y+ 	 10) with the smallest energetic eddies. If we take the convective
speed of 10uτ0 in this region, our cutoff frequencies are ω+

	z
	 1.2 and 1.8 for the coarser

and finer grids, respectively, which are 6 and 9 times larger than our maximum actuation
frequency ω+ = ±0.2.

In terms of the domain size, the cases at Reτ = 951 used a full domain with Lx × Lz 	
6.6h × 3.2h (figure 1c), which is sufficiently large to resolve the first- and second-order
statistics across the entire channel (Lozano-Durán & Jiménez 2014). However, at Reτ =
4000 each full-domain calculation is about 500 times more expensive than that at Reτ =
951, and so the domain size was reduced to Lx × Lz 	 2.0h × 0.6h (figure 1a). As a
consequence, the flow is only resolved up to a fraction of the channel height y+

res 	 0.4L+
z

(Chung et al. 2015), shown by the grey-shaded zones in figure 1. For a reduced-domain
calculation, the user decides the resolved height y+

res, with the constraint that it must
fall somewhere in the logarithmic region. Then the domain size is obtained from the
prescriptions of Chung et al. (2015) and MacDonald et al. (2017). For the travelling wave
actuation (1.1), the prescriptions are L+

z 	 2.5y+
res, L+

x � max(3L+
z , 1000, λ+), where λ

is the travelling wavelength. MacDonald et al. (2017, 2018) used the reduced-domain
approach with 60 � y+

res � 250 for turbulent flows over roughness. Endrikat et al. (2021b)
used the same approach with y+

res 	 100 for turbulent flows over riblets. Jiménez & Moin
(1991) who used this approach for the first time resolved the flow up to y+

res 	 80. They
named this approach ‘minimal flow unit’. Here, with Lx × Lz 	 2.0h × 0.6h (figure 1a)
at Reτ = 4000, we resolve a substantial fraction of the inner layer up to y+

res 	 1000.
Therefore, we name our reduced domain the ‘medium domain’ to highlight its relatively
larger size compared with the minimal flow unit. Gatti & Quadrio (2016) also used the
medium-domain size of Lx × Lz 	 1.4h × 0.7h with y+

res 	 250 to study the travelling
wave (1.1). In Appendix C we assess the suitability of the medium-domain size (figure 1a)
by comparing the results with those obtained using a larger domain size (figure 1b) for
selected cases from table 1.

2.3. Calculation of the skin-friction coefficient

To compute DR (1.2), we need the skin-friction coefficient Cf ≡ 2τw/(ρU2
b) ≡ 2/U∗

b
2 for

both the actuated and non-actuated cases. Here, U∗
b = ∫ h∗

0 U∗ dy∗/h∗ is the viscous-scaled
bulk velocity. For the cases at Reτ = 951 with the full-domain size, the U∗ profile is
resolved across the whole channel and U∗

b can be found directly. However, for the cases
at Reτ = 4000 with the medium-domain size, the U∗ profile is resolved only up to
y∗

res 	 750–1000. Two of these high-Reynolds-number profiles are shown in figure 2(a):
the actuated case with A+ = 12, κ+

x = 0.02 and ω+ = −0.05 (blue lines), and the
non-actuated case (black lines). The resolved portion of the LES profile below y∗

res is
shown with a solid line, and the unresolved portion above y∗

res with a dashed-dotted line.
We also overlay the DNS of the non-actuated full-domain channel flow at Reτ = 4200 by
Lozano-Durán & Jiménez (2014) (red squares). For the non-actuated LES, the resolved
portion up to y∗

res 	 1000 (solid black line) accurately reproduces the non-actuated DNS.
However, the unresolved portion beyond y∗

res (black dashed-dotted line) departs from the
non-actuated DNS due to the reduced-domain size.

This issue has been addressed previously by Chung et al. (2015), MacDonald et al.
(2017), Endrikat et al. (2021a) and Endrikat et al. (2021b). For the accurate prediction of
U∗

b , hence Cf , it was found that the resolved height y∗
res must fall inside the logarithmic
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region, and it needs to be larger than the extent of the disturbed flow due to the surface
modification. If y∗

res satisfies these criteria, the U∗ profile is resolved up to a portion of
the log region, similar to the LES cases shown in figure 2(a). Beyond y∗

res, the unresolved
portion of the log region and the outer region is assumed to be universal and so it can be
reconstructed based on previous work. Here, we reconstruct the unresolved portions using
the composite profile for the full-domain channel flow (Nagib & Chauhan 2008).

Figure 2(a) demonstrates that for the non-actuated case at Reτ = 4000, we obtain
good agreement between the reconstructed profile for LES (dashed black line) and
DNS. Therefore, to obtain U∗

b , we integrate the resolved U∗ profile up to y∗
res and the

reconstructed profile beyond y∗
res. We find that Cf0 using this corrected U∗

b is only 1 %
different than the value obtained from DNS.

We follow the same approach to reconstruct the actuated U∗ profile (dashed blue line
in figure 2a). However, we need to add the log-law shift 	B in the composite profile to
make the resolved and reconstructed profiles continuous at y∗

res. We find 	B by plotting
the velocity difference between the actuated and non-actuated profiles 	U∗ = U∗

act −
U∗

non-actuated (figure 2b). As seen in figure 2(b), 	U∗ reaches almost a plateau beyond
y∗ 	 100. We set 	B as the value of 	U∗ at y∗

res 	 750. Note that since the actuated uτ

is smaller than the non-actuated uτo , y∗
res for the actuated case is about 750 but, for the

non-actuated case, is about 1000. We calculate U∗
b for the actuated case by integrating the

resolved portion of the profile up to y∗
res (solid blue line) and the reconstructed portion

beyond y∗
res (dashed blue line).

Another way of calculating U∗
b (hence, Cf ) from the reduced domain is to integrate the

composite profile from y = 0 to h (e.g. see 4.2 in MacDonald, Hutchins & Chung 2019),
which assumes that the viscous sublayer and buffer layer make a negligible contribution
to U∗

b . We believe that our present approach is more accurate as it considers the complex
variation of U∗ in the viscous sublayer and buffer layer. We only use the composite profile
in the log region and beyond.

3. Results

3.1. Drag reduction map as a function of frequency and wavelength
Figure 3(a,b) display the maps of DR(ω+, κ+

x ) at Reτ = 951 and 4000 from the
computations listed in table 1. At each Reτ , we have 56 DR data points. To generate the
maps, we perform bilinear interpolation of our DR data points onto a uniform 20 × 20
grid over the parameter space 0 ≤ κ+

x ≤ 0.02 and −0.2 ≤ ω+ ≤ +0.2. At Reτ = 951, the
maximum DR of 35.4 % at (ω+, κ+

x ) = (0.05, 0.021) is in close agreement with the DNS
of Gatti & Quadrio (2016) at Reτ 	 950, where the maximum DR was found to be 38.8 %
at (ω+, κ+

x ) = (0.05, 0.0195). At Reτ = 4000, the maximum DR decreases to 27.5 % at
the same actuation parameters (ω+, κ+

x ) = (0.05, 0.021). At each Reynolds number, DR
changes more drastically by changing ω+ than by changing κ+

x .
When κ+

x = 0, there is no travelling wave (plane wall oscillation), and the variation of
the DR is symmetric between ω+ < 0 and ω+ > 0. In this case, two equal local maxima
(at ω+ 	 ±0.05) and a local minimum (at ω = 0) emerge. When κ+

x > 0, a travelling wave
is generated, and the variation of DR is asymmetric between ω+ < 0 and ω+ > 0. In this
case, at each κ+

x only one local maximum (blue dashed-dotted curve in figure 3) and one
local minimum (black dashed curve in figure 3) appear in the DR. These observations are
in agreement with Quadrio et al. (2009) and Gatti & Quadrio (2016). Overall, within our
parameter space, the map of DR consists of three distinct regions. Region I to the left of the
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Figure 3. (a,b) Maps of DR for A+ = 12 at (a) Reτ = 951 and (b) Reτ = 4000. The local maximum DR (blue
dashed-dotted line) and the local minimum DR (black dashed line) for κ+

x > 0 are indicated for clarity. We
label the region on the left-hand side of the blue dashed-dotted line with I, between the blue dashed-dotted
line and the black dashed line with II and the right-hand side of the black dashed line with III. (c) Map of the
difference in DR between Reτ = 4000 and Reτ = 951. (d) Map of the difference in DR between Reτ = 4000
and GQ’s prediction (Gatti & Quadrio 2016) at the same Reynolds number. In plots (a–d) the contour fields
and the contour lines show the same quantity. For plots (a,b), the contour lines grow from −20 % to 40 % and,
for (c,d), the contour lines grow from −7 % to +7 %.

local maximum DR (blue dashed-dotted curve) where ω+ � 0 (upstream travelling wave);
in this region DR > 0. Region II represents the crossover from the local maximum to the
local minimum DR (between the blue dashed-dotted curve and the black dashed curve).
For κ+

x � 0.007, the local minimum DR is positive, however, for κ+
x � 0.007, the local

minimum DR becomes negative (hence, a drag increase). Increase in κ+
x beyond 0.007

leads to a larger drag increase area, and the local minimum DR becomes more negative;
Quadrio et al. (2009) and Gatti & Quadrio (2016) observe similar trends. Quadrio et al.
(2009) find that the local minimum DR follows the line ω+/κ+

x 	 10. In other words,
a maximum drag increase occurs when the travelling wave speed is about 10uτ0 , which
is nearly the same as the convective speed of the near-wall flow structures. Similarly, in
figure 3(a,b) the black dashed curve that marks the local minimum DR follows ω+/κ+

x 	
10. Region III covers the right of the local minimum DR (black dashed curve) where
ω+ > 0 (downstream travelling wave); in this region an increase in ω+ increases the DR.
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In figure 3(c) we display the difference in DR as the Reynolds number changes from
4000 to 951. For most of the (ω+, κ+

x ) space, DR is lower at the higher Reynolds
number. Only within the range 0.005 � κ+

x � 0.020, +0.1 � ω+ � +0.2 do we observe
the opposite trend. This region coincides with the drag-increasing range (DR < 0) with
ω+ > 0. This observation is consistent with GQ’s model (1.5), where DR < 0 (hence,
	B < 0) predicts an increase in DR as the Reynolds number increases. To make these
comparisons more quantitative, in figure 3(d) we show the difference in DR between our
results and GQ’s model at Reτ = 4000. To predict DR, the model (1.5) requires Cf0 and
the value of the log-law shift 	B for each set of actuation parameters (A+, κ+

x , ω+). For
Cf0 , we use Dean’s power-law correlation (Dean 1978) that agrees well with the DNS
data given by MacDonald et al. (2019). We can obtain 	B from a low-Reynolds-number
simulation for the same set of (A+, κ+

x , ω+) because 	B is assumed to be Reynolds
number independent. Therefore, we use our results at Reτ = 951, where for each (ω+, κ+

x ),
we find 	B from the velocity difference 	U∗ at y∗ = 200 (similar to figure 2b). We choose
y∗ = 200 as it is far enough from the wall to fall into the log region, but not too far to fall
into the wake region (y/h � 0.3 according to Pope 2000). By having 	B at each (ω+, κ+

x )

and having Cf0 at Reτ = 4000, we can reconstruct the DR map based on GQ’s model.
Figure 3(d) shows the overall good performance of GQ’s model for this range of

Reynolds numbers. In region I the difference in DR between LES and GQ’s model is
less than 2 %, i.e. |DR%LES,Reτ =4000 − DR%GQ,Reτ =4000| � 2 %. This is a very good
agreement considering that DR varies between 15 % and 28 % in region I. In regions II and
III we observe some slight differences in DR between LES and GQ’s model, especially in
region II in the drag-increasing range. In this range, the difference in DR between LES and
GQ’s model reaches 4 %, which is the same order as DR (see figure 3b). In region III, for
ω+ � +0.1 again, we observe good agreement between LES and GQ’s model (less than
2 % difference). In the following sections we investigate the reasons behind the different
performance of GQ’s model in regions I, II and III related to the changes in the Stokes
layer dynamics and the near-wall turbulence in each of these regions.

3.2. Mean velocity profiles
To obtain an overall picture of the mean velocity behaviour in regions I, II and III (see
figure 4), we consider the seven runs conducted at Reτ = 4000, A+ = 12 and κ+

x = 0.007
for ω+ ranging from −0.2 to +0.2. In figure 4(a) we identify the selected values of ω+
(filled squares) on the DR map along with the local maximum DR (blue dashed-dotted
line) and the local minimum DR (black dashed line). The corresponding velocity profiles
are shown in figure 4(b,c) for ω+ ≤ 0 (upstream travelling waves) up to the local maximum
DR (region I) and ω+ ≥ 0 (downstream travelling waves) beyond the local maximum DR
(regions II, III), respectively.

When ω+ ≤ 0, the log region of the actuated profiles is shortened and shifted above
the non-actuated counterpart (figure 4b), corresponding to a positive DR. The shortening
of the log region is due to the thickening of the viscous sublayer. We show the viscous
sublayer thickening in the inset of figure 4(b), in that the actuated profiles of U∗/y∗ are
closer to unity for a greater wall distance compared with their non-actuated counterpart.
We show the shortening of the log region in figure 4(d) by plotting the diagnostic function
y∗ dU∗/dy∗. The log region appears as a plateau with the value of κ−1 	 2.5. For the
non-actuated case, the plateau appears for 100 � y∗ � 600. This range is consistent with
the DNS of channel flow by Lozano-Durán & Jiménez (2014) and Lee & Moser (2015) at
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Figure 4. Variation of DR and the mean velocity profiles U∗ at Reτ = 4000, A+ = 12, κ+
x = 0.007 and

−0.2 ≤ ω+ ≤ +0.2. (a) Variation of DR with ω+; the inset shows the location of the data points on the
DR map. The blue dashed-dotted line and the black dashed line are the local maximum and minimum DR.
(b,c) Variation of the U∗ profiles with ω+ for (b) upstream travelling wave (ω+ ≤ 0) and (c) downstream
travelling wave (ω+ ≥ 0); the profile (—�—) corresponds to the non-actuated case and the profiles with no
symbol correspond to the actuated cases. For each profile, the solid line is the resolved portion and the dashed
line is the reconstructed portion following Nagib & Chauhan (2008). For each case, the colour of its U∗ profile
in (b,c) is consistent with the colour of its DR data point in (a). In (b,c) the inset plots the same profiles in
terms of U∗/y∗ vs y∗. (d,e) Diagnostic function y∗ dU∗/dy∗ for the profiles in (b,c); the inset shows the velocity
difference 	U∗ = U∗

act − U∗
non-act between each actuated profile U∗

act and the non-actuated profile U∗
non-act.
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Reτ = 4200 and 5200, respectively (see figure 3a in Lee & Moser 2015). For the actuated
cases, the plateau is narrowed further (i.e. log region is shortened) as DR increases. We
quantify the shift in the log region by plotting 	U∗ (inset of figure 4d). The magnitude of
the shift increases as DR increases. These observations are also reported in the previous
turbulent DR studies, including turbulent flow with the spanwise wall oscillation (Di
Cicca et al. 2002; Touber & Leschziner 2012; Hurst et al. 2014), turbulent flow with the
streamwise travelling wave (Hurst et al. 2014; Gatti & Quadrio 2016), turbulent flow of a
polymer solution (Ptasinski et al. 2003; White & Mungal 2008) and turbulent flow over
piezoelectrically excited travelling waves (Musgrave & Tarazaga 2019). Gatti & Quadrio
(2016) derived their predictive model (1.5) based on similar observations of the velocity
profiles in region I, and as a result, GQ’s prediction works well in this region (figure 3d).
The behaviour of the profiles in region I is consistent with the ISA pathway, where only
the inner-scale eddies up to the buffer region are actuated.

In region II we observe a sudden drop in DR as ω+ changes from 0 to +0.1 (figure 4a),
with a corresponding decrease in the logarithmic shift (figure 4c). A distinct feature of
region II is the high level of distortion in the U∗ profile, which is particularly severe
at ω+ = +0.05. For this case, the diagnostic function tends towards the plateau κ−1,
but does not reach it. Similarly, 	U∗ for this case approaches a plateau of 1.7 by the
resolved height y∗

res 	 750, but does not reach it (inset in figure 4e). This is our most
challenging case for computing DR using our approach in § 2.3 (figure 2). For accurate
calculation of the DR, 	U∗ needs to reach a plateau by the resolved height y∗

res 	 750,
i.e. the resolved height must fall into the logarithmic region. In Appendix C we deliberately
consider this challenging case for a domain size study. We double the domain length and
width compared with the medium domain (figure 1b), extending the resolved height to
y∗

res 	 1500. The difference in DR is 1.4 % between the medium domain and the large
domain (table 4). Furthermore, the large domain reinforces the approach of 	U∗ to a
plateau of 1.7 (the inset in figure 18b). To our knowledge, such significant levels of
distortion in the U∗ profile have not been seen before in previous studies of flows over
drag-reducing or drag-increasing surfaces. For example, in rough wall turbulent flows 	U∗
is almost constant for y∗ � 30 (e.g. figure 6 in Chan et al. 2015 or figure 3 in MacDonald
et al. 2017), while in turbulent flows over riblets 	U∗ is almost constant for y∗ � 100
(e.g. figure 2 in Endrikat et al. 2021b). In §§ 3.4 and 3.5 we discuss the physics behind the
highly distorted mean velocity profiles (figure 4c,e).

In region III, when ω+ increases to +0.2 (figure 4c), DR increases to 13 % and the U∗
profile behaves similarly to that seen in region I. A well-defined logarithmic shift appears
beyond y∗ 	 100 with viscous sublayer thickening.

3.3. Turbulence statistics
We now assess the behaviour of the Reynolds stress distributions at Reτ = 4000
(figure 5a–d) and the turbulent kinetic energy production P = −〈u′v′〉xzt dU/dy
(figure 5e, f ), where 〈· · ·〉xzt denotes averaging over the xz plane and time. We highlight
four cases from figure 4 (A+ = 12, κ+

x = 0.007), where we vary ω+ from −0.05 to +0.20.
As indicated earlier, we employ a finer grid resolution for these cases to properly resolve
the Reynolds stresses (see Appendix B). We plot the profiles scaled by the non-actuated uτ0
(dashed-dotted lines, figure 5a,c) and by the actuated uτ (solid lines, figure 5b,d). Scaling
by uτ0 is comparable to scaling by the bulk velocity Ub (Gatti & Quadrio 2016) because the
bulk velocity Ub is the same between the actuated and non-actuated cases. Any difference
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Figure 5. Profiles of Reynolds stresses and turbulence production for four cases from figure 4 at Reτ =
4000, A+ = 12, κ+

x = 0.007 and ω+ = −0.05, 0, +0.05, +0.20. The insets in (a,b) indicate the considered
values of ω+ and their DR values. Line and symbol colours are consistent with figure 4. In each panel only the
resolved portion of the profiles are shown (y+ � 1000, y∗ � 700). The black lines with symbols correspond to
the non-actuated case. (a,c,e) Plot of the actuated profiles (dashed-dotted lines) scaled by the non-actuated uτ0
(superscripted with +); (b,d, f ) plot of the actuated profiles (solid lines) scaled by the actuated uτ (superscripted
with ∗). (a–d) Reynolds stress profiles for (a,b) the streamwise velocity 〈u′2〉xzt and (c,d) the spanwise velocity
〈w′2〉xzt. (e, f ) Premultiplied production of turbulent kinetic energy.
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between the outer-scaled actuated and non-actuated profiles reflects the overall response
of turbulence to the wall oscillation (1.1).

Scaling by the non-actuated uτ0 (‘+’ superscript), as in figure 5(a,c,e), indicates that
the wall oscillation attenuates the 〈u′2〉+xzt levels up to the resolved height y+

res 	 1000.
The cases with the highest DR (ω+ = −0.05, 0 in figure 5a) show the highest level of
attenuation in their 〈u′2〉+xzt. Additionally, for these cases, the inner peak of 〈u′2〉+xzt is
farther from the wall. Consistently, the viscous sublayer is thickened and the buffer layer is
shifted away from the wall (figure 4b). In contrast to the behaviour of 〈u′2〉+xzt, the 〈w′2〉+xzt
profiles are amplified near the wall. According to Quadrio & Ricco (2011) and Touber
& Leschziner (2012), this amplification is due to the Stokes layer that forms as a result
of the spanwise wall motion. The premultiplied turbulent kinetic energy production y+P+
(figure 5e) also displays the attenuation of turbulence that accompanies increasing DR. All
these trends are similar to previous studies on spanwise wall oscillation at lower Reynolds
numbers (Quadrio & Ricco 2011; Touber & Leschziner 2012).

Scaling by the actuated uτ (‘∗’ superscript) is equivalent to inner scaling, which
highlights the extent up to which the actuated profiles depart from the non-actuated profile.
For 〈u′2〉∗xzt and 〈w′2〉∗xzt (figure 5b,d), the actuated cases agree with the non-actuated case
at distances far from the wall, but near the wall the actuated 〈u′2〉∗xzt levels are attenuated,
while the 〈w′2〉∗xzt levels are amplified. For ω+ = +0.05 (in region II), the point where the
actuated profiles begin to depart from the non-actuated counterpart occurs at y∗ 	 100,
considerably farther than for the other cases ( y∗ � 30). The same case yields the strongest
level of near-wall amplification for 〈w′2〉∗xzt (the red profile in figure 5c,d) and the highest
level of distortion in mean velocity (red profile in figure 4c,e).

Regardless of the scaling used, as 〈w′2〉xzt is amplified near the wall, 〈u′2〉xzt is
attenuated, the viscous sublayer is thickened and DR is increased. This trend occurs in
regions I (ω+ = −0.05, 0) and III (ω+ = +0.2). In region II (ω+ = +0.05), however,
there is an excessive amplification of 〈w′2〉xzt near the wall, a thinning of the viscous
sublayer and a drop in DR.

3.4. Stokes layer: an important source of ISA
As indicated earlier, the near-wall amplification of 〈w′2〉xzt is related to the growth of
the Stokes layer. We now apply triple decomposition to more precisely uncover how the
strength of the Stokes layer modifies the near-wall turbulence, which in turn affects the
wall drag. We primarily consider uτ scaling, as we are interested in the level of departure
from the non-actuated behaviour. In Part 2 we mostly use uτ0 scaling, as we are interested
in studying the overall response of turbulence to the wall actuation. Nevertheless, the
conclusions from Parts 1 and 2 are valid regardless of the scaling.

Because the flow is subjected to a harmonic forcing (1.1), the instantaneous flow can be
triply decomposed similar to Touber & Leschziner (2012), as in

f (x, y, z, t) = 〈f 〉xzt ( y) + f̃ (x, y, t) + f ′′(x, y, z, t)︸ ︷︷ ︸
f ′(x,y,z,t)

, (3.1a)

f̃ (x, y, t) = 1
N

N−1∑
n=0

〈f 〉z (x, y, t + nTosc) − 〈f 〉xzt ( y), (3.1b)

〈
f ′2
〉
xzt

=
〈
f̃ 2
〉
xt

+
〈
f ′′2
〉
xzt

, (3.1c)
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where f indicates the quantity of interest, i.e. u, v or w. In (3.1a), the total fluctuation f ′ is
decomposed into the harmonic contribution f̃ and the stochastic (turbulent) contribution
f ′′. The harmonic contribution f̃ is obtained by phase averaging the spanwise averaged field
〈f 〉z in time over the number of periods N, and then subtracting the mean vertical profile
〈f 〉xzt. Accordingly, the total Reynolds stress 〈f ′2〉xzt is decomposed into its harmonic
component 〈f̃ 2〉xt associated with the Stokes layer dynamics and its turbulent (stochastic)
component 〈f ′′2〉xzt (3.1c).

In figure 6 we plot these two components for the cases given in figures 4 and 5
(A+ = 12, κ+

x = 0.007, Reτ = 4000). For reference, figure 6(a,b) shows the considered
U∗ profiles (as in figure 4b,c). Figure 6(c,d) displays 〈u′′2〉∗xzt, the stochastic component
of the streamwise Reynolds stress. By comparing figure 5(b) with figure 6(c,d), we see
that 〈u′2〉∗xzt 	 〈u′′2〉∗xzt, indicating that the harmonic (Stokes layer) component makes a
negligible contribution. For the spanwise velocity, however, the harmonic component
〈w̃2〉∗xt contributes significantly to the total spanwise Reynolds stress 〈w′2〉∗xzt close to the
wall (see figure 6e, f ). At y∗ ∼ O(1), the harmonic component is about three orders of
magnitude larger than the turbulent component, while at y∗ ∼ O(10) they have comparable
magnitudes. Figure 6(e, f ) indicates that the rate of decay in 〈w̃2〉∗xt, hence the protrusion
of the Stokes layer, strongly depends on ω+. Furthermore, the level of distortion in the
U∗ profiles (figure 6a,b) strongly depends on the rate of decay in 〈w̃2〉∗xt. Interestingly, in
region II (figure 6f ) the decay rate in 〈w̃2〉∗xt is noticeably slower compared with regions
I and III, implying the presence of a more protrusive Stokes layer. Accordingly, the U∗
profile in region II is distorted to the highest level. The turbulent stress profiles are also
shown in figure 8, where they are accompanied by the turbulent kinetic energy profiles
〈K〉xzt, which follow the same trends.

To quantify the protrusion of the Stokes layer (figure 6e, f ), we calculate two length
scales from the spanwise Reynolds stress profiles. The first is the laminar Stokes layer
thickness δ∗

S that is featured in Stokes’ second problem (Batchelor 2000). Following
Quadrio & Ricco (2011), we define δ∗

S as the height y∗ where the amplitude of w̃ decays
to Ae−1 (i.e. where 〈w̃2〉∗xt = 1

2 A∗2e−2). In figure 6 we mark δ∗
S on each profile with a

cross symbol. The second length scale �∗
0.01 is new, and it is defined as the height where

〈w̃2〉∗xt = 0.01. Our choice for the threshold of 〈w̃2〉∗xt = 0.01 is based on the observation
that 〈w′′2〉∗xzt ∼ O(1) in the buffer and log regions (also reported by Lee & Moser 2015;
Baidya et al. 2021). In other words, we define �∗

0.01 as the height where the Stokes layer
stress 〈w̃2〉∗xt drops to about 1 % of the spanwise turbulent stress 〈w′′2〉∗xzt. In figure 6 we
mark �∗

0.01 on each profile with a bullet symbol.
The key difference between δ∗

S and �∗
0.01 is that we mark δ∗

S where the Stokes layer
stress 〈w̃2〉∗xt is a small fraction of its maximum value at the wall A∗2/2. Thus, we ignore
the background turbulence in this definition. However, we mark �∗

0.01 where the Stokes
layer stress 〈w̃2〉∗xt is a small fraction of the turbulent stress 〈w′′2〉∗xzt, hence considering
the background turbulence in this definition. In figure 6(c–f ), �∗

0.01 coincides well with
the distance where the actuated 〈u′′2〉∗xzt and 〈w′′2〉∗xzt profiles depart from the non-actuated
counterpart. However, δ∗

S underestimates the actual protrusion by the Stokes layer due to its
ignorance of the background turbulence. For instance, for the case with ω+ = 0 at y∗ = δ∗

S
(black cross symbol in figure 6e), 〈w̃2〉∗xt 	 8〈w′′2〉∗xzt, i.e. the Stokes layer is 8 times
stronger than the background turbulence. However, at y∗ = �∗

0.01 (black bullet symbol),
〈w̃2〉∗xt 	 0.01〈w′′2〉∗xzt, i.e. the Stokes layer is 100 times weaker than the background
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Figure 6. Profiles of velocity statistics at Reτ = 4000 for given cases as in figures 4 and 5 (A+ = 12, κ+
x =

0.007). Line legends are consistent with figures 4 and 5. In each panel only the resolved portion of the profiles
are shown corresponding to y∗ ≤ 1000. Plots (a,c,e) correspond to ω+ ≤ 0, and plots (b,d, f ) correspond to
ω+ > 0. (a,b) The U∗ profiles; the insets indicate the value of ω+ and its DR for each profile. In (c–f ) the
Reynolds stress profiles are presented in terms of the turbulent component (solid lines) and the harmonic
component (dashed lines) following ((3.1a), (3.1b)). (c,d) Turbulent component of the streamwise velocity
〈u′′2〉∗xzt. (e, f ) Turbulent component 〈w′′2〉∗xzt and harmonic component 〈w̃2〉∗xt for the spanwise velocity. On
each actuated profile, the cross symbol (+) marks the Stokes layer thickness δ∗

S , and the bullet symbol (•)
marks the protrusion height �∗

0.01 due to the Stokes layer.
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turbulence. We propose, therefore, that �∗
0.01 is a more suitable measure for reflecting the

entire penetration of the Stokes layer into the turbulent field.
In regions I and III, the level of protrusion by the Stokes layer �∗

0.01, as well as the
departure height in the 〈u′′2〉∗xzt and 〈w′′2〉∗xzt profiles, stay below 20 − 30 viscous units. As
a result, the mean velocity profiles in regions I and III (figure 6a,b) yield a well-defined
logarithmic shift beyond y∗ 	 100 with viscous sublayer thickening. However, in region
II there is a large increase in �∗

0.01 and the departure in the 〈u′′2〉∗xzt and 〈w′′2〉∗xzt profiles
also starts at a larger distance from the wall. For example, for ω+ = +0.05 in region II
(figure 6d, f ), �∗

0.01 	 80, which also closely marks the point where the actuated 〈u′′2〉∗xzt
and 〈w′′2〉∗xzt profiles depart from their non-actuated counterpart. As a result, the mean
velocity profile for ω+ = +0.05 in region II (figure 6b) is highly distorted up to y∗ 	
200–300.

Furthermore, we can draw a connection between the protrusion height �∗
0.01 and the

level of DR. In figure 7(a,b) we overlay the map of �∗
0.01 onto the maps of DR and δ∗

S .
In region I (left-hand side of the blue dashed-dotted line), �∗

0.01 � 30 and δ∗
S � 7. In this

region, an increase in �∗
0.01 and δ∗

S leads to an increase in DR. For upstream travelling
waves (ω+ < 0), therefore, the growing protrusion of the Stokes layer has a favourable
effect on DR. In contrast, in region II (between the blue dashed-dotted line and the black
dashed line) DR drops by increasing �∗

0.01 and δ∗
S . Another difference between regions I

and II is in the relation between �∗
0.01 and δ∗

S . In region I, �∗
0.01 and δ∗

S are proportional
to each other with �∗

0.01 ≈ 4δ∗
S . However, in region II this proportional relation is broken

and �∗
0.01 can reach as high as 8δ∗

S . At each κ+
x , the maximum DR (the blue dashed-dotted

line) coincides with the optimal range 20 � �∗
0.01 � 30 (5 � δ∗

S � 7). In figure 7(c) we
plot DR vs �∗

0.01 for our simulation cases in regions I and II. Also, following Quadrio &
Ricco (2011) (their figure 9), we plot DR vs δ∗

S for the same cases (figure 7d). These plots
confirm that the maximum DR coincides with 20 � �∗

0.01 � 30 and 5 � δ∗
S � 7 (shaded

in grey). Furthermore, for �∗
0.01 � 20 (δ∗

S � 5), �∗
0.01 	 4δ∗

S and DR increases linearly with
�∗

0.01 and δ∗
S (see the fitting dotted lines in figure 7c,d). Following Quadrio & Ricco (2011),

if we extrapolate the linear fits to DR = 0, we obtain �∗
0.01,min 	 5 and δ∗

S,min 	 1; these
values indicate the minimum limits for DR to occur.

The linear relation between DR, �∗
0.01 and δ∗

S is limited to region I. In region II when DR
drops, this linear relation is broken. Our observations related to DR vs δ∗

S in regions I and
II are similar to those by Quadrio & Ricco (2011). These observations are also applicable
to DR vs �∗

0.01. Quadrio & Ricco (2011) report the optimal δ∗
S 	 6.5 for the maximum

DR, the minimum δ∗
S,min 	 1.0 for DR to occur, the linear relation between DR and δ∗

S in
region I and the breaking of this linearity in region II. Given the linear relation in region
I, Quadrio & Ricco (2011) conclude that there exists a unique minimum value of δ∗

S to
achieve a desired DR. We observe this uniqueness in region I for both �∗

0.01 (figure 7c)
and δ∗

S (figure 7d). For instance, to achieve DR � 20 %, we require δ∗
S � 4.0, equivalent

to �∗
0.01 � 15. Quadrio & Ricco (2011) calculated δ∗

S from the laminar 〈w̃2〉∗xt profile based
on Stokes layer solution. Here, however, we calculate δ∗

S from the actual 〈w̃2〉∗xt profile
by phase averaging the simulation data. The laminar Stokes layer solution agrees with
the simulation up to region I, where there is a linear relation between DR, δ∗

S and �∗
0.01

(figure 11a). In region II, where the linear relation is broken, the Stokes layer solution
does not agree with the simulation result (figure 11b). We discuss this in § 3.6.
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Figure 7. (a) Comparison between the map of DR (contour field) and the protrusion height by the Stokes
layer �∗

0.01 (contour lines) for our considered parameter space at Reτ = 4000. (b) Comparison between the map
of Stokes layer thickness δ∗

S (contour field) and �∗
0.01 (contour lines) for the same cases as in (a). The blue

dashed-dotted line and the black dashed line are the local maximum and minimum DR (same as in figure 3b).
(c,d) Plot of DR vs �∗

0.01 and DR vs δ∗
S , respectively, for the same data as in (a,b); κ+

x = 0.00238 (�), 0.004
(�), 0.007 (�), 0.010 (�), 0.012 (	), 0.017 (
), 0.021 (•). At each κ+

x , we plot the cases only in regions I
and II (see the map in d), with the maximum DR case highlighted with a green outline. The grey regions in
(c,d) (20 ≤ �∗

0.01 ≤ 30, 5 ≤ δ∗
S ≤ 7) shade the range of maximum DR at each κ+

x . The linear dotted lines
in (c,d) fit the data for �∗

0.01 � 20 (c) and δ∗
S � 5 (d). The fitting lines also locate the minimum values for

�∗
0.01,min 	 5 (c) and δ∗

S,min 	 1 (d) to achieve DR.
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LES of turbulent drag reduction by spanwise wall forcing

The variation in DR vs �∗
0.01 is similar to DR vs δ∗

S up to region I, in terms of the
linear trends, an optimal thickness for the maximum DR and a minimum thickness for the
occurrence of DR. However, in region II when the linear trends are broken, we observe
noticeable differences between DR vs δ∗

S and DR vs �∗
0.01. In region II there does not

appear to be a consistent relation between DR and δ∗
S (the red symbols in figure 7d). In

other words, we cannot find a threshold for δ∗
S beyond which DR drops. For instance, for

the case with κ+
x = 0.02, ω+ = +0.2, DR drops to −10 % but δ∗

S 	 5 that is within the
optimal range (5 � δ∗

S � 7). In contrast, there is a much stronger connection between DR
and �∗

0.01, even in region II (figure 7c). For all cases, increasing �∗
0.01 beyond 30 decreases

DR. As a result, the value of �∗
0.01 can be used to determine whether we are in region I

(�∗
0.01 � 30) or region II (�∗

0.01 � 30). In figure 7(c), at each κ+
x we can draw a connecting

line between the discrete values of DR at different ω+ to represent a unique function
DR(�∗

0.01). However, we cannot do this for δ∗
S (figure 7d).

3.5. Interaction between the Stokes layer and the near-wall turbulence
In a turbulent flow with spanwise wall oscillation, Touber & Leschziner (2012) similarly
report that an overly protrusive Stokes layer leads to the degradation of DR. They proposed
that the attenuation of

〈
u′′2〉

xzt and amplification of
〈
w′′2〉

xzt are based on the periodic
realignment of the near-wall streaks. To examine this proposal further, we consider energy
spectrograms and near-wall flow visualisations (figures 8 and 9). We focus on the same
cases as in figure 6, where Reτ = 4000, A+ = 12 and κ+

x = 0.007.
For the cases with �∗

0.01 � 30, the streamwise premultiplied spectrograms k∗
z φ

∗
u′′u′′

(figure 8k,l,o) show the attenuation of u′′2 below y∗ 	 �∗
0.01 (i.e. within the Stokes layer).

For these cases, increasing �∗
0.01 (hence strengthening the Stokes layer) attenuates u′′ over

a wider range of wavelength λ∗z and height y∗ (e.g. compare figure 8k with 8l). At the same
time, the energetic peak in k∗

z φ
∗
u′′u′′ is shifted to a higher y∗ and a higher λ∗z . This attenuation

is apparent in the visualisations of the instantaneous velocity fields of u′′ at y∗ = 10 for the
cases with �∗

0.01 � 30 (figure 9e, f ). On the w′′ fields, we overlay the spanwise and phase
averaged w̃∗ (solid black curves) as a measure of the Stokes motion. As �∗

0.01 increases
from 20 at ω+ = −0.05 (figure 9e) to 30 at ω+ = 0 (figure 9f ), the Stokes motion becomes
stronger and the energy level in the u′′ field is decreased compared with the non-actuated
counterpart (figure 9i). At the same time, the spanwise spacing between the high-speed
streaks increases by increasing �∗

0.01. Overall, for �∗
0.01 � 30, the Stokes layer dampens the

level of turbulence within y∗ � �∗
0.01, hence acting favourably towards increasing DR.

For the cases with �∗
0.01 > 30, the Stokes layer is excessively strong and protrusive.

As a result, the near-wall flow structures meander, following the Stokes motion. This
meandering is observed in the u′′ and w′′ fields for the cases with �∗

0.01 > 30 at y∗ = 10
(figure 9g,h). Even at y∗ = 50, for the same cases (figure 9l,m), we can see the protrusion
of the Stokes motion (solid black curves) and evidence of meandering in the u′′ fields.
This meandering is also evident in the spectrograms. For instance, for ω+ = +0.05
with �∗

0.01 	 90 (figure 8m,r), the meandering flow structures at y∗ 	 10 (visualised
in figure 9g) manifest as an energetic peak in the k∗

z φ
∗
w′′w′′ spectrogram (figure 8r)

at (λ∗z , y∗) 	 (100, 10); this peak coincides with the peak in the k∗
z φ

∗
u′′u′′ spectrogram

(figure 8m). Touber & Leschziner (2012) relate the attenuation of 〈u′′2〉xzt and amplification
〈w′′2〉xzt (e.g. figure 9c,d) to this meandering behaviour and argue that the strong Stokes
shear strain periodically re-orients the streaks. As a result, energy is transferred from u′′ to
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w′′, and the anisotropy between u′′ and w′′ is reduced. Considering the flow visualisation at
y∗ = 10 for ω+ = +0.05 with �∗

S 	 90 (figure 9g), we see a strong resemblance between
the u′′ and w′′ fields in terms of the energy level and structure, which support the reduction
in anisotropy.

A noticeable difference between the cases with �∗
0.01 � 30 and those with �∗

0.01 > 30 is
the wall distance of the maximum turbulence activity given by the location of the energetic
peaks in k∗

z φ
∗
u′′u′′ and k∗

z φ
∗
w′′w′′ . For the cases with �∗

0.01 � 30 (figure 8k,l,o), the energetic
peak in k∗

z φ
∗
u′′u′′ is lifted away from the wall to a y∗ distance that coincides with �∗

0.01.
However, for the cases with �∗

0.01 > 30, the energetic peaks in k∗
z φ

∗
u′′u′′ (figure 8m,n) and

k∗
z φ

∗
w′′w′′ (figure 8r,s) instead reside near the wall at y∗ 	 10, well below �∗

0.01 	 90. It
appears that when �∗

0.01 > 30, a near-wall cycle of streaks with high turbulence activity
is generated within the Stokes layer. Contrast this behaviour to the case when �∗

0.01 �
30 where the turbulence is damped within the Stokes layer and the cycle of turbulence
generation is lifted away from the wall.

Overall, through flow visualisations and spectrograms we could explain the physics
behind the trends in DR vs �∗

0.01 (figure 7). When �∗
0.01 � 30, turbulence is damped within

y∗ � �∗
0.01. The level of damping increases by increasing �∗

0.01. As a result, DR increases
by increasing �∗

0.01, with the maximum DR attained when �∗
0.01 	 30. However, when

�∗
0.01 > 30, the Stokes layer becomes excessively strong. In this situation a near-wall cycle

of turbulence is generated at y∗ 	 10 that meanders following the Stokes motion. As a
result, DR drops by increasing �∗

0.01.

3.6. Power performance analysis
While DR is an important performance parameter for many applications, the efficiency of
the flow control effort is often even more important. Here we use the concept of net power
saving (NPS):

NPS = P+
0 − (

P+ + P+
in
)

P+
0

= DR − P+
in

P+
0

, (3.2)

where P+ = (1 − DR)U+
b is the pumping power required to drive the flow through the

actuated channel, P+
0 is the non-actuated analogue of P+ and P+

in is the input power
required to oscillate the wall actuation mechanism (1.1) while neglecting any mechanical
losses. A positive NPS indicates that the total power cost of the actuated case is less
than the total cost of its non-actuated counterpart. We are also interested in assessing
the accuracy of generalized Stokes layer (GSL) theory (Quadrio & Ricco 2011) for
estimating P+

in. In Part 2 (Chandran et al. 2023) we use this theory to estimate NPS for
our experimental data. Here, in Part I, our actuation frequencies fall into the ISA regime.
In Part 2 the data fall into both the ISA and OSA regimes.

The input power is given as follows: as first proposed by Baron & Quadrio (1995) for an
oscillating plane, and then used by Quadrio & Ricco (2011), Gatti & Quadrio (2013) and
Marusic et al. (2021) for a travelling wave,

P+
in = 1

T+
avgL+

x L+
z

∫ t++T+
avg

t+

∫ L+
x

0

∫ L+
z

0
w+

s

(
∂w+

∂y+

∣∣∣∣
y+=0

)
dx+ dz+ dt+, (3.3)

where all the quantities are normalised by ν and the non-actuated uτo (hence, superscripted
with a cross symbol). In (3.3), Tavg is the averaging time, ws is the instantaneous
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Figure 10. (a) Map of P+
in at Reτ = 4000. The filled contour and line contours show the same quantity.

(b) Filled contour is the difference in calculation of P+
in at Reτ = 4000 between LES and its theoretical

estimation from the GSL theory (Quadrio & Ricco 2011); line contours give the Stokes layer protrusion height
�∗

0.01 (same as in figure 7a).

wall velocity (1.1) and ∂w+/∂y+|y+=0 is the instantaneous wall-normal gradient of the
spanwise velocity at the wall.

In figure 10(a) we present the map of P+
in/P+

0 as computed over our parameter space of
(ω+, κ+

x ) at Reτ = 4000. The map is much more symmetric about ω+ = 0 compared with
DR (figure 3). We also see that substantially more power is required at higher actuation
frequencies. For example, P+

in/P+
0 % can reach up to 100 % when ω+ 	 ±0.2. In region II,

between the local maximum and the local minimum DR (between the blue dashed-dotted
line and the black dashed line), P+

in/P+
0 decreases to about 30 %–35 %.

We can use (3.3) only if we have an estimate for ∂w+/∂y+|y+=0. In most experimental
studies, including Part 2 of the present study, this quantity is unavailable and some estimate
needs to be made instead. In Part 2 we use GSL theory, which gives the instantaneous
spanwise velocity for a laminar flow with wall actuation. That is,

w+(x+, y+, t+) = A+R
{

C exp(i(κ+
x x+−ω+t+))

×Ai
[

eπi/6 (κ+
x [1 − DR]

)1/3
(

y+− ω+

κ+
x [1 − DR]

− iκ+
x

1 − DR

)]}
(3.4)

where C = {Ai[ieiπ/3(κ+
x [1 − DR])1/3(ω+/κ+

x + iκ+
x )/[1 − DR]]}−1, Ai is the Airy

function of the first kind and R{· · · } is the real part of the argument. To use (3.4) for a
turbulent flow, one needs to assume that (1) the Stokes layer preserves its laminar structure
near the wall, i.e. w̃ is the same in the laminar and turbulent flow; and (2) the turbulent
spanwise velocity is negligible near the wall, i.e. w′′ 	 0.

We now compare the results for P+
in using GSL to the results obtained using LES,

so as to verify the validity of using GSL estimates in experiments. Figure 10(b)
shows the difference between the pumping power obtained from the LES at Reτ =
4000 (P+

in/P+
0 %LES,Reτ =4000) and that estimated using GSL theory at the same Reτ

(P+
in/P+

0 %GSL,Reτ =4000). Overall, the differences are small, especially in the range ω+ < 0
where they differ less than 3 %. Only in region II with ω+ > 0 (between the blue
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Figure 11. Comparison of the phase-averaged (harmonic) Reynolds stress profiles 〈w̃2〉∗xt between LES (solid
lines) and the laminar solution from the GSL theory (dashed lines with symbols) (A+ = 12, κ+

x = 0.007 at
Reτ = 4000). Results are shown for (a) ω+ = −0.05, 0 and (b) ω+ = +0.05, +0.10, +0.20. The insets plot
DR for the selected cases.

dashed-dotted line and the black dashed line) do the differences approach 10 %, especially
along the minimum DR line (black dashed line). The overlay of the Stokes layer protrusion
height �∗

0.01 (contour lines) indicates that the region where the power differences are
significant coincides with the region where �∗

0.01 is large. In other words, the error in using
GSL theory (laminar Stokes layer assumption) is largest when the Stokes layer is most
protrusive.

This behaviour is further substantiated by figure 11, which compares the phase-averaged
(harmonic) Reynolds stress profiles 〈w̃2〉∗xt between LES (solid lines) and its laminar
solution (3.4) from GSL theory (dashed lines with symbols). We see that in region I
with ω+ ≤ 0 (figure 11a), the agreement is reasonably good; we obtain better agreement
with ω+ = −0.05 (�∗

0.01 	 20) than with ω+ = 0 (�∗
0.01 	 30). However, in region II

(figure 11b), when ω+ = +0.05 (�∗
0.01 	 90) and ω+ = +0.10 (�∗

0.01 	 80), we observe
significant departures between LES and the GSL theory. For instance, for ω+ = +0.05 at
y∗ 	 20, 〈w̃2〉∗xz from LES is 2.2 but from GSL is 0.2. This is a significant difference
considering that the background turbulent stress 〈w′′2〉∗xzt ∼ O(1). In region III with
ω+ = +0.20 where �∗

0.01 	 17, we see a return of the good agreement between LES and
GSL theory.

Our observations regarding the differences between Pin from the simulation and that
from the GSL theory (figure 10) are similar to those reported by Quadrio & Ricco
(2011) (their figure 7); they report close agreement between the GSL theory and the
turbulence simulation in the drag-decreasing range, but report noticeable differences in
the drag-increasing range. They explain this behaviour through the time scale T + ≡
2π/(ω+ − κ+

x U+
w ), which represents the period of oscillation as observed by the near-wall

eddies with the convective speed U+
w 	 10. As discussed in § 3.1, in the drag-increasing

range ω+/κ+
x → U+

w leading to T + → ∞. In other words, the spanwise oscillation
becomes too slow that close to the wall, the u- and w-momentum equations are coupled
together. However, GSL theory assumes that these equations are decoupled. Here, we
add a new explanation based on the protrusion of the Stokes layer. As discussed in § 3.5
(figure 9), in the drag-increasing range the Stokes layer is too protrusive and a near-wall
cycle of turbulence is embedded within the Stokes layer. As a result, near the wall, all the
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Figure 12. (a) The NPS for LES at Reτ = 4000. (b) Difference in NPS between LES at Reτ = 4000 and LES
at Reτ = 951. In plots (a,b) the filled contour and line contours show the same quantity. All the quantities with
a ‘+’ superscript are scaled by ν and the non-actuated uτo . The blue dashed-dotted line and black dashed line
locate the local maximum and local minimum DR, respectively.

terms of the momentum equation (2.1b) are active. However, the GSL theory neglects the
advection (nonlinear) terms from the w-momentum equation. The departure of the 〈w̃2〉∗xt
profiles from the GSL solution (figure 11b) supports the activation of these terms.

We can now explore the NPS. Figure 12(a) demonstrates that for our considered
parameter space, NPS is mostly negative. The highest (best) NPS is 0.5 % at (ω+, κ+

x ) 	
(0.05, 0.012). In figure 12(b) we plot the map of the difference between NPS from
LES at Reτ = 4000 and its counterpart at Reτ = 951. If this difference is positive, NPS
increases with Reτ . Over a large portion of our parameter space, the difference is negative,
i.e. NPS becomes more negative with Reτ . However, for a small portion of region I with
ω+ < 0 and κ+

x � 0.0025, the difference is positive. One experimental case reported by
Marusic et al. (2021) falls into this region, with ω+ = −0.044 and κ+

x = 0.0014 (see their
figure 3a,b). The NPS of this case was negative, but it increased with Reτ in accordance
with our analysis.

Quadrio et al. (2009), similar to figure 12(a), generate a map of NPS for their travelling
wave study at Reτ = 200 (their figure 5). They report NPS > 0 within the range 0 � ω+ �
+0.05, 0.002 � κ+

x � 0.025. This range coincides with the range where DR � 40 %.
Gatti & Quadrio (2013) generate a similar map at Reτ = 1000 (their figure 9). They also
observe NPS > 0 within the same range of (ω+, κ+

x ). However, the level of NPS > 0 is
lower at Reτ = 1000 compared with Reτ = 200. Considering (3.2), we speculate that the
decrease in NPS > 0 from Reτ = 200 to 1000 is due to the decrease in DR. We observe a
similar trend in figure 12(b). Within the range of (ω+, κ+

x ) where DR is maximum (blue
dashed-dotted line), NPS decreases by increasing Reτ from 1000 to 4000.

Overall, for our considered parameter space, NPS is negative and predominantly
decreases with Reynolds number. As discussed in § 1, our parameter space falls into the
ISA regime. In Part 2 we conduct experiments with some actuation parameters in the
OSA regime, which yield positive values for the NPS that actually increase with Reynolds
number.
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4. Conclusions

Turbulent DR was considered using spanwise wall oscillation based on streamwise
travelling waves at friction Reynolds numbers Reτ = 951 and 4000 using wall-resolved
LES in a channel flow. We conducted parametric studies at both Reynolds numbers
with a fixed actuation amplitude A+ = 12 for wavenumbers and frequencies within the
range 0.002 ≤ κ+

x ≤ 0.02 and −0.2 ≤ ω+ ≤ +0.2, covering upstream (ω+ < 0) and
downstream (ω+ > 0) travelling waves. Our actuation parameters fall into the ISA regime,
where only the near-wall scales are actuated.

We find that GQ’s model for the variation of DR with Reynolds number performs well if
the logarithmic shift in the velocity profile is accurately calculated. The present travelling
wave actuation can highly distort the mean velocity profile and extend the beginning of
the logarithmic region beyond 200 viscous units above the surface. We find that such a
high level of distortion is related to the protrusive Stokes layer. Accordingly, we propose
a length scale �0.01 for the protrusion height, where the Reynolds stress due to the Stokes
layer drops to 1 % of the Reynolds stress due to the background turbulence. We find that
depending on �0.01, hence the Stokes layer protrusion, the DR map over the parameter
space of (ω+, κ+

x ) can be categorised into two regions. When �0.01 is less than 30 viscous
units, increasing �0.01 leads to an increase in DR. In this regime the viscous sublayer is
thickened and the logarithmic region appears at a point about 100 viscous units above
the wall. The Stokes layer acts to attenuate the turbulence below �0.01 and lifts the cycle of
turbulence generation away from the wall. Increasing �0.01 in this regime further attenuates
the turbulence and leads to higher DR. When �0.01 exceeds 30 viscous units, however,
increasing the Stokes layer thickness leads to a drop in DR. In this regime the logarithmic
region appears beyond 200 viscous units above the wall. The decrease of DR in this regime
is due to the Stokes layer becoming strong enough to cause a meandering of the near-wall
turbulence, rather than attenuating it. That is, a cycle of near-wall streaks appear within 10
viscous units that follow the Stokes oscillatory motion.

Our power cost analysis showed that GSL theory agrees reasonably well with the LES
data, so that it can be used with some confidence in cases where the gradient of the velocity
at the wall is not accessible, as in most experiments. In addition, for our considered range
of ω+ and κ+

x at Reτ = 4000, the NPS was always negative. In other words, the power
cost necessary to oscillate the near-wall fluid exceeds the power savings by the DR. We
speculate that negative NPS is inevitable in the ISA pathway at least at high Reynolds
numbers. We confirm this speculation in Part 2, where we investigate the ISA and OSA
pathways experimentally at Reτ up to O(104).

To afford the parametric study conducted here, we employed a reduced simulation
domain size. This set-up was found to be suitable for the ISA pathway, especially for
studying DR, Stokes layer dynamics and the near-wall turbulence. However, the present
configuration cannot resolve the outer-scale eddies, which become important in the OSA
pathway. This aspect will also be investigated in Part 2, where the inner- and outer-scale
eddies are captured through experimental techniques and for higher Reynolds numbers.
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Reτ κ+
x ω+ Lx, Lz Nx, Ny, Nz Δ+

x , Δ+
z Sym.

951 0.0014 −0.044 9.44h, 3.14h 144, 48, 96 62, 33
2000 0.0014 −0.044 6.73h, 3.14h 224, 96, 192 60, 33
4000 0.0014 −0.044 6.73h, 3.14h 448, 192, 384 60, 33
4000 0.0014 −0.044 2.24h, 0.63h 144, 192, 72 62, 35 ◦
6000 0.0014 −0.044 2.24h, 0.63h 216, 288, 108 62, 34 ◦
951 0.0347 −0.20, −0.05, −0.01,

+0.06, +0.12, +0.28
6.86h, 3.14h 108, 48, 96 60, 31

951 0.0347 −0.20, −0.05, −0.01,

+0.06, +0.12, +0.28
6.86h, 3.14h 288, 48, 96 23, 31

951 0.0347 −0.20, −0.05, −0.01,

+0.06, +0.12, +0.28
6.86h, 3.14h 384, 64, 128 17, 23

951 0.0208 −0.10, 0, +0.05, +0.07,

+0.15, +0.20
6.35h, 3.14h 256, 48, 96 24, 31

951 0.0208 −0.10, 0, +0.05, +0.07,

+0.15, +0.20
6.35h, 3.14h 384, 64, 128 16, 23

Table 2. Summary of the LES cases for validation. The cases with κ+
x = 0.0014 have fixed actuation

parameters A+, κ+
x , ω+ and grid resolution Δ+

x × Δ+
z , but Reτ changes from 951 (first row) to 6000 (fifth row).

These cases are compared with the DNS of Gatti & Quadrio (2016) and experiments of Marusic et al. (2021)
at matched actuation parameters and Reynolds number (figure 13). The cases with κ+

x = 0.0347 and 0.0208
have fixed Reτ = 951 and A+ = 12, but κ+

x , ω+ and grid resolution change. Each row consists of six cases with
fixed Reτ , A+, κ+

x and grid resolution, but ω+ is different for each case. These cases are for validation against
the DNS of Gatti & Quadrio (2016) at selected actuation parameters (figure 14).
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Appendix A. Validation of LES and grid resolution study for DR

We perform several validation studies for LES. In this appendix we focus on the accuracy
of the dynamic Smagorinsky SGS model (Germano et al. 1991) in predicting DR. We also
assess the proper grid resolution for predicting DR. In Appendix B we perform a grid
resolution study for the Reynolds stresses and their spectra.

Our first validation study is summarised in figure 13. We compare DR between LES,
the experimental data of Marusic et al. (2021) and the DNS data of Gatti & Quadrio
(2016). All sets of data have matched actuation parameters A+ 	 12, κ+

x 	 0.0014, ω+ 	
−0.044. For the LES cases (table 2, κ+

x = 0.0014), we change Reτ from 951 to 6000.
The LES cases at Reτ = 951 and 6000 are comparable with the DNS of Gatti & Quadrio
(2016) and experiments of Marusic et al. (2021), respectively. All the LES cases have the
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Figure 13. Comparison of DR from the LES runs in table 2 (•, red, ◦) with the DNS of Gatti & Quadrio (2016)
at Reτ = 951 (�, blue), and experiment of Marusic et al. (2021) at Reτ = 6000 using hot-wire anemometry (�,
green) and drag balance (�, green). All the data points from different techniques have matched actuation
parameters A+ = 12, κ+

x = 0.0014, ω+ = −0.044. For the LES, we use the full domain (figure 1c) at Reτ =
951, 2000, 4000 (•, red), and medium domain (figure 1a) at Reτ = 4000, 6000 (◦). We overlay GQ’s predictive
model for DR (black dashed-dotted line).

viscous-scaled grid size Δ+
x × Δ+

z 	 60 × 30. We use the full-domain size (figure 1c) at
Reτ = 951, 2000 and 4000 (red bullet), and the medium-domain size (figure 1a) at Reτ =
4000 and 6000 (black circle).

Considering figure 13, at Reτ = 951 we obtain good agreement between LES (red bullet)
and DNS of Gatti & Quadrio (2016) (blue diamond), and at Reτ = 6000 we obtain good
agreement between LES (black circle) and the experimental data of Marusic et al. (2021)
from the hot-wire anemometry (green square) and drag balance (green triangle). These
agreements support the accuracy of the dynamic Smagorinsky model (Germano et al.
1991) for LES. At Reτ = 4000, we obtain less than 1 % difference between the LES case
with the medium domain (black circle) and the case with the full domain (red bullet).
This agreement supports the suitability of the medium-domain size for the actuation
parameters considered here. We further demonstrate the accuracy of the medium-domain
size in Appendix C. All the data points from DNS, LES and experiments agree well
with GQ’s predictive model for DR (dashed-dotted line). This agreement is because the
actuation frequency ω+ = −0.044 (T+

osc 	 142) falls into the ISA pathway (T+
osc < 350).

As discussed in Marusic et al. (2021) and § 1, GQ’s model performs accurately in this
pathway.

Our second validation study is shown in figure 14. We compare the present LES
with the DNS dataset of Gatti & Quadrio (2016) at matched Reτ = 951 over a range
of actuation parameters within our parameter space of interest. We compare at A+ =
12, κ+

x = 0.0347 (figure 14a) and A+ = 12, κ+
x = 0.0208 (figure 14b) over the range

−0.20 � ω+ � +0.28. Table 2 lists the LES cases for this validation study. For A+ =
12, κ+

x = 0.0347, −0.20 ≤ ω+ ≤ +0.28, we perform LES with three grids (Δ+
x × Δ+

z ) =
(60 × 31), (23 × 31), (17 × 23). For A+ = 12, κ+

x = 0.0208, −0.10 ≤ ω+ ≤ +0.20, we
perform LES with two grids (Δ+

x × Δ+
z ) = (24 × 31), (16 × 23). Figure 14 shows that

the LES grid Δ+
x × Δ+

z 	 23 × 31 (blue diamond) yields good agreement with DNS
for all the compared cases. Also, this LES grid yields grid convergence. Further grid
refinement to Δ+

x × Δ+
z 	 16 × 23 (green diamond) does not significantly change DR.

In our first validation study with the experiments (figure 13), we employed the LES grid
Δ+

x × Δ+
z 	 60 × 31. We also employed this grid for our second validation study with

A+ = 12, κ+
x = 0.0347, −0.20 ≤ ω+ ≤ +0.28 (red diamond in table 2 and figure 15a).

We observe that this grid performs accurately for the upstream travelling wave (ω+ <
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Figure 14. Comparison between the DNS of Gatti & Quadrio (2016) (�) and the LES of the present study
at different grid resolutions: Δ+

x × Δ+
z 	 60 × 31 (�, red), 23 × 31 (�, blue), 16 × 23 (�, green). Table 2

lists the simulation details for LES. Both DNS and LES cases are compared at matched Reτ = 951, A+ = 12
and κ+

x , ω+. Plots (a,b) show the comparison at κ+
x = 0.0347 and 0.0208, respectively. At each value of κ+

x ,
comparison is made at six values of ω+ (listed in table 2).
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Figure 15. Comparison between the coarse LES (Δ+
x × Δ+

z 	 22 × 31, red solid line), fine LES (Δ+
x × Δ+

z 	
14 × 21, blue solid line) and DNS (Δ+

x × Δ+
z 	 7 × 4, green solid line). All cases have the same Reτ = 590

and actuation parameters (A+, κ+
x , ω+) = (12, 0.0014, −0.044); see table 3. The comparison is based on

(a) mean velocity profiles U∗ and DR, and (b) profiles of the Reynolds stress by the phase-averaged spanwise
velocity

〈
w̃2〉∗

xt.

0 in figure 15a). This observation is consistent with our first validation study with
ω+ = −0.044 (figure 13). However, for the downstream travelling wave (ω+ > 0), the
LES grid Δ+

x × Δ+
z 	 60 × 31 (red diamond) underpredicts DR. Further refinement to

Δ+
x × Δ+

z 	 23 × 31 (blue diamond) improves the prediction of DR for all the values of
ω+.

We conclude that with the viscous-scaled grid resolution of Δ+
x × Δ+

z 	 23 × 31 (blue
diamond) we can study DR with high confidence. Therefore, we adopt this grid resolution
to study DR (table 1).

Appendix B. Grid resolution study for Reynolds stresses and spectra

Where the previous section determined the adequate grid resolution for calculating the DR,
we conduct a similar analysis to assess the proper grid spacing for resolving the Reynolds
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case Reτ A+ κ+
x ω+ Lx, Lz Nx, Ny, Nz Δ+

x , Δ+
z line

coarse LES 590 12 0.0014 −0.044 7.6h, 3.14h 204, 30, 60 22, 31
fine LES 590 12 0.0014 −0.044 7.6h, 3.14h 306, 45, 90 15, 21
DNS 590 12 0.0014 −0.044 7.6h, 3.14h 608, 240, 480 7, 4

Table 3. Simulation cases for assessing the LES grid for studying the Reynolds stresses and their spectra
(Appendix B). All the cases have the same Reτ , actuation parameters (A+, κ+

x , ω+) and domain size Lx, Lz,
where h is the open channel height. The top two cases are LES with coarse and fine grid resolutions,
respectively. The third case is DNS.

stresses and velocity spectra. These are the quantities that we investigate to explain the
flow physics (§ 3).

To evaluate the accuracy of LES for the Reynolds stresses and spectra, we generate a
DNS dataset (Δ+

x × Δ+
z 	 7 × 4) in a full-domain open channel flow with wall actuation

(table 3). To afford the DNS, we consider Reτ = 590 with the actuation parameters
(A+, κ+

x , ω+) = (12, 0.0014, −0.044). We perform two LES calculations that match the
DNS case in terms of the domain size, Reτ and actuation parameters, but have different
grid resolutions (table 3). We name the LES case with a coarser grid (Δ+

x × Δ+
z 	

22 × 31) ‘coarse LES’, and the case with a finer grid (Δ+
x × Δ+

z 	 15 × 21) ‘fine LES.’
Note that the coarse LES case still has a fine grid for wall-resolved LES. Previous LES
studies have employed a similar grid size to study a turbulent wall jet (Banyassady &
Piomelli 2014) or separating turbulent boundary layer (Wu & Piomelli 2018). Furthermore,
the coarse LES grid predicts DR quite well (Appendix A).

In figures 15–17 we compare coarse and fine LES cases with DNS in terms of various
parameters of interest. In figure 15 our comparison is based on the mean velocity profiles
U∗ and DR (figure 15a), as well as the Reynolds stress profiles due to the phase-averaged
spanwise velocity 〈w̃2〉∗xt (figure 15b). We use 〈w̃2〉∗xt to calculate the protrusion height by
the Stokes layer (§ 3.4). Figure 15 shows that U∗, DR and 〈w̃2〉∗xt are predicted reasonably
well with the coarse LES grid (Δ+

x × Δ+
z 	 22 × 31). We also concluded in Appendix A

that the coarse LES grid predicts DR quite well. Therefore, we employ the coarse LES grid
(Δ+

x × Δ+
z 	 22 × 31) to produce the maps of DR (figure 3), and study the mean velocity

profiles (figure 4), and the protrusion height by the Stokes layer (figure 7).
However, studying the turbulent stresses and their spectra requires the fine LES grid

(Δ+
x × Δ+

z 	 14 × 21), as evidenced by figures 16 and 17. In figure 16(a,b) we compare
coarse LES with DNS (figure 16a), and fine LES with DNS (figure 16b). Our comparison
is based on the one-dimensional premultiplied spectrogram for the fluctuating streamwise
velocity k∗

z φ
∗
u′′u′′(λ∗z , y∗). The coarse LES spectrogram (red contour lines in figure 16a) is

highly distorted for λ∗z � 100. This is due to the aliasing error that energises the scales near
the cutoff wavelength (Kravchenko & Moin 1997; Park, Yoo & Choi 2004). The aliasing
error is clearer from the two-dimensional premultiplied spectrogram k∗

x k∗
z φ

∗
u′′u′′(λ∗x , λ∗z ) at

y∗ 	 20 (figure 16e); the coarse LES spectrogram (red contour lines) agrees well with the
DNS spectrogram (filled contour) above the breaking grey line. However, below the grey
line, the energy in the LES spectrogram starts to rise, while it must fall following the DNS
spectrogram.

Refining the LES grid improves the spectrograms (figure 16b,d, f ). In figure 16(b)
we compare the one-dimensional spectrogram of the fine LES (blue contour lines) with
DNS (filled contour). The range of scales affected by the aliasing error is narrowed to
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Figure 16. Comparison between the coarse LES (Δ+
x × Δ+

z 	 22 × 31, red solid line), fine LES (Δ+
x × Δ+

z 	
14 × 21, blue solid line) and DNS (Δ+

x × Δ+
z 	 7 × 4, filled contour). All cases have matched Reτ = 590

and actuation parameters (A+, κ+
x , ω+) = (12, 0.0014, −0.044); see table 3. The comparison is made in

terms of (a–d) one-dimensional premultiplied spectrograms of the turbulent part of the streamwise velocity
k∗

z φ∗
u′′u′′ (λ∗z , y∗), and (e, f ) two-dimensional premultiplied spectrograms of the turbulent part of the streamwise

velocity k∗
x k∗

z φ∗
u′′u′′ (λ∗x , λ∗z ) at y∗ 	 20. Plots (a,c,e) are the comparison between the coarse LES and DNS, and

plots (b,d, f ) are the comparison between the fine LES and DNS. Plots (a,b) compare the original spectrograms
from the raw LES data (contour lines) with the DNS spectrogram (contour field). Plots (c,d) compare the
dealiased spectrograms from LES (contour lines) with the DNS spectrogram (contour field). Dealiasing is
performed through the two-dimensional spectrograms, e.g. by removing the scales below (grey thick solid line)
in (e, f ). See the text for details. The colourbar for (a–d) is next to (b), and the colourbar for (e, f ) is next to ( f ).

λ∗z � 50. Attenuation of the aliasing error by the grid refinement is also evident in the
two-dimensional spectrograms (compare figure 16e with 16f ). Further improvement is
achieved by removing the aliased scales (dealiasing). We perform dealiasing through
the k∗

x k∗
z φ

∗
u′′u′′(λ∗x , λ∗z ) spectrogram at each y∗. We can explain the dealiasing process

through figure 16(e, f ). At each λ∗x , if an aliasing error occurs, a local minimum appears
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Figure 17. Comparison between the coarse LES (Δ+
x × Δ+

z 	 22 × 31, red solid line), fine LES (Δ+
x × Δ+

z 	
14 × 21, blue solid line) and DNS (Δ+

x × Δ+
z 	 7 × 4, green solid line) in terms of the Reynolds stress profiles

due to the turbulent part of the streamwise velocity 〈u′′2〉∗xzt. All cases have the same Reτ = 590 and actuation
parameters (A+, κ+

x , ω+) = (12, 0.0014, −0.044); see table 3. The LES profiles (red solid line, blue solid line)
in (a) are obtained from the raw LES data, and in (b) are obtained by integrating the dealiased spectrograms
(figure 16c,d).

in k∗
x k∗

z φ
∗
u′′u′′(λ∗x , λ∗z ). In figure 16(e, f ) we mark the local minima at all values of λ∗x

and connect them together with a grey line. Thus, the grey line separates the healthy
scales from the aliased scales. For dealiasing, we remove the aliased scales below the
grey line. After dealiasing k∗

x k∗
z φ

∗
u′′u′′(λ∗x , λ∗z ) at each y∗, we integrate it to reconstruct

the dealiased one-dimensional spectrograms (figure 16c,d). Accordingly, we integrate
the dealiased one-dimensional spectrograms to reconstruct the dealiased Reynolds stress
profiles 〈u′′2〉∗xzt (figure 17b). Comparing the original spectrograms from the raw LES data
(figure 16a,b) with the dealiased spectrograms (figure 16c,d), highlights the improvement
due to dealiasing. Similarly, comparing the original 〈u′′2〉∗xzt profiles from the raw LES data
(figure 17a) with the dealiased 〈u′′2〉∗xzt profiles (figure 17b), highlights the improvement
due to dealiasing, especially for the fine LES case (blue line in figure 17b).

Overall, we conclude that the coarse LES grid (Δ+
x × Δ+

z 	 22 × 31) is suitable for
studying DR, mean velocity profiles U∗ and 〈w̃2〉∗xt (for the Stokes layer dynamics). The
fine LES resolution (Δ+

x × Δ+
z 	 14 × 21) with dealiasing is more suitable for studying

the Reynolds stress profiles and their spectrograms.

Appendix C. Domain size study

In figure 13 we obtained very good agreement in DR between the medium-domain
simulation and the full-domain simulation for the case at Reτ = 4000 with A+ = 12, κ+

x =
0.0014, ω+ = −0.044. Here, we further study the domain size effect for some of our
production cases at Reτ = 4000 (table 4). We aim to show that the medium-domain size
is suitable for our parameter space of interest. We select three cases with (κ+

x , ω+) =
(0.021, −0.1), (0.021, +0.1), (0.007, +0.05). The cases with κ+

x = 0.021 fall at the upper
bound of our range of interest for κ+

x , and the case with κ+
x = 0.007 falls within

this range. Also, we consider cases with upstream travelling waves (ω+ < 0) and
downstream travelling waves (ω+ > 0). We deliberately choose the case with (κ+

x , ω+) =
(0.007, +0.05), because the wall actuation disturbs the flow to the highest extent (§ 3,
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domain Reτ y+
res κ+

x ω+ Lx/h, , Lz/h Nx, Ny, Nz Δ+
x , Δ+

z DR

medium 4000 1000 0.021 −0.1 2.04, 0.63 384, 192, 80 21, 31 17.1
large 4000 2000 0.021 −0.1 4.08, 1.25 768, 192, 160 21, 31 18.7
medium 4000 1000 0.021 +0.1 2.04, 0.63 384, 192, 80 21, 31 21.1
large 4000 2000 0.021 +0.1 4.08, 1.25 768, 192, 160 21, 31 21.6
medium 4000 1000 0.007 +0.05 2.04, 0.63 384, 192, 80 21, 31 11.3
large 4000 2000 0.007 +0.05 4.08, 1.25 768, 192, 160 21, 31 12.7

Table 4. Summary of the LES cases for the domain size study. For all cases, A+ = 12. We consider three cases
with (κ+

x , ω+) = (0.021, −0.1), (0.021, +0.1), (0.007, +0.05). For each case, we perform a medium-domain
simulation (figure 1a, Lx × Lz 	 2.0h × 0.6h, y+

res 	 1000), and a large-domain simulation (figure 1b, Lx ×
Lz 	 4.0h × 1.2h, y+

res 	 2000).
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(b)(a) κ+
x = 0.021, ω+ = +0.10 κ+
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Figure 18. Comparison of the mean velocity profiles U∗ between the medium-domain simulation (red solid
line Lx × Lz 	 2.0h × 0.6h, y+

res 	 1000) and the large-domain simulation (blue solid line Lx × Lz 	 4.0h ×
1.2h, y+

res 	 2000) for two actuated cases from table 4: (a) Reτ = 4000, A+ = 12, κ+
x = 0.021, ω+ = +0.1,

and (b) Reτ = 4000, A+ = 12, κ+
x = 0.007, ω+ = +0.05. In both (a,b) we also plot the non-actuated case at

Reτ = 4000 with the medium-domain size (black solid line). The profiles are presented in viscous units (scaled
by their actual uτ and kinematic viscosity ν). The bullet points (•, red, •, blue, •, black) locate the resolved
height y∗

res. The profiles (red dashed line, blue dashed line, black dashed line) beyond y∗
res are reconstructed

using the composite profile of Nagib & Chauhan (2008) (see § 2.3). The insets plot the velocity difference
	U∗ = U∗

act − U∗
non-act.

figures 4, 6 and 7). In fact, this is the most challenging case for the application of
the medium-domain size among our production cases (table 1). For each case, we
perform LES with the medium-domain size (figure 1a, 2.0h × 0.6h, y+

res 	 1000) and the
large-domain size (figure 1b, 4.0h × 1.2h, y+

res 	 2000).
We report the obtained DR for each case in table 4. The agreement in DR between the

medium domain and the large domain is quite good for all cases (within 1.6 % difference).
We compute DR (hence, Cf ) following § 2.3. First, we reconstruct the U∗ profile beyond
y∗

res using Nagib & Chauhan (2008)’s composite profile, indicated with a dashed line
in figure 18. Then, we obtain Cf ≡ 2/U∗

b
2 by integrating the resolved portion of the

U∗ profile up to y∗
res (solid line in figure 18) and its reconstructed portion beyond y∗

res
(dashed line in figure 18). Therefore, for the medium domain, Cf is obtained by integrating
the resolved U∗ profile up to y∗

res 	 1000 and the reconstructed part beyond that.
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However, for the large-domain size, the integrated U∗ profile consists of the resolved
portion up to y∗

res 	 2000 and the reconstructed portion beyond that. The close agreement
in DR between the medium domain and the large domain (table 4) indicates the suitability
of the medium-domain size (hence, sufficiency of resolving up to y∗

res 	 1000). Beyond
y∗

res 	 1000 can be accurately reconstructed with the composite profile.
Further support for the suitability of the medium-domain size is provided in figure 18.

We compare the profiles of the mean velocity U∗ and the velocity difference 	U∗ between
the medium-domain size (red solid line) and the large-domain size (blue solid line) for two
cases from table 4; κ+

x = 0.021, ω+ = +0.1 (figure 18a) and κ+
x = 0.007, ω+ = +0.05

(figure 18b). For both actuated cases, the resolved portion of the profiles agree well
between the medium domain and the large domain. We observe this agreement in the
U∗ and 	U∗ profiles (the insets). For both cases, the logarithmic U∗ profile appears
by y∗ 	 200. This allows us to use the composite profile beyond y∗ 	 200. Overall, we
conclude that the medium-domain size (Lx × Lz 	 2.0h × 0.6h, figure 1a) is suitable for
our production simulations at Reτ = 4000 (table 1).
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