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Abstract. We provide sufficient conditions on a positive finite rotation invar-
iant Borel measure on " which guarantee that the analogue of the Carleson mea-
sure theorem remains valid for Bergman spaces of holomorphic and n-harmonic
functions on D" generated by the measure.
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Theorems characterizing for a given space H of holomorphic or harmonic
functions measures w for which H is naturally embedded into the space L”(w), are
usually called Carleson measures theorems. They go back to Carleson (see [1], [6],
[7]), who described measures w on D for which the Hardy space H?(DD) is naturally
embedded in L”(w). The description is given in terms of values of w on “Carleson
squares”. This result was generalized by L. Héormander for Hardy spaces on strictly
pseudoconvex domains in C" (see [9]). W. Hastings [8] proved a Carleson type the-
orem for Bergman spaces of holomorphic and harmonic functions on the disk and
polydisk. A version for weighted Bergman spaces of holomorphic functions on the
disk appears in a paper of D. A. Stegenga [23] (see also [12], [18], [17], [24]). J. A.
Cima and W. R. Wogen [3] gave a Carleson type theorem for weighted Bergman
spaces on the ball in C". D. H. Luecking in [11] showed a general method to char-
acterize Carleson measures on generalized Bergman spaces. This method was used
by J. A. Cima and P. R. Mercer [2] to prove a Carleson measure theorem for
weighted Bergman spaces on strictly pseudoconvex domains in C". The analogue of
the Carleson theorem for H?(D") for n > 1 is not true.

In the paper we consider Bergman type spaces that are generalizations of the
weighted Bergman spaces. Roughly speaking, a weighted Bergman space on the disk
D is generated by the measure of the form (1 — #*)*rdr x X in the polar coordinates
for some o > —1, where dr and A are the Lebesgue measures on [0,1) and T,
respectively. The spaces 5”(u) and B’(u) of n-harmonic and holomorphic functions
on D" are generated by the measure 1 ® A, = ®.(u x 1) on D", where u is a positive
finite Borel measure on [0, 1)" that does not vanish near (1,...,1), A, is the
Haar measure on T" and the function @ :[0,1)" x T" — D" is given by
®((r, 1)) = rt. Properties of these spaces were considered in [22], [13], [14]. One can
show that each positive finite rotation invariant Borel measure on D" has the form
uw® A, for some .

The aim of the paper is to prove Carleson type theorems for spaces b”(u) for
1<p < oo and B’(u) for 0 < p < co. The paper is divided into three sections. The
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terminology and basic facts are explained in the first. In the second section we pro-
vide conditions on u which guarantee that the spaces #”(u) for 1 <p < oo and B”(u)
for 0 < p < oo are naturally embedded in L%(w) for p<q < oo, if values of w on
“Carleson squares’ are suitable for u (see Theorem 3). Furthermore, we provide less
restrictive conditions for p which guarantee that the spaces »”(u) and B”(u) are
naturally embedded in LY(w), if values of w on a sequence of ‘“‘suitable squares”
inside the polydisk are appropriate for u; (see Theorem 4). A crucial role in proofs
of these results is played by Lemma 2 which describes a natural property of the
Poisson kernels. For n=1 (and spaces b”(u) for 1 <p <oo and B’(u) for
0 < p < o0) the role of the lemma can be played by the Carleson theorem. Our
method provides in the case of Bergman spaces generated by radial weights more
precise results than the D. H. Luecking method. For Bergman spaces generated by
“regular” radial weights they yield similar results. In the third section we give con-
ditions for pu which guarantee that if B”(u) is naturally embedded in LY(w), then
values of w on “Carleson squares” are suitable for u; (see Theorem 8). The proof of
Theorem 8 applies some ideas that are standard in such considerations (see [15]).
The conditions on w in Theorems 3 and 4 are expressed in terms of values of u on
some sequence of parallelepipeds in [0, 1)". In Theorem 8 they look similar to those
introduced by Shields and Williams in [21]. Propositions 6 and 10 show that in both
cases they are quite easy to verify for wide families of measures. Theorems 3 and 8
together show that the classical Carleson theorem can be adapted for #”(u) and
BP(w) spaces for a quite wide class of measures .

1. Basic properties of generalized Bergman spaces on the unit polydisk. We start by
explaining basic notation used in this paper. As usual, N, D and T will stand for the
set of all positive integers, for the open unit disk and for the unit circle in the com-
plex plane C, respectively. Throughout the paper, n will be a positive integer and u a
positive finite Borel measure on [0, 1) with 1 = (1, ..., 1) € supp(w); (the support of
w briefly denoted by supp(u) is the smallest closed set C C [0, 1]" such that
w(C) = ([0, 1)"). The normalized Lebesgue (Haar) measures on [0, 1)", T and T"
will be denoted by #,, A and A, respectively. For r=(ry,...,r,) €[0,1)" and
t=(t1,...,t;,) € T" the element rt = (rit1, ..., ryt,) is a member of D". We denote
by 1 ® A, the Borel measure on D" given by u ® A,(4) = p x A,(®~'(4)), where
®:[0,1)" x T" — D" is given by ®((r, 1)) = rt. We shall use the following conven-
tion: if ¢ is a member of an n-fold product X”, then ¢, is the /-coordinate of ¢ for
[ =1,...n. The integer part of x € R will be denoted by [x].

For a positive finite Borel measure u on [0,1)" with 1 € supp(u) and
0 < p < 00, we denote by b”(u) the space of all n-harmonic functions (continuous
and harmonic in each variable separately (see [19])) /: D" — C such that

1

</I.])” |f|p du ® )\n)z < o0,

equipped with the norm (when 1<p < 00) and quasi-norm (when 0 < p < 1) defined
by

in=([ 1 aeny.
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Its subspace consisting of all holomorphic functions will be denoted by B”(u).
This definition covers many classical examples of Bergman type spaces on D". For
example: the space B(ry...r,n,) is the classical Bergman space of holomorphic
functions on D", the space B’(([T_,(1 —r})ir)n.) for oy > —1, I=1,...,n are
analogues of the classical weighted Bergman spaces of holomorphic functions; (see
[5]). We concentrate only on properties of b”(u) spaces for 1<p < oo and B’(u)
spaces for 0 < p < oo.

For z=(z1,...,2z,) and w=(wy,...,w,) in D" with |z| < |w], for every
I=1,...,nlet

12 2
P.(w) = l—llml IZ/I‘

lwi — ziI?
For every h = (hy, ..., h,) € (0, 1]" let

Py={(u,...,u) €0, 1) : 1 —ly<u<1,1=1,...,n).

PROPOSITION 1. Let w be a positive finite Borel measure on [0, 1)" such that
1 € supp(u). For every fe b’(n) with 1<p < oo, and fe B’(u) with 0 < p < oo,
z=(z1,...,2,) € D", we have
qn
P D > L DT (1 = 121D

A< ( Yiri.

Proof. Applying the fact that | f|” is a subharmonic function in each variable
separately we get

< [ Parorror < ([T 2) [ AR dito

=1 R; — |z
for every R = (Ry, ..., Ry) with |z] < Ry < 1 for /=1, ..., n. Therefore,
|f(2)|p< 4" / / |f(rl)|p i (l)d/,L(I)
P 1) (TTELA(1 = 121D) o)

< 4117
TPt ([T (1= J21D)

From the proposition above, it follows that the topology of b”(w), if 1 <p < oo,
and B(u), if 0 < p < o0, is stronger than the topology of uniform convergence on
compact subsets of . Then the spaces »”(u) and B”(u) are Banach when 1<p < oo
and p-Banach when 0 < p < 1. Therefore #”(u) and B’(u) are closed subspaces of
LP(u ® X). The space LP(u ® 1) is separable, for every 0 < p < oo; this is a straight-
forward consequence of the Lusin theorem and the fact that the space C(@") is
separable. It follows that the spaces b”(11) and B?(u) are separable. For every ¢t € T"
and € b’ (w), |fIl = Ilf:|l, where f;(z) = f(zt). Furthermore, the norm (quasi-norm)
of b”(n) and B”(u) is lower semicontinuous in the topology of uniform convergence
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on compact subsets of ). Consequently, harmonic polynomials are dense in 5”(u)
spaces, and polynomials are dense in B”(u), for every w. (See [10] and [16].) If B”(u)
or b”(u) is naturally embedded in L9(w) for some positive finite Borel measure w on
D" and 0 < ¢ < oo, then the embedding is continuous. Moreover if the embedding is
compact, then it maps bounded pointwise null sequences into norm null sequences.
The first fact follows from the closed graph theorem and the fact that the natural
embedding is continuous when b”(u) is equipped with the topology of uniform
convergence on compact subsets of " and L9(w) with the topology of convergence
in measure. The second follows from the fact that the closed unit balls of #”(1) and

BP(u) are compact in the topology of uniform convergence on compact subsets of
D".

2. Sufficient conditions for Carleson measures on B”(u) and #”(u). For every
h=(hi,...,h,) €(0,1]"and 1 = (e™, ..., e") € T" let

Snt = {(i‘lei“",...,rnei‘*"’) eD": 1 -h<sr<1l,yy—h<s<w, [ =1, ..., n}

For each Borel measure w on [0, 1)" we have
/11
1 ® My(Shi) = p(Py) H

for every h = (hy, ..., h,) € (0, 1]" and ¢ € T". The crucial role in our estimations will
be played by the following result.

LEMMA 2. Let 0<r;< Ry < 1and0 < g <R;—r;, forl=1,...,n. Moreover, put

N/ [Z ] and J=1{0,1,..., Ny —1}x---x{0,1,...,N,—1}.  Finally, let

={(™,...,e) eT": ”7 <5< ZURD = 1,....n}, for j=(jt,....jn) €.
Thenfor every t € T" and u; € U;, j € J, we have

Z P (R)<3"Ny ... Ny,
jeJ

where r = (ry,...,r,) and R=(Ry, ..., Ry).

The proof of the lemma is very technical but the idea is quite simple: we replace
the sum by the lower Riemann integral sum of P, on T".

Proof. Letus takeany t = (¢1,...,t,) € T". Let t = (f1,...,1,). Lete : R — T be
given by e(s) = ¢>™. For every j e J let U; = e([]]\}1 f‘;,’]l)) x ... x e([4, =), The
sets U; are pairwise disjoint and T" = =U, 10, Let w; = (ei%,. 6-2:,/:1) Each w;

belongs to exactly one of the sets {tUm}me ; and each of the sets contains exactly one
element w;. Denote by ¢ : J — J the bijection defined in this way:

o(j)=m if w, € t_f]j.

Let v = (v;1, ..., v;,), where
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1 . if w(j);(?) 0,
eUi— : [4v] 1
v = 1| (1)v’, 1) if O(TT,/<Z’
()it i U 1
( ]VI[ ) lf Nll>i'

It is clear that tU; C e(W; ) x ... x e(W,,), where

if (j)=1,

Wir= 1 N—1 . .
[0. %]V [P 1] if e(j), =0.

2

|R i \2

Since the function s — is increasing on (7, 27) and decreasing on (0, ), for

each/=1,...,n

P, (Rt) = P.(Rtity) = P.(Ru;t) <P.(Rv)).

Foreveryl=1,...,n, we have

Rlz — }’[2 R/ +r <’ 2
|R/Vj71—}’1| Rl_”l &l

Let V; =e(Tj1) x ... x e(Tj,), where

(o002 max(le)=lly i el
N, ? N,
T =

min{N;—1,¢(j)+1} mlantp(]),JrZ o)),
[ N, N ) if 55+ >

For every 0:(01,...,an)€{0,1,2}” let Cy=B]" x...x B, where B)=
(2.3, Ni=3). Bl =(0.N;= 1} and B} = (1, N;~2). Let £, =Df' x...x Dff

where D) = 'I]' and D} = D} =e([— N/ , Nz]) Applying the following facts

RZ 2
J VicEs and f—dk()_l
T

2
U(NeCs) |Rx — 1]

foreveryo € {0,1,2} and /=1,...,n, we get

Z Py (RN < Z P.(Rv))

nojeJ N jeg

< 3 PRy

oe{0,1,2)" {j:p(j)eCo}
2 2
IT 2)( Il R Ve

3
sel0T2) ot neCo) o0y €V Nioi=oy 1RV = 71

N

R2
< 2 (LT ) o
© 2 L e

o€{0,1,2)" {l:0/2£0} /=1
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Now we are ready to state the Carleson theorem for ”(u) and B”(u) spaces.

THEOREM 3. Let p be a finite positive Borel measure on [0, 1)" with 1 € supp(u). If
there exist Cy >0, Cy > 0, strictly decreasing sequences (am1), .., (@mn) C (0,1)
converging to zero, increasing sequences (by.1), ..., (bmn) C N and d € N such that

. A

() —=t <y, foreverymeNandl=1,...,n,
Am,l — Am+b,, ;1
(ii) I’L(P(akl—l.l ..... ak”—l.n))

:u'(Bk)
B =1 = akymg 15 1= ity g 1) X oo X = i, ons 1 — ity ) - and

<Cy, for every k=(ky,....k,) e N"\{I}, where

ap,1 = =daon =1,
then
(a) for every finite positive Borel measure w on D" such that

(S0 < C3(u(P) [ [ 1)
=1

for some C3 > 0, every h=(hy,...,h,) €(0,1]" and every t € T", the space b’(u) is
naturally embedded in LY(w), for every 1 <p<q < 00, and the space B (1) is naturally
embedded in LY(w), for every 0 < p<q < 00;

(b) for every finite positive Borel measure w on D such that

lim sup{% ch=(hy,...,h) € (0,11, min{h}<é, t € TT”} =0,
=07 (w(Pu) [Ti=y by !

the embedding I : b*(u) — Li(w) is compact, for every 1 <p<q < 00, and the embed-
ding I : B’(u) — LY (w) is compact, for every 0 < p<q < 00.

Proof. For every k = (ky,...,k,) eN"and [=1,...,nlet

Ar=[1=ar 11, 1 —ag 1) < ... x[1 —ag,—10, 1 — ag, n)

and Ny, = [—2%—] . Let

G 1= kb 11

Jk={0,1,...,Nk,1—1}X...X{O,],...,Nk,n—]}.

For every j = (ji,...,Ju) € Ji let

; ; 27y 2r(ji+ 1)
Uei=1{("",....,é")eT": —<syy<——=,I=1,....,n
k,j {( ) Nk,l 1 Nk,l }

and Ay ; = ®(Ar x U,), where @ : [0, 1)" x T" — D" is given by ®((r, 1)) = rt. Then

Ak,jC U S a(j+1) D+l .

N, 19k—1,1) N nag_1 pn)
oe{0,1)" (k=115 y—10), e TR e kI

.....

Hence
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n

g
a)(Ak,j)gzn C3 (/J“(P(akl,m,.‘.,ak,,,lvn)) 1_[ ak/*l,l)p'
=1

Let us take any f' € b”(n), for 1<p < oo, or f€ B’(u), for 0 < p < co. Let | f] attain
its  maximum  on  Ag; at  owe; = (wealen, L (wiale ) € Ay s
| fwi )l = sup{|f(2)| : z € Ak} Let ug; = (e, ..., e"in). Applying the fact that
| fI7 is a n-subharmonic function we get

)< [ P (ROLAROP a0

for every R=(Ry, ..., R,) €[0,1)" with |wi ;| < Ry < 1,for /=1, ..., n For every
R:(Rl’-nan) GBk,
RIZ,“‘,,Mle 5 25—
sup R el (Rr = WD (R = 1 + ag,1)” + 4Ri(1 — a, ) sin” (F52))
seR M\ seR (R — 1+ ak,,l)((R/ - |Wk,j,1|)2 + 4R1|Wk,j,1| SiIl2 (%))

[Rie —(1—ag, g j.1*

k1,1 — Ayl ) (R4 1 — ay, 1)

< (1 n
(R + [wijul)?

< 4C] )
ak[,l - ak1+b;\»/.[,l

for every / =1, ...,n. The second inequality follows from the fact that the linear
fractional mapping

L R=14 ar, )’ + 4R(1 — ar,)p
(R = wiejal)® + 4Ryl wi il p
attains its maximum on [0,1] at 0 or 1; (in this case at 1). We now set

re=0—ak.1, ..., 1 —ag, ). Applying Lemma 2 we get

> o)l < fT > P (ROLARDP di(1)

JeJk JEJk

< [ (Z#ctPu Ro)iRor dnio

JeJk

<12 ¢{([[ M) [ 1ARP drst0.
=1

Since the estimation above holds for every R € By, it follows that

n " - 1 .
> o <12 M) s /B ,( A AP ().

jEJk =1

Applying the fact that the Banach space /! is contained in / ’ we get

S nen & 1 2
(2 1wy <2 TN s | [ 1008 diatce

JjeJk
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Since the sets [1 — Ay by 1,15 - am1+d+bm|+d,1,l) and [l — Any+byny 1,15 - am2+d+bl712+d,[~[)
are disjoint if |m; — my|=d, each element of D" belongs to at most d” distinct By
sets. Let E=(1 —a;1)D x ... x (1 —a;,)D. Then

[ s 3 3 mrteis)

keN™\{1) jedi

Z Z |f‘(M)k])|q2n C3 (M(P(akl 115wy ey — 1”)) l_[ ak[ l l

kEN"\{ }jeJk

Z 2”C ((1—[ 247 Cy ag—1, ) P(Pa, 11t 1,,))/ / |ﬂrl)|pdkn(l)du(i’))
By

oy 1 el = Qb 1 M(B )

q
<" c3(c2(24ndC%)” 1£117)".

The last 1nequallty also follows from the fact that the Banach space /! is naturally
embedded into /7. By Proposition 1,

4l f'll" )/

/ |f|"dw<a)([D”)(
E

which completes the proof in the case (a).

(b) It is enough to show that / maps bounded pointwise null sequences to norm
(quasi-norm) null sequences. Let (f,,) be a bounded pointwise null sequence either in
bP(u) for 1<p < oo or in B’(u) for 0 < p < co. By Proposition 1, (f,,) converges
uniformly to zero on compact subsets of D”. For every £ >0 we can find

=(My,...,M,) e N" such that, applying the estimation above for sequences

aml am+m—1,1, We get

: , . 4 s,
lim Sup/ | finlldoo< limsup [ |fn%dw + C|| full? sup“’(—”f) <e.
m D" m

Ey (w(P) [Ty )

where Ey = (1 —ap, 1)D x ... x (1 —apy,,)D, the supremum is taken gver all
h=(h,...,h,) with min;{/;} < max/{ay,;} and t € T", C = 2”(C2(24ndC2)")"

REMARKS. (1) We shall apply in the paper the theorem above (and the next
theorem) only with d=b,;=1 for every keN, and /=1,...,n. Then
Br = Aiy2....2)-

The condition (i) needs some explanation. Easy estimations show that

Am1,1 > L and Qb gl < Ci—1
am; — G iy C
for every [ =1,...,n. It is clear that both inequalities together with independent

constants from the interval (0, 1) on the right hand sides are equivalent to (i). A
natural test of verification whether or not a measure pu satisfies the conditions of
Theorem 3 in the case n =1 is to choose ¢ > 1, find a sequence a,,; C (0, 1) such
that w([l — a@m.1,1)) = ¢ u([0, 1)) and verify whether or not the sequence (a. 1)
satisfies the condition (i).
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(2) For n =1 and spaces b”(u), for 1 < p < oo, and B’(u), for 0 < p < oo, we
can apply the classical Carleson theorem for Hardy spaces on D instead of Lemma
2. We give a sketch of the idea. We apply the Carleson theorem for the measure
Oloqi—ac 1 1,1-a)xT) and the disk (1 — @1, ,1)D. Then

/ |f|‘1da)<CC3((1 B ak+b,(_,,1)2ak71'u([l — @115 1))/ |f(rt)|pd/\(t))ﬁ’
® T

((1=ar-1,1,1=ar1)xT) 1 — ktby,1

for every 1 > r=1 — apys, 1, where C is either the constant from the Carleson the-
orem for the Hardy space #”(D) of harmonic functions on D if f'€ b”(u) or the
constant from the Carleson theorem for the Hardy space H”(DD) of holomorphic
functions on D if f'e B(u); (see [6], [7]). Thus we save two pages of technicalities.
The rest of the consideration proceeds similarly as in the proof above.

From the estimations in the proof above, it follows that the “Carleson squares™
Sp.: are not the most suitable tools for Carleson type theorems for some measures w.

THEOREM 4. Let p be a finite positive Borel measure on [0,1)" such that
1 € supp(p). Suppose that there exist C, >0, Cq > 0, strictly decreasing sequences
(@m1)s - (@mn), with each ay, € (0,1), converging to zero, increasing sequences
(bm.1)s -y (bmn) €N and d e N such that

Am—1,1 — Am,l

(1) <C’1,f0reverymeNandl:l,...,n,
am,[il_ Amt-by, .l
(i) WA < Cy, for every k € N"\ {1},
wu(By)
where ap1 = ... =ap, =1,
Ak = [1 — Af—1,1> 1-— akl,l) X ... X [1 — A, —1,n» 1-— ak,,,n)
and

B =[1 = a4, 15 1 — @iy, qn1) X oo X U= @iy ons 1 — iy, )

Moreover, put k| =k; + ...+ ky, Npj= [27”] and

ley 1=y 1.l
Je={0,1,....Neg — 1} x...x{0,1,..., Ny, — 1},
for every k = (ky, ..., k,) € N". Finally, let
27j,

y N 2n(j + 1
Ups= (e, ... ey e T 20 < ZZUED
Nii k.l

1,...,n}

and Ayj = ®(Ar x Ury) for every j=(ji,-...jn) €J. (P :[0,1)" xT" - D" is
given by ®((r, t)) = rt.) Then
(a) for every finite positive Borel measure w on D" such that

(Arj) < Cs(u(Ax) l_[(ak,fl,/ - ak,,/))%
=1
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for some Cs >0, every k € N"\ {1} and every j € Jy, the space bP(u) is naturally
embedded in L1(w), for every 1 <p<gq < 0o, and the space B’(u) is naturally embed-
ded in L1(w), for every 0 < p<q < 00,

(b) for every finite positive Borel measure w on D such that

w(Ay.) } _

li
e {(u & AL

|k| ]EJ/

the embedding I : bP(n) — LY(w) is compact, for every 1 <p<q < 0o, and the embed-
ding I: B’(n) — LYw) is compact, for every 0 < p<g < 00.

Proof. We use the notation and the estimations from the proof of Theorem 3.
Then for every f € b’(u), for 1 <p < oo, or f € B’(n), for 0 < p < oo, we have

[ rdos 3 S i)

keN"\{1} jeJi
< D)0 D I m)lCs (A H(ak, 11— a, /))
keN”\{ } €k
/ Q1.0 — A M(Ak)
< Cs(([ T24m(cr + 1= ol f / LSO dhn(D)diu(r
ke%\:{l} 5((B kil — ak/erA,// wu(By) By ( ())

< Cs(Ca4nd(C) + DCY' /1),

where £=(1 —a;1)D x ... x (1 —a;,)D. The rest of the proof of part (a) and the
proof of (b) proceeds similarly as in the proof of Theorem 3.

COROLLARY 5. Suppose that u fulfills the assumptions of Theorem 4.
(@) If v is a finite positive Borel measure on [0, 1)" with 1 € supp(v) such that

then bP(w) is naturally embedded in b’ (v), for every 1 <p < oo and B () is naturally
embedded in B’ (v), for every 0 < p < o0.
(b) If v is a finite positive Borel measure on [0, 1)" with 1 € supp(v) such that

lim sup v(Ay) =
ko u(Ar) ’

then the embedding I:b°(n) — bP(v) is compact, for every 1<p < oo, and the
embedding I : B’(u) — BP(v) is compact, for every 0 < p < 0.

The corollary shows that if a measure p fulfills the assumptions of Theorem 4,
then its values on sets 4, can be modified (within some limits, naturally) and still it
generates the same spaces b”(u) and B?(w). In particular #”(i) and B?(u) do not
depend on values of u on any compact subset of [0, 1)". The next result shows that a
measure = fry,...,ra) [ (1 —r)*n, for o > —1, satisfies conditions of
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Theorem 3 if the function f: [0, 1)" — R, increases or decreases not too quickly in
each variable separately.

ProrosiTioN 6. Let f:[0,1)" > Ry, a=(o1,...,a,) € (—1,00)". Let fi,:
0,1) > Ry be given by fi,(x)=fr,....r; =1, x,r;+1,...,r,), for every
I=1,...,nandre€[0,1)". If for eachl =1, ..., n the function f;, is either increasing,

for every r €10, 1)", and

f]r(l _ (m )/r‘rl)

lim sup ——*—~ C‘J"+1 < mo"Jrl for some m; > 1 and every r € [0, 1)",

e (1= @)
or decreasing, for every r € [0, 1)", and

Sirl= @)

limsup ———-<C, for some m; > 1 and every r € [0, 1)",
Efn(=G)T)
and the measure p = f(r1, ..., r,) [1=i(1 = r)*ny, is finite, then it fulfills the assump-

tions of Theorem 3.

Proof. Let K; € N be such that

f”(l - (Hl)kﬂ) - (Cl +m1>'1/+1

5 if f;, 1s increasing,

sup
ek fi (1= (5)')

or
(1= (L k
sup M <C+1 if f;, is decreasing.
ek (1= ()
It is clear that the sequences ay, = for /=1......n fulfill the condition (i) of
Theorem 3. Let A =[1 — ap,—1.1, 1 & "ag, 1) X . [1 — Q,—1.n, | — ax, ) for every

k= (ky,...,k,) € N". Then

. (L)(a/-ﬁ-l)K/
m

/ 1‘[(1 — () —ﬁ : .
A (al + 1)m§0t/+1)(Kl(k/*1))

k = =1

Let L ={l:f;, is increasing for every r € [0,1)"} and L' ={l1,...,n}\ L. Let
2=(2,...,2). For every k € N"\ {1} we have

(1)(a/+1)K1 ( )(a/+1)1<1
my
J(Qx )H(a + D (et DKk~ 1))\“(A’<)<f(Rk)H(a + D (@t D(E k1) °

=1 =1

where R, = (Ri.1, ..., Rin) and Qx = (Qk.1s - - - » Qk.n) for
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{ 1 — (7)1(1/(/ ifleL, - { 1 — (1)Kl(k171) iflel,

m my

1—(m[)K'("’ Voifrer, - (O ifrer.

Hence, for every p = (p1, ..., pn) € N"\ {1}, we have

(i +DKi(ki—1)
(P(apl 1 1seeslpy— 171)) ZkeN” k>pﬂRk) 1_[ (m/) : o
S (+DKi(pr+1)
M(Ap+2) f(Qp+2) H]— (m,) al w

SRps2110) 1 ( )(“’“)K'k’
ke(NU{0,— )n f(Qp+2) /=1 mi

For every o = (o1, ...,0,) € {0, 1}", let D, = B{' x --- x B, where B) = {—1, -2}
and B} =NU{0}. Let L, ,={l:0,=0}NL, f,l_{l:o;:l}ﬂL’, Loo =

{{l:o)=0}NLand L, ={/:0,=1}N L. For every k € D,, we have

f('lal’+2+k) < H(C+ l)Kl(—kH-l) 1_[ (C+ l)Kl H(CZ +my

fQpi2) leL le{l:k=0)nL, el 2

) (oD K(ki+1)

Hence

I’L(P(upl—l.l ----- ap, —ln)) Z Z 1_[ 2(o+1)K; 3K (C+ I)KI
notn) m (C+ 1)K 1_[ AL

+1)Kik,
M(A[H—Z) €0, 1}" keD, IEL IGL;AI m;al MKkt
. l_[ m[z(a/+l)K/ l—[ (C/ '; ml)(a’+l)K/(C12+ ml>(a’+l)K’k’
ZGL(,VQ ZEL,,Vl m/
n 1

<3 e S T ]
1 m

oef0 1y =1 leL, er,, 1

(A

o (C,+m,)(011+1)K/
2}’)1[

mz(a/+1)K, (MZZ(CI + ml))(d/+1)K/

<#Tlc+*]] T ael |
=1 1= () I

lel’ el

_ Cr+my (a+DK;
1 ( 2my )

Thus we showed that p fulfills the conditions of Theorem 3 for b,,;=d =1, for
everymeNand/=1,...,n

For n = 1, by Proposition 6 and the remark after Corollary 5, every measure of
the form (1 — %)%y, X, plIn(l =) - rn1, X1 In”(| In(1 — ))(1 — r)*n for
a > —1 and y € R fulfills the conditions of Theorem 3. It is clear that every measure
which fulfills the conditions of Theorem 3 also fulfills the conditions of Theorem 4.
The measures xy | In(1 — r)["(1 — r 'y for y < —1, 32, m&l_%ﬂ, (where &, is

the Dirac measure concentrated at r), and exp(—=)(1 — 1)~ >y, for k e N, fulfill
the assumptions of Theorem 4 (in the first and second example for a, = 2%,
d = b, =1 and in the third for a, = %, d = b, = 1) but does not fulfill the condi-

tions of Theorem 3. W. Lusky [13] considered the following conditions:

([1-2
(*) Supnm < 00,

w([1=2-0+0 1))
(**) inf; lim sup,, W <1
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for positive Borel measures on [0, 1) with 1 € supp(u), to get the Banach description
of the generalized Bergman spaces on the disk. The last example does not satisfy the
condition (x). The measure ) ,° | 5 81__ fulfills the condition (*) but does not fulfill
the conditions of Theorem 4. The measure > ,81 5 satisfies the condition ()
but does not satisfy the conditions of Theorem 3. On the other hand, if p fulfills the
conditions (x) and (*x), then it fulfills the assumptions of Theorem 3. The case n > 1
is much more complicated. It is clear that the measures [])_,(1 —r7)*rm, and
[T, IIn(1 = rp)"(1 — r)*rm, for oy > —1 and y; > —1 fulfill the conditions of Pro-
positions 6 and consequently the conditions of Theorem 3. We show in Example 11
that also the measure (I — max; 20 (]_[, | rz)nn for > —1 satisfies the conditions
of Theorem 3.

3. Necessary conditions for Carleson measures on B” (1) and »” (). In the sequel
we shall need the following fact; (see [4, p. 27] or [20, Prop 1.4.10]).

Fact 7. For every B > 1 there exists Cg > 0 such that

da(t
/ ()5< Cs - for every R>r > 0.
T |IR—rt|? = R(R—r)f

THEOREM 8. Let 0 < p<q < oo. Let p be a positive finite Borel measure on [0, 1)"
such that 1 € supp(w). If there exist B = (B1, ..., Bn) € (1,00)" and C > 0 such that,
for every o = (o1, ...,0,) € {0, 1} and h = (hy, ... h,) € (0, 11", we have

//L(P(’/’I P ))
e d(r) S CL (P ,
Awﬂpw+)w v l(mnﬁ”

then
(a) for every positive finite Borel measure w on D" such that BP(w) is naturally
embedded in LY(w) there exists C > 0 such that

(S < C(u(®) [ [ ).

=1

for every h= (hy,...h,) € (0,11" and every t € T";
(b) for every positive finite Borel measure w on D such that the natural embedding
1: B’(u) — Li(w) is compact, we have

a)(Sh,t)

i h=(h,...hy) €(0,1]", min{h}<p, te T"; = 0.
((Pp) H1:1 hy)e / }

li {
g SUP

Proof. For a = (ay,...,a,) € R, h=(hy,...h,) €(0,1]" and 1 = (1, ..., 1) €
T" let gjr0 : D" — C be given by

n
1
Shialzl, ..o z2n) = - — -
gﬂ+m—mﬁ
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Then, for every z € Sj,;, we have

n 1 n 1
1gn.p(2)" = > .
O = =i E(%/)’S’

=1

Let C, be the norm of the embedding 7 : B’(u) — L%(w). For any 0 # g € B’ (1)

lgl” 1 / gl?  \i 1 !
1:/ dM@)\.Z 5 dw > f| Z| CDS’ 7
D" ”g”p C12 ( D" ||g||l] ) CP”g”p g( ) ( ( h t))

Applying Fact 7 we get

n 1 n Cﬁ
lghesll? = / / b p@du)< S
o [0,1y" "1:1[|1 +h1—r;s;|ﬂ’ § [0,1)“1:!(1 +h1—r1)ﬂ’ !

n 7 ’31 —1dx 1 ﬂ
s /[0,1)" (E Cﬁ'(/o A+h—x (+ h,)ﬂ/—l» )

n n —or /(1 — o
<([Ten | H<(W)l (. ) o

[0.1)" 5e(0,1)

51 &
Cs) / / dn(X)dpa(r)
H ) oty O P 1_ (h1+ z)ﬁ’)

<(f[cﬂz Z /[;)1)” (P(r‘l’l AAAAA U”))H<(h p )ﬁ/> /dnn(r)

oef0,1}"

<(e) Cl““’h)l_[((ﬂ] - T<e u(m]"[ﬁ’cf"

=1 oe{0,1}"

for every h € (0, 1]". Hence

1 q
o(S.) < (C5C, w(Py) [ [ 37 BiCpu)'.
=1

for every h € (0, 11", which completes the proof in the case (a).
(b) Let y=,....,v) €RL. For every o=(0y,...,0,) €{0,1}" and
h=(h,...,h,) €(0,1]", we have

M(P(r ..... o )) 1
A 1y l_[l 1(h1 4r )0/(/3/+V1) dnu(r) < Crp(P) 1_[ hﬁz+V1

LY nogpbrtr=l o

h 1 ” _ - 7
The sets {( i) V&g he0,1]", 1€T"} and {(W)pgh,t,ﬂﬁ, the(0,171",
t€T"} ,are bounded in B’(n), in view of estimations above. The functions

(T A7 )gnry converge pointwise to zero if [],_, & converges to zero. Therefore the

]_[ ﬂ[-H/[
=1k

sequence (( P ) Sh. . p+v) 18 bounded and converges pointwise to zero, for any
sequences (g) = ((hg.1s - - -, hen)) € (0, 11" and (¢) € T" such that limy min,{/i ;} = 0.
Since [ is compact,
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lim sup] | (( ; h:;;) ) ght,a+y)H b=, ) € 0,11, min(hy<p | =0.

p—0t
Hence, for every ¢ > 0 there exists § € (0, 1) such that
n 1 ; - .
gn.1.p+7 1l Lo(w) SS(M(Ph)HW) , for every h € (0, 1]" with mlln{hl}<8.

For every z € S;,,, we have

d 1 1
|8h.r.p+ (D" = : > .
8.t ﬂ-H/( ) B |1 + hl _ (1 _ h[)e_,h/|ﬁ[+y, g (3h1)ﬁ1+)//

For every 0 # g € LY(w), we have

q inf, 2N\ ?
[ g (P
g ||g||Lz/(w) 81l L9(w)

Applying estimations above we get

up{w(#)q h e (0,17, mm {h}<$, t e TT”} <e&l l_[ qu
(P [Tz ey =1

REMARK. Since B’(u) is a subspace of »”(u) the theorem above remains valid
also for spaces b”(u), for 1 <p < oc.

The next result shows that a measure pu = f(r1, ..., r) [, (1 — r1)*ny, for o; >
—1, satisfies the conditions of Theorem 8 if the function f: [0, 1)" — R is increasing

in each variable separately. For this purpose we shall need the following result.

FacTt 9. Let a > —1. If g : [0, 1) — R, is an increasing function, then
1! 1 !
[ et —wravs o [ gt - o
gotl /]_ ()/S‘)a+1 1—ys

for every y € (0, 1] and s € (0, 1].

Proof.
1 1 " 1 1—ys 1 3
o [ e —orax= o (7 [ Yew -t ax
_ +1 o+1 1
(G hr )=+ S [ s - vras

1— ya-H y"“"l ) .
<( (rs)™"! +(ys)“+1) /I_w g()(1 — x)* dx

1 1
< ()/S)—Q'H/I g(x)(1 — x)* dx.
—ys
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ProrosiTiON 10. Let f:[0,1)" — Ry and a = (ay,...,a,) € (—=1,00)". If the
Sfunction fi,(x)=fr1,....,0n—=1,x, 4+ 1,...,r,) on (0,1) is increasing, for every
I[=1,....,n,andr €[0,1)", and the measure . = f(r1, ..., ry) [11=;(1 — r1)*ny is finite,
then it fulfills the assumptions of Theorem 8.

Proof. Let B=a+(3,...,3). Applying Fact 9 for each variable separately we
get

1 / X 1
2 fdl)a < o / fdl)a (*)
1_[[— T, ot P 1_[ ()/ﬂ 1) T, ™! Poyn

wetn) LU=\ S B Ynrn)

for every y=O1,...,¥) €, 1" and r=(r,...,r,) €(0,1]", where
Vy = (]_[’l’:l(l — rl)"")n,,. Therefore the function (ry,...,r,) — Ml)"iﬂﬁ’l) on (0,1]" is
1

decreasing in each variable separately. Let h=(hy,... I izn) € (0,1]" and
o=1(0y,...,0,) €{0,1}". For every t=(11,...,7,) €{0,1}" with <0 let
D. =B} x...x B», where BY=[ho; 1) and B} =[0,/). Let L, ={l:7,=0
oj=1}and M, ={l: ty = 1,0, = 1}. Then for every (ry, ..., r,) € D,, we have

PG ) w(Parry) _ PP i)
+1 = +1 +1
nZeL r;X/ l—IlELT h(lxl HleL, h{/X/

’

where
ry if o] =T = 1,
R[: /’l] ifO’]Zl, 1,'/:0,
1 if O‘/=0.
Hence

H’(P) ..... o )
) (7)
0,1 l_[l—l(hl +r )(7/((!/4—3) n

/L(P(r"l ..... “")) l_lzeL
- Z Jert] or(e13) dny(r)
(0. 1) D [ Lper, 17" Tz (b + 1)

< Z /'l“(P(hT1 ..... hZ”)) dnn(}")

c0 7 <o et ha/H D, HIEL (hy + 1) [ Tiear, (i + "/)a’+3
< Z I’L(P(h ..... h””)) l—[ hi

€l0,1}',r<o l_[leL ha'“ leL, Yl (h;—l—x) leM o (h +x)a'+3
< M(P(h? ..... /1””))

T+1 2
€{0,1}'t<o HZEL hal+ - H/GM haH—
Applying (*) once again we get

l_[[ o/(oz/-‘rl)

1—1 ha1+] M(Ph)‘
=1

(P

------
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Hence

/ (P yomy) i< Y w(Pp)
n ~ 1
o1y [Ty (g + 1)@+ €0 <o HZEL om, T hi*

<2 u(P/»]"[ /W

It is clear that the values of a measure yu on any compact subset of [0, 1)" do not
have any influence on this whether or not p fulfills the assumptions of Theorem 8.
For n=1, by Proposition 10 every measure of the form (1 — )%,

X In(1 —r)|"(1 — r)”‘m, xpn In”(Hn(l =)D = r)*m for o> —1 and yeR,

1)|1n(1 —r)|V(1 -y for y < —1 fulfills the conditions of Theorem 8. The
measure exp(—7 )(1 — )71, does not satisfy the condition for o = 0 of Theorem 8.
For n>1 accordmg to Proposition 10 the measures []_,(1 —r7)*rm, and
[T, IIn(1 = rp)"(1 — r)™rmy, for ¢y > —1 and y; > 0, fulfill the conditions of The-
orem 8. We show below that also the measure (1 — max,z{r/})"‘(]_[;l:1 r;)nn, for
o > —1, satisfies the conditions of Theorem 8.

ExaMPLE 11. The measure u = (1 — max7{r;})*([T, r7)m for « > —1 satisfies
the conditions of Theorems 3 and 8. In order to show this we apply the properties of
the measure p; = (1 — max;{r;})“n,. It is clear that ; is finite. Let [0 )" — R,

and f;,:(0,1) >R be given by flr,...,r,)=(—max; 2m)*  and
Jix)=f0r1, ..., F_1, X, Fiy1, - ., 1), respectively. Then, for every r e [0, 1)" and
[=1,...,n, we have

Q@ —max?{r;:j £ 1) for x< max{r;: j # [},
Jirlx) = { (1 —x?)"~ / for x> max{rj eI

If —1 < <0, the functions f;, are increasing and

U W (R R s A

R TR

If « >0, the functions f, ; are decreasing and

Al =0 -0 _

lim sup = lim sup =2

A (R ) s M S (I (I (| e B S

According to Propositions 6 and 10 the measure u; satisfies the conditions of
Theorems 3 and 8 for <0 and the conditions of Theorem 3 for «>0. Let
g:[0,1)" — Ry be given by g(r1, ..., 7,) = (1 —max; {r})* [T\-,(1 — r1)~®. For every

ref0,1)",/=1,...,nand a>0 the function
) = (1 =)~ —max*{r; : j # D" [(1 =)™ if x<max{r; :j # 1,
8riX) = (1 +x)* ]_[#Z(l - if x> max{r; :j# 1},

is increasing. According to Proposition 10 the measure pu; =g(r1, . .., r)[ [1= (1 — )0y
satisfies the conditions of Theorem 8 for «>0. It is easy to check that
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1> w(Ay) > 1 ’
i (Ag) — 2%t

for every k= (ky,...,k,)eN"\ {1}, where A, =[1-2"F1-2F)x.  .x
[1 — 2!k 1 —2-k) Hence there exists C > 0 such that p;(Pj)=>u(P)=Cui(Py),
for every h € (0, 1]". Therefore p satisfies the conditions of Theorems 3 and 8 for
o> —1.
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