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Abstract

This paper introduces certain generalizations of the notions of approximate limit, continuity and
derivative and of absolute continuity, of real functions, leading to generalized integrals of Perron
and Denjoy types comprising the /(/"-integral of Burkill (1931) and Sonouchi and Utagawa (1949)
and the AD-inlegral of Kubota (1963), respectively. The generalizations are all substantiated by
appropriate examples.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 26 A 03, 26 A 24, 26 A 39.
Key words and phrases, ^/"-integral, /4£>-integral, approximately continuous, density, sparse set,
proximally continuous, Darboux continuity, proximally absolutely continuous, Lusin's condition
(N), W,-integral, W,-integral, .PP-integral, PD-integral.

1. Introduction

In this paper we define three integrals of Perron type and one of Denjoy type,
each of the first three comprising the ̂ /'-integral of Burkill (1931) as generalized
by Sonouchi and Utagawa (1949) and the last one comprising the j4Z)-integral of
Kubota (1963).

If F is an indefinite AP- or ^4Z)-integral of a function/ on [a, b], then F is
approximately continuous on [a, b] and (ap)F' = / a.e. on [a, b]. We observe
that if this differential property of an integral is of primary interest, then
approximate continuity everywhere does not seem to be quite natural to expect,
although some meaningful continuity property everywhere is desirable. Each of
the integrals we define possesses the said differential property and is continuous
everywhere not necessarily in the approximate sense but in a certain proximal
sense, which implies continuity in Darboux sense.
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We first introduce in Section 3 the notion of sparse sets which generalizes the
notion of sets of density zero. Using this notion we then introduce in Section 4
the notions of proximal limit, continuity and derivative of a function, which
generalize the corresponding notions in the approximate sense. Besides, in
Section 5 we introduce the notion of proximal absolute continuity, PAC, of a
function, which generalizes the notion of AC. Using these concepts we define in
Section 6 the three integrals of Perron type, the PPr-, PPt- and PP-integrals, in
terms of major and minor functions defined by unifying and generalizing the
ideas of Bauer (1915), Hake (1921) and Saks (1937). Finally in Section 7 we
define the integral of Denjoy type, the PD-integral, using the descriptive method
of Denjoy (1916) as adapted by Saks (1937).

2. Preliminaries

Conventions. To save space, left-hand analogs of our notations, definitions,
theorems and lemmas will remain understood. By a set we shall mean a subset
of the real line.

Notations. Throughout, we shall use the following notations: R = the real line,
Re = the extended real line, \E\ = the outer Lebesgue measure of a set E,
d+(E, x) [d+(E, x)] = the upper [lower] right density of a set £ at a point x,
E' = the complement of a set E, and J = the set of positive integers.

With each point x e R there are associated four extreme densities of a set E,
and when these are all equal to one another, their common value is the density
of E at x. As a typical definition,

d + (E, x) = hm sup ' -r/l .
y-+x+ \(x,y)\

In the sequel we will use the following facts without further reference. If E is
measurable then d+(E, x) + d+(E', x) = 1, since \E n (x,y)\ + \E' n (x,y)\
= |(x,.y)| for ally > x. For any set E there is a measurable set A D E such that
\E n M\ = \A n M\ for every measurable set M (Saks (1937); (6.7), p. 70). We
call such a set A a measurable cover of E. If A, B are measurable covers of E, F
respectively, then A u B is a measurable cover of E u F. For, A u B is a
measurable superset of E u F, and, for any measurable set M, we have

\(A u B) n M\ = \A n M\ + \B n A' n M\

= \E n M\ + \Fn A' n M\

= \(E n M) u (F n A' n M)\ '.'A is measurable

<\(E U F)n M\,
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whence \(A u B) n M\ = \{E u F) n M| since E \j F c A u B. Finally,
since \E n I\ = \A n / | for any interval /, we note that at any given point the
extreme densities of a set and those of a measurable cover of the set are equal in
corresponding pairs.

We now prove three lemmas, of which the last one is the most important
single result of this paper.

LEMMA 2.1. (i) An arbitrary set E has density 0 or 1 a.e. on R. (ii) If a subset E
of a measurable set M has density 0 a.e. on M n E', then E is measurable.

PROOF. Let A be a measurable cover of E. By density theorem (Saks (1937);
(10.2), p. 129) A has density 1 at almost all points of A and has density 0 at
almost all points of A'. Consequently E has density 1 a.e. on A and has density 0
a.e. on A', which proves (i). To prove (ii), we note that by hypothesis E has
density 0 a.e. on A n (M n E'). So A has density 0 a.e. on A n (A/ n E'),
which implies, by density theorem, that \A n M n E'\ = 0. Thus A n M n E'
is measurable. Consequently, since A n M is a measurable superset of E, it
follows that E is measurable.

LEMMA 2.2. Let d+(E, x) = 1. Then there exists, for every k > 0, an open
interval (a, b) c (x, x + k) with |(x, a)\ < k\(x, b)\ such that \E n (x,y)\ >
(1 - k)\(x,y)\forallye(a,b).

PROOF. Since d+(E, x) = 1, there is 6 G (x, x + k) such that

Taking a = (x + kb)/(\ + k), we see that \(x, a)\ = (&/(l + A:))|(JC, b)\ <
k\(x, b)\ and, for all y G (a, b), noting that (x,y), {y} and (>>, 6) are pairwise
disjoint measurable sets with |{.y}| = 0, we have

\E n(x,y)\ = \E n(x,b)\~\E n(y,b)\

>(l~k2/(l+k))\(x,b)\-\(y,b)\

-\{x,y)\-k\(x,a)\

which proves the lemma.

LEMMA 2.3. Let A c [a, b] be such that (i) a G A, (ii) rf~(^4, x) < 1 for every
x G 5 = [a,b]\A and (iii) </+(£, x) < 1 for every x G A. Then B = 0 .
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PROOF. Suppose, for a contradiction, that B ¥= 0 . Put

Ao= {x (=A\d + (B, x) = 0} and Bo = {x G B\d~(A, x) = 0}.

By Lemma 2.1, the condition (ii) implies that \B\B0\ = 0 and that A is
measurable, and the condition (iii) implies that \A \ Ao\ = 0 and that B is
measurable. Now, since A u B = [a, b] and since \A \ Ao\ = 0, the condition
(iii) implies that each point of A n [a, b) is a limit point of y40 on the right.
Similarly, each point of B n (a, b] is a limit point of Bo on the left.

We assert that if x0 G A& y0 G fi0 and x0 <>>„, then for any e > 0 there are
points *, 6 ^ o n (̂ O'-Vo) and_y, G 5 0 n (^o^o) such that

(1) M n (''^o)| < e|(^^o)| for all t

(2) | S n ( x 0 , 0 |<«|(*o, ' ) | forall/

To see these, first observe that if y0 is a limit point of A on the left, then by the
preceding paragraph y0 is necessarily a limit point of Ao on the left, and hence
the existence of x, follows at once from the fact that d~(A,y^ = 0. lfy0 is not a
limit point of A on the left, noting that x0 is necessarily a limit point of A on the
right, we have x0 <s = sup A n (x0, y0) < y0. Then, since A n (5, y0) = 0 , we
have d*(B, s) = 1, which by (iii) implies that J £ v4. Consequently 5 must be a
limit point of A, and hence also of A& on the left. We simply choose a point
x, e Ao n (x0, *) with |(x,, J) | < e|Cs,.yo)|. Then, recalling that A n (s,y<J = 0 ,
we readily verify (1) for this xv

Existence of yx is shown similarly by considering the point inf B n (x^y^.
Now a £ A by (i). Therefore, since 2? c [a, b] and since B ¥= 0 , we have

a <b' for some 6' G fi. Consequently, since a is a limit point of Ao on the right
and since b' is a limit point of BQ on the left, there exist points a0 G AQ and
b0 G 5 0 such that a0 < b0. Starting with b0 and applying (1) and (2) alternately,
we select successively points a,, bx, a2, b2, . . • such that, for all n G / , an G A&

(3) Mn(/,6l l_1)|<(l/ 'i) |(/A_i)| for all/G («„,*„_,)

and

(4) |*n(aa,0|<0/«)|ta.,0| foraUiG(On,Z)B).
Then, for all n G 7, we have (using (3) and (4))

|(fl«+i. bn+x)\ =M n K + 1 , * n + 1 ) | + |2» n (an+1, * n + 1 ) |

| K + 1- *„_,)! + (\/n)\(am, bn+l)\
<(2/n)\(a,b)\,
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whence lim an = lim bn. Denoting this common limit by c, we have an < c < bn

for all n G / , so that both (3) and (4) hold with t = c. Consequently d+(A, c) =
0 = d_{B, c). These give d+(B, c) = 1 = d~(A, c), which by (ii) and (iii) con-
tradicts the fact that c G [a, b] = A u B, and the proof ends.

3. Sparse sets

DEFINITION 3.1. A set E is said to be sparse at a point x G. R on the right if
there exists, for every e > 0, a k > 0 such that every interval (a, b) c (x, x +
k), with |(JC, a)\ < k\(x, b)\, contains at least one pointy such that \E n (x,y)\
<e\(x,y)\.

The family of sets sparse at x on the right is denoted by S(x + ), and E is said
to be sparse at x if E G S(x) where S(x) = S(x + ) n S(x - ). (S(x - )
denotes, by convention, the family of sets sparse at x on the left.)

We set S0(x + ) = {E\E c R and d+(E, x) = 0}, S^x - ) = {E\E c R
and d ~(E, x) = 0} and S0(x) = S0(x + ) n S0(x - ).

From definitions, it follows at once that S0(x + ) C S(x + ), S^x — ) C
S(x — ) and S0(x) c S(x), for every x G R. The following example together
with its left-hand analog shows that these inclusions are all proper.

EXAMPLE 3.1. Given any x e R and any r G (0, 1), we will construct a set
E G S(x + ) for which d+(E, x) > 1 — r. Since the outer Lebesgue measure is
translation invariant, it is enough to consider x = 0.

Let c = (1 + r)/r, an = c~"2~l and bn = c~"2. Put

U(an>bn).

Given e > 0, we fix m G J with 1/w < e. Since bn+x/an = c'2" -»0, there is
p EL J such that mbn+l <an for all n > p. Therefore, if n > p, for y G
[w6n+1, a j we have |£ n (0,.y)| = 1^ n (0, bn + i)\ < (l/m)mbm+l < e\(0,y)\.
Hence, if k = min {1/mc, a ,̂}, then

(*) ( 7 G (0, *)| | £ n (0,y)| > e|(0,>0|} C U (an, mbn).
n>p

Now, consider any interval (a, b) c (0, k) with |(0, a)\ < k\(0, b)\. If we suppose
that (a, b) c (an, mbn) for some n, then we have |(0, a)\ > |(0, an)\ =
(l/wc)|(0, w6n)| > k\(0, b)\, which contradicts the choice of (a, b). Conse-
quently, since the intervals {(an, mbn)}n>p are pairwise disjoint, we cannot have
(a, b) c U n>p (an, mbn). Hence, noting that (a, b) c (0, k), it follows from (*)
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that \E n (0,^)| < e|(0,.y)| f o r a t l e a s t one y e (a, b). Thus £ £ S ( 0 + ). Fur-
ther, for all n G / , we have \E n (0, bn)\ > \{an, bn)\ = (1 - \/c)bn, whence
d+(E, 0) > 1 - \/c = 1/(1 + r) > 1 - r.

The following theorem gives some interesting and illuminating characteriza-
tions of sparseness.

THEOREM 3.1. Given x e R, E c R and a measurable cover A of E, the
following conditions are equivalent.

(i)A es(x + ).
(ii) £€S(x + ).
(iii) F c R, d + (F, x) < 1 => d+(E u F, x) < 1.
(iv) F c R, d+(F, x) = 0 and d+(F, x) < 1 => </+(£ u /", *) - 0 am/

^•••(^ u F, x) < 1.
(v) F CR, d+(F, x) = 0=* d+(E u F, x) = 0.

PROOF. Since |2s n / | = \A n / | for any interval / , so (i) «=>(ii). We will show
further that (ii) => (iii) => (iv) => (v) => (ii).

(ii) => (iii) Assume (iii) false. Then there is a set F such that d + (F, x) < 1 but
</+(£ u F, x) = 1. Choose e > 0 so that d+(F, x) + 3e < 1. There is h > 0
such that, for all 7 e (*, x + A),

(5) |F n (x,y)\ < {d + {F, x) + e)\(x,y)\.

Now, since d+(E u F, x) = 1, for any positive k (< min{A, e}) there exists, by
Lemma 2.2, an interval (a, Z») c (x, x + h) with \{x, a)\ < k\(x, b)\ such that, for
all^ e (a, b),

(6) |(£uf)n(^j)|>(l-e)|(^)|.

Since for allj G (a, 6) we have, by (5) and (6),

\E n (x,y)\ > \(E u F) n (x,>0| - |F n (*,>>)|

clearly F £ S(x + ). Hence we conclude that (ii) =* (iii).
(iii) => (iv) Let d+(F, x) = 0 and let B be a measurable cover of F. Then

rf+(5, x) = 0, so that d+(B', x) = 1, and hence

</ + ( £ U 0 4 ' n B'), x) = d + (Au (A' D B'), x)

= </ + G4 U B',x)= 1.

Therefore, assuming (iii), d + (A' D B', x) = 1. This gives J+(^4 u 5, x) = 0,
whence */+(£ U F, x) = 0. Hence, plainly, (iii) => (iv).

(iv)=>(v) Let d+(F, x) = 0 and d+(F, x) = 1, and let B be a measurable
cover of F. Then fl"+(5, x) = 0 and rf+(5, JC) = 1, so that d+(B', x) = 1 and
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d+(B', x) = 0. The last condition gives d+(A' n B', x) = 0. Assuming (iv), we
get as in the preceding proof d+(A' n B', x) = 1, so that d+(A u B, x) = 0,
whence */+(.£ U F, x) = 0. Hence, plainly, (iv) => (v).

(v) => (ii) Assume (ii) false. Then there exist an e > 0 and a sequence
{(an, bn)} of open intervals such that, for all n G J,

(7) x<bn+i<an,

(8) |(x,^)|<2-"|(x, fcj|

and

(9) \E n(x,y)\>e\(x,y)\ for all>- G (<*„, bn).

By (7) and (8), an+l <\(x + bn+1) < an for all n G J. So, if

using (8) we have, for all n G 7,

| F n (x, j(x + bn+l))\ = \F n (x, fln+1)| < )(*, an+1)|

< 2-»-1|(x, *n + 1) | = 2-"\{x, ±(x + bn+l))\.

Hence d+(F, x) = 0. However, fory G [*n+i. an],

(10) |F D (x,^)| >\(±(x + bn+l),y)\ > i\(x,y)\.

By (9) and (10), d+(E u F, x) > 0. Hence we conclude that (v) => (ii), and this
completes the proof of the theorem.

COROLLARY 3.1.1. (i) If E e S(x + ), then d+(E, x) = 0 and d+(E, x) < 1.
(n)IfA, B G S(x + ), then A u B G S(x + ) W , / o r any E CA, E G S(x + ).

PROOF, (i) Since d+(0, x) = 0 and d+(0, x) = 0 < 1, by Theorem 3.1((ii) =>
(iv)) we have d+(E, x) = d+(E U 0 , x ) = O and ^/+(£', x) = </•••(£• U 0 , ^ ) <
1, for every E G 5(x + ).

(ii) Consider any set F for which d+(F, x) = 0. By Theorem 3.1((ii) ^ (v)) we
have d+(B u F, x) = 0 and, hence, again </+(/l U (B u F), x) = 0, that is,
d+((A U B) u F, x) = 0. Hence, by Theorem 3.1((v)=>(ii)), we conclude that
A u B G 5(x + ). Again, we have </+(,4 u F, x) = 0. Hence, for any E cA,
we have </+(£ u F, x) = 0, which implies that E G S(x + ).
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4. Proximal continuity and derivative

Let the functions/, g: X -> Re be given, where X c R.

DEFINITION 4.1. For any x G R, define

P+fix) = inf{r G Re\{y G X\fiy) > r] G Six +)},

P+ fix) = sup{r G Re\{y G X\fiy) < r} G 5(.

P/(x) = inf{r G ^ K ^ G ̂ |/(>-) > r} G S(x)},

5f(jc) = sup{r G ^ K ^ G X\fiy) < r) G 5(x)}.

Then P+fix) is called the upper right proximal limit, P+ fix) the lower right
proximal limit, Pfix) the upper proximal limit and Pfix) the lower proximal
limit, of / at x. When x G X, f is said to be proximally continuous at x if
Pfix) = £/(*) = fix)- If / is proximally continuous at each point of a subset
E <z X,we say that/ is proximally continuous on E.

These definitions are analogous to those in the approximate sense; for
example, denoting by 'A' the approximate limit process, A +fix) is the result of
replacing Six + ) by Soix + ) in the definition of P +/(-*)-

If X & Six + ) , we have P+ fix) < P +fix). For, if not, choose any r0 with
P+fix) <ro<P+ fix). Then, since by Corollary 3.1.1 subsets of members of
Six + ) are also members of Six + ), it is clear that A, B e Six + ) where
A = {y G X\fiy) > r0} and B = {y G X\fiy) < r0}. Hence by Corollary 3.1.1
X = A u 5 G S(JC + ), which is contrary to hypothesis. Similarly, Pfix) <
Pfix) UX $Six).

Recalling that S0(x + ) c Six + ) and S0(JC) C Six), we evidently have
P +fix) < ^ +fix), A + fix) < P+ fix) and Pfix) < Afix), Afix) < Pfix) for all
x.

Thus, if * <2 SO + ), we have A+_fix) <P+ fix) < P+fix) <A+fix). If
X & Six), we have Afix) < Pfix) < Pfix) < Afix), so that approximate con-
tinuity of / at the point x implies proximal continuity. The converse of this result
is false (see Example 6.1).

We note finally that if X G Six + ) , then P+fix) = -oo and P + /(x) = oo.
In particular, if X is a closed interval [a, b] then P+fib) — -oo and P+ fib) =
oo. Also P ~fia) = -oo and P_ fid) = oo.

Using Corollary 3.1.1(ii), the reader can verify that:

(ii) Pi-fKx) = -Pfix),
(iii) P+icf)ix) = c • P+ fix) if c is a positive constant,
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(iv) Pf(x) = min{i>+ f(x), P_ f(x)},
(v) P+if + g*x) > P+ fix) + P+ gix),

equality holding in (v) if P+ fix) = P +fix), it being assumed that the 'sums' in
(v) are well defined in Re.

Similar other results can be deduced from these. In particular, real valued
proximally continuous functions on a given set form a linear space.

THEOREM 4.1. Let X be connected, and let f be proximally continuous on X.
Then fiX) is connected.

PROOF. Suppose, for a contradiction, that fiX) is not connected. Then there
are points a, b E X and k E R \fiX) such that /(a) < k <fib). Let / denote
the closed interval with end-points a and b. Then / c X since X is connected.
Put

Ax = {x E I\f(x) < k), and A2 = {x E / | /O) > k).

For any point xx E Ax we have, since / is proximally continuous at JC,,
Pfixy) = fixt) < k, so that A2 E S(x,) and, hence, by Corollary 3.1.l(i) and its
left-hand analog we have d+iA2,xl) < 1 and d~iA2,xl) < 1. Also, for any
point x2 E A2 we have, since/is proximally continuous at x2, Ef(x2) ~ KX\T) >
k, so that /I, G Six2) and, hence, as above d~iAx, x^ < 1 and d+iAv x^ < 1.
Since, moreover, a E Ax, b E A2, A2 = I \At and Ax = I \A2, we have a
contradiction to Lemma 2.3, whether a < b or b < a, and this completes the
proof.

NOTE 4.1. Theorem 4.1 plainly implies that proximal continuity of / on an
interval Io c X implies Darboux continuity (intermediate value property) of / o n

Henceforth we suppose that fiX) c R.

DEFINITION 4.2. Given a E X, define F: X -± R by F(a) = 0 and Fix) =
ifix) — fia))/ix — a) otherwise. Then the extended real number P +Fia) is
called the upper right proximal derivate of / at a, and it is denoted by PD +fia).
The numbers P+Fia), P^fia), P_Fia), PFia) and PFia) are named and
denoted analogously. If PDfi&) = PDfja), this common value is called the
proximal derivative of/at a, and it is denoted by PDfia).

The approximate denvates AD +fia), etc., of / at a are defined similarly in
terms of the approximate limits of F at a. The approximate derivative ADfia),
when exists, is also denoted by iap)f'ia). The observations following Definition
4.1 and the relations between the extreme proximal hmits mentioned there are
evidently true also for proximal and approximate derivates.
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THEOREM 4.2. If PD + / > -oo, or, more generally, if P+ f > f, on a measura-
ble subset M c X, then f is measurable on M.

PROOF. Given a E R, let E = {x G M\f(x) < a). Consider any point c G M
fl E'. The condition P+ /(c) >/(c) > a implies that E e S(c + ), so that by
Corollary 3.1.1 d+(E, c) = 0. Consequently, by Lemma 2.1(i), E has density 0
a.e. on M n E' and, hence, by Lemma 2.1(ii) E is measurable, because M is a
measurable superset of E. Hence we conclude that / is measurable on M.

THEOREM 4.3. Suppose that X is connected, P~f < / < P+ f on X andf{E) has
void interior, where E = {x G Ar|max{P£)+ f(x), PD_ f{x)} < 0}. Then f is
nondecreasing.

PROOF. Suppose, for a contradiction, that/(6) <f(a) for some points a,b E X
where a < b. Then [a, b] c X since X is connected. Now, since f(E) has void
interior, we can choose a point k & f(E) such that/(fe) < k <f(a). We put

A = {x G[a, b]\f(x) > k or, else,/(x) = k and PD+ f(x) > 0}

and B = [a, b] \ A. Then, since k <2 /(£), PD_ f(x) > 0 for every x e 5 at
which/(x) = A:. If x G .4 and/O) > A;, then by hypothesis P+ f(x) > f(x) > k,
so that B e S(x + ) since /(>>) < /c for all y e 5. If x E. A and f(x) = k, then
i»£)+ f(x) > 0 and, hence, we must have B e. S(x + ) because f(y) - f(x) =
Ay) — k < 0 for all y G 2?. Hence, recalling Corollary 3.1.1, we see that
d+(B, x) < 1 for all x G A. Similarly, d~(A, x) < 1 for all x G B. Since,
moreover, a G A and Z> G 2?, we arrive at a contradiction to Lemma 2.3, and the
proof ends.

REMARK 4.1. The preceding theorem is a positive improvement over Theorem
1.1 of Sonouchi and Utagawa (1949), which states that if/: [a, b] -» R is
measurable and ADf > 0 on [a, b], then/ is nondecreasing. For, in this theorem
we may suppose that ADf > 0, since, otherwise, we could consider the function
f(x) + ex for arbitrary e > 0; also, the condition ADf > 0 trivially implies that
A~f<f<A+f.

5. Proximal absolute continuity

By a subdivision of a set E we shall mean a finite family (possibly empty) of
pairwise disjoint open intervals whose endpoints belong to E. A sequence {En}
of sets whose union is E will be called an E-form with parts En. An expanding
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is-form will be called an E-chain. If Eo c E and E \ EQ is countable (finite or
denumerable), an iso-chain will be called a co-countable .E-chain or c.c. E-chain.

Given E c X c R and / : X -+ R, let F(/, E; r) [ V(f, E; /•)] denote, for every
r > 0, the supremum of the sums 2(/(6*) - /(%)) [2|/(6*) - f(ak)\] for all
subdivisions {(ak, bk)} of £" with I,(bk - ak) < r. Then 0 < V(f, E; r) <
V(f, E;r) < oo. Also, if £, c E and r, < r, then F(/, £",;/-,) < F(/, E;r) and
F(/, £,;#-,) < F(/, E;r). We define F(/, E;0) = infr>0 F(/, £;/•), F(/, E;0) =
inff>0 F(/, E; r) and F(/, £ ) = supf>0 V(f, E; r).

We note that/is absolutely continuous, AC, [of bounded variation, VB,] on E
if and only if F(/, E; 0) = 0 [ F(/, £ ) < oo]. The function / is said to be AC
above [AC below] (Kennedy (1930-31)) on E if F(/, E; 0) = 0 [ F(-/, £; 0) - 0].
It is ACG above [ACG below] on E, if it is AC above [AC below] on each part
of an is-form. It is ACG on E, if it is both ACG above and ACG below on E
(Kubota (1963); Definition 2.2). (This definition of ACG includes the one given
by Saks (1937; p. 223); it does not imply any kind of continuity of f\E.) We
propose further generalizations of these notions.

DEFINITION 5.1. If for an e > 0 there is a c.c. is-chain {En} such that
V(f, En;0) <e for every n, then / is said to be proximally e-AC above, e-PAC
above, on E. If/ is e-PAC above on E for every e > 0, then/is said to be PAC
above on E.

If - / i s e-PAC above [PAC above] on E, we say that/ is e-PAC below [PAC
below] on E. If / is both PAC above and PAC below on E, we say that / is
proximally absolutely continuous, PAC, on E. If / is PAC above [PAC below] on
each part of an if-form, then/ is said to be PACG above [PACG below] on E. If
/ is both PACG above and PACG below on E, we say that/ is PACG on E.

Clearly, these properties are all hereditary.

LEMMA 5.1. Let {An}, {/?„} denote any two c.c. E-chains. Then {An n Bn) is a
c.c. E-chain.

PROOF. Let A = \JnAn,B= U„ Bn, En = An n Bn and Eo = U n En. Since
both {An} and {Bn} are expanding, so is {En). Clearly Eo c A n B. But, if
x e A n B, then x e Am n Bn for some m, n, so that x G Ak n Bk = Ek where
k = max{/n, n). Consequently Eo = A n B. Since both E \ A and E \ B are
countable, it follows that E\E0 = E\(A n B) - (E \ A) u (E \ B) is counta-
ble. Hence {En} is a c.c. .E-chain, which proves the lemma.

NOTE 5.1. From any two ii-forms {An}, {Bn} we get an is-form with parts
Am n Bn, considering all m, n e J.
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LEMMA 5.2. For all nonnegative real numbers a, b and r, we have (i) V(f, E; r)
< V(f, E; r) = V(-f, E; r) < V(f, E; r) + V(-f, E; r) and (ii) V(af + bg, E; r)
<a-V(f,E;r) + b-V{g,E;r).

Here g denotes another real valued function whose domain includes E.
The proofs are straightforward. The only point that deserves mention is that
2J.K**) " /(**)l = 2 , ( M ) - M)) + 2/(-/K*,) - (-/Xo,)), where i ranges
over those suffixes k for which f(bk) — f(ak) > 0 andy ranges over the remaining
ones.

Using Lemmas 5.1, 5.2 and Note 5.1, we easily obtain:

THEOREM 5.\.(i)fisAConEifand only if V(f, E\ 0) = 0 = V(-f, E;0).
(ii)/ is PAC on E if and only if there exists, for any e > 0, a c.c. E-chain {En)

such that V(f En; 0) < efor every n.
(iii) / / / is tx-PAC above on E and g is t2-PAC above on E, then af + bg is

(ae{ + be^)-PAC above on Efor any two positive real numbers a, b.
(iv) Iff and g are both PAC [PAC G] on E, then af + bg is PAC[PACG]on E

for any two real numbers a, b.

It is now clear that each of the conditions AC above, AC below, ACG above,
ACG below, AC and ACG implies the corresponding condition in the proximal
sense. On the other hand:

ANNOUNCEMENT 5.1. For any closed interval /, there exist functions which are
approximately continuous and PAC on /, but which are neither ACG above nor
ACG below on /.

Our construction of such a function (which should be approximately continu-
ous) requires much space and will be given elsewhere. However, barring ap-
proximate continuity, we have the following example which reveals certain other
interesting features.

EXAMPLE 5.1. Let {c2 n}n e y denote an enumeration (with distinct terms) of the
set of rational numbers, and let c2n_i = c2n + 2l/2. Then {c2n} and {c2n_l} are
disjoint dense subsets of R. Define

« ( * ) - 2 ( - l ) " -2- n , x(ER.
cn<x

We note that the series 2(-l)"2~" is absolutely convergent. Then u is clearly VB
on R. Also, {cn} is precisely the set of the points of discontinuity of u. Now,
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given e > 0, we can fiadp e J such that

(A) £ 2-" < e.

We choose h > 0 sufficiently small so that no two distinct members of
{(ck — h, ck + h)}k<p intersect. For each n £ / , let

K = R \ U ((ck - h/n, ck) U (ck, ck + h/n)).

Then R,, is clearly an /?-chain (more than a c.c. /?-chain!). Fix n e / . If {(a,,
is any subdivision of Rn with 2(6, — o,) < h/n, then evidently none of the
intervals [at, bt] contains any point ck with k < p, and, hence, simple computa-
tions show that

(B) 2 KM -«(«,)!< 2 2 - .
From (B) and (A) we get V(u, J^ih/n) < e, whence V(u, Rn;0) < e. Hence by
Theorem 5.1(ii) u is PAC on R.

We assert that u is neither ACG above nor ACG below on any interval /. In
fact, we will show that u is neither ACG above nor ACG below on E = / \ {cn}.
The interesting part of this is that u\E is continuous and PAC on E.

Consider any is-form {En). We note that the set E is a Gs, because / is a Gf

and {cn} is an Fa. Then, by Baire's theorem (Saks (1937); (9.2), p. 54), there exist
an index n and an open interval /0 C / such that E n Io¥* 0 and En is dense in
E n /0- Since E is evidently dense in /Q, it follows that En is dense in /0. By our
choice of the sequence {cn}, we can find a point cm G /„ with an even or odd
index as we like. Since En is dense in /0, given any r > 0 we can find points
a, b E En with a < cm < b such that b - a < r, and such that

(C) 2 2~" + 2 2"" < 2-"1"1.
a<cn<cm cm<cn<b

Suppose m is even by choice. Then we have

u{b) - u(a) = 2 (-l)n2-n + 2~m+ 2 (-1)"2-
"<cn<cm cm<cn<b

whence by (C) we get u(b) - u(a) > 2~m - 2"m~l = 2~m~l. Since r > 0 is
arbitrary, it follows that V(u, En; 0) > 2~m~'. Thus M is not AC above on the set
En. Similarly, supposing m odd by choice, we get V(-u, En;Q) > 2~m~l, so that
u is not AC below on the set En. Thus every is-form has at least one part on
which u is neither AC above nor AC below. In particular, therefore, u is neither
ACG above nor ACG below on E.

DEFINITION 5.2 (Saks (1937); p. 224). The function/is said to satisfy Lusin's
condition (N) on E if \f(H)\ = 0 for every H c E with \H\ =0 .
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THEOREM 5.2 (see Saks (1937); (6.1), p. 225). Let f be PACG on E. Then f
satisfies Lusin's condition (N) on E.

PROOF. Consider any subset H c E with \H| = 0. Suppose first that/is PAC
on H. Then for any e > 0 there exists, by Theorem 5.1(ii), a c.c. //-chain {//„}
such that V(f, Hn;0) < e for every n. So there is a sequence {/•„} of positive
numbers such that V(f, Hn;rH) < e for every n. Now, \H\ = 0 implies \Hn\ = 0
for all n. Fix an index n. Since \Hn\ = 0, Hn can be covered by a family {Ik} of
pairwise disjoint open intervals with S |4 | < rn. Since \f(Hn n Ik)\ cannot ex-
ceed the oscillation of / on Hn n Ik, simple computations show that \f(Hn)\ <
Zk\f(Hn n 4) | < V(f, //„;/•„) < e. Consequently, since the sequence {/(#„)} is
expanding and since the outer Lebesgue measure is regular, we have (cf. Saks
(1937); (6.1), p. 51) |/(Un Hn)\ = | Unf(Hn)\ = lim|/(#n)| < *• Henc« \f(H)\ <
e, because H \ \Jn Hn is countable. Since e > 0 is arbitrary, we get \f(H)\ = 0.

Now, in the general case, / being PACG on E there is an is-form {En} on
each part of which / is PAC. Then by above \f(H n En)\ = 0 for all n. Hence,
since Un En = E D H, it follows that \f(H)\ = | \Jnf(H n En)\ = 0, which
completes the proof.

THEOREM 5.3. Suppose that f is PACG and measurable on E. Then (ap)f exists
finitely a.e. on E.

PROOF. Since/is PACG on E, it is PAC on each part of an £-form {•£„}. Fix
an index k. By Theorem 5.1(ii) there is a c.c. £^-chain {An} such that V(f, An; 0)
< 1 for all n. So there is a sequence {/•„} of positive numbers such that
V(f,An;rn) < 1 for all n. For any integer/ (positive, negative or zero), let
A,y = An n [jrn/2, (J + l)rn/2\. Then AnJ has diameter less than rn and, hence,
V(f, AnJ) = K(/, Anj; rn) < V(f, An; rn) < 1. Thus/is VB on A^. Since, further,/
is measurable on E D Anj, it follows that (Saks (1937); (4.2), p. 222) (ap)f exists
finitely a.e. on AnJ. Since {JJL-aeA^ = An and Ek\ UnAn is countable and
U £L i Ek = E, it follows that (ap)f exists finitely a.e. on E, completing the
proof.

THEOREM 5.4. Let X be connected and let there exist, for some e > 0, a function
u: X -> R such that u is e-PAC above on E and such that either (i) D + ( / + M) >
-oo n.e. on E or (ii) AD ( / + « ) > -oo n.e. on E. Then f is e-PAC below on E.

PROOF. Since u is e-PAC above on E, there is a c.c. £-chain {An} such that

V(u, An; 0) < e for all n G J.
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Now, put g = / + «. In case (i), let En denote for each n G J the set of points
x G An such that g(y) — g(x) > -n (y — x) whenever 0 <y — x < l/n, y G
X. Observe that if Z>+ g(x) > -oo at a point x G U „ 4 , , then there are
positive integers mx, nx &ndpx such that x G A^, D+ g(x) > -nx, and g(y) -
g(x) > -nx(y — x) whenever 0 <y — x < \/px, y G X; consequently, since
the sequence {An} is expanding, for every positive integer n > max{m,, nx,px)
we have x G An, and g(y) - g(x) > -n(y - x) whenever 0 <y - x < l/n,
y G X, so that x G En. Hence, since E \ U „ An is countable and since by (i)
D+ g > -oo n.e. on U , An, it foUows that E \ U „ En is countable. Also, the
sequence {En} is evidently expanding. Thus {En} is a c.c. if-chain. Since
g(x^) — g(jc,) > -n(x2 — JC,) for any two points xly x2 G En with 0 < x2 — xt

< l/n, we have further V(-g, En; 0) = 0 for all n G J. Therefore, using Lemma
5.2(ii) and noting that En c An, we have

V(-f, En; 0) = V(-g + u, En; 0) < V(-g, En; 0) + V{u, En; 0) < V{u, An; 0) < t

for all n. Hence/is e-PAC below on E.
In case (ii), for each n G J and x G E put

Bm = {j' G A-|.y * x, (*0>) - g(x))/ (y-x)< -n).

Let /"„ denote the set of points x G An such that

(11) |fi^ n (x, A; + A)| < |A whenever 0 < h < l/n,

(12) \Bnx n (x - h, x)\ < \h whenever 0 < h < l/n.

Using the meaning of ADg{x) > -oo and arguing as above, we show that {En}
is a c.c. .E-chain. If xu x2 G Fn and 0 < x2 - x, < l/n, then by (11) and (12)
we get \(BnXi u Bm) n (x,, Xj)| < |(x,, x ^ . So there are points y G
(x,, x2) \ (BnX) u 5 ^ ^ . For any such y (which must belong to X since X is
connected) we have g(y) - g(xt) > -n(y - x,) and g(x^ - g(>>) > -n(x2 - y),
whence g(x2) - g(x,) > -n(x2 - xx), which imphes as before V(-g, Fn; 0) =
0 for all n. Since Fn c An, it follows as above that V(-f, Fn;0)<e for all n.
Consequently/is e-PAC below on E, and the proof ends.

6. The proximally continuous Perron integrals

DEFINITION 6.1. Given f: I = [a, b] -» Re, a function «: / - » /? is termed a
right upper (major) function of / in the proximal sense if u(a) = 0, P~u < u <
i*+« on / , PD+u > -oo n.e. on / and PD+u >/a .e . on / .

A function / is termed a right lower (minor) function of / in the proximal
sense if - / is a right upper function of - / in the proximal sense.

Henceforth u and /, with or without suffixes, will denote respectively upper
and lower functions of / as defined above.
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THEOREM 6.1. u — 1 is nondecreasing and nonnegative.

PROOF. Arguing as in the theory of ordinary Perron integral, we have
PD+(u — /) > -oo n.e. on /. Also, there is a subset E c / of measure zero such
that PD+(u - l)> 0 on / \ E. By a well-known method (see Saks (1937); p.
203, supra) we can find, for any e > 0, a nondecreasing function v: I -» R such
that v(b) - v(a) < e and v'(x) = oo for every x S E. Let g(x) = u(x) - l(x) +
v(x) + e, x G /. Then evidently g fulfils the conditions of Theorem 4.3 and so g
is nondecreasing, whence the theorem follows since e > 0 is arbitrary and since
u(a) - l(a) = 0.

DEFINITION 6.2. The function / is said to be right Perron integrable in the
proximal sense, T'^-integrable, if there exist a sequence {«„} and a sequence
{/„} such that (i) un is (l//i)-PAC below on /, (ii) /„ is (l/n>PAC above on /
and (iii) lim un{b) = lim ln(b). When/ is i>Pr-integrable, the common limit in (iii)
is called the definite P^-integral of /, and it is denoted by PPr — /* /.

Our definition of the value of PPr — /* / is to be justified by showing its
uniqueness. To this end, let {un} and {un} be two sequences of upper functions,
and let {/„} and {!„} be two sequences of lower functions, of /, such that
lim ujjb) = lim ln(b) (= L, say) and lim un(b) = lim ln(b) (= L, say). By Theo-
rem 6.1, we have un(b) > In(b) and un(b) > ln(b) for all n. Therefore L > L and
L > L, whence L = L. We note further that lm{b) < un(b) for all m, n, which
gives, in particular, that L is finite.

As a simple consequence of Theorem 6.1, we now get:

THEOREM 6.2. The function f is PPr-integrable if and only if there exist, for any
e > 0, an upper function u and a lower function I such that u is e-PAC below on I,
I is e-PAC above on I and u(b) - l(b) < e.

REMARK 6.1. An ordinary upper function u defined by Bauer (1915) is
continuous and fulfils the condition Du > -oo on /, that defined by Hake
(1921) is continuous and fulfils the condition D+u > -oo on /, and that defined
by Saks (1937) is not necessarily continuous but fulfils the condition Du > -oo
on /. We observe that the condition Du > -oo trivially implies that
lim sup,,^. u(t) < u(x) < lim inf,.,^ u{t) for all x e /. Thus, our method of
defining upper and lower functions is more general than the methods of Bauer,
Hake and Saks. We note further that the condition D + K > -oo on / trivially
implies, by Theorem 5.4, that u is PAC below on /.
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Burkill (1931) defined the ,4/Mntegral using the method of Bauer, and
Sonouchi and Utagawa (1949) modified it using the method of Saks. In either
case, an upper function u of/fulfils the conditions u(a) = 0 and -oo =£ADu > f
on /; and / is a lower function of /if - / is an upper function of -/. The condition
ADu > -oo implies, by Theorem 5.4, that u is PAC below on /, and also, by
definition of AD, that A ~u < u < A + u on /. If/possesses AP-upper functions u
and AP-lower functions /, and if inf u(b) = sup l(b) (= L, say), then/is said to
be ,4P-integrable and the common value L is called the definite ^/'-integral of/
on /. From the relations between the approximate and proximal limits and
derivates it is now clear that the P/^-integral comprises the ^/"-integral. The
following example shows that the P/^-integral is substantially more general than
the A /"-integral.

EXAMPLE 6.1. Take the set E = (J „(«„, K) of Example 3.1, and put cn =
\{an + bn). Consider the function F on / = [0, bt] which is 0 on / \ E, 1 on
{cn}nSJ and is linear on the intervals [an, cn] and [cn, bn]. Define/(x) = F'(x) if
the derivative exists finitely and/(x) = 0 otherwise. Then F is both a right upper
and a right lower function of / on / in the proximal sense; moreover it is PAC
on /. (In fact, F is AC on [an, bx] for all n G J.) Consequently/is /'Pr-integrable
on / and F(x) = PPr — fof for all x e /. F is proximally continuous, but not
approximately continuous, at the origin. Since an indefinite ^/'-integral is
necessarily approximately continuous everywhere (Sonouchi and Utagawa
(1949); Theorem 1.4), and since we clearly have AP - fb

x'f = F(6,) - F(x) for
all x G (0, 6,), it follows that/is not v4.P-integrable on /.

With Theorems 6.1 and 6.2 in hand, it is easy to show that the /"/^-integral
possesses properties analogous to those of the ^/'-integral. We omit the routine
statements and proofs, but we use them to prove the following three theorems
which are to some extent new either in respect of proof or in content. In these
theorems / is assumed to be /*Pr-integrable and F denotes the indefinite integral
defined by F(x) = PPr - /*/.

THEOREM 6.3. F is proximally continuous on [a, b].

PROOF. Fix any c e (a, b]. Consider a sequence {«„} and a sequence {/„} such
that lim un(c) = lim /„(<?) = F(c). Since ln(x) < F(x) < un(x) for all x G J, we
have P_ln(c) < P_/"(c) < P~F(c) < P~un(c). But by definitions of un and /„,
ln{c) < PJn(c) and P~un(c) < un(c). Thus ln(c) < P_F(c) <P~F(c) < un(c),
whence, letting n —» oo, we get P_ F(c) — P ~F(c) = F(c). Similarly, for any
c G [a, b) we get P+F(c) = P +F(c) = F(c). Hence F is proximally continuous
on [a, b].
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COROLLARY 6.3.1. u and I are proximally continuous n.e. on I and they possess
finite unique unilateral proximal limits everywhere on I.

(Hints: u — F and F — I are nondecreasing.)

THEOREM 6.4. F is PAC on I.

PROOF. Fix any e > 0. By Theorem 6.2 there exist a u and an / such that u is
e-PAC below on /, / is e-PAC above on / and u(b) - l(b) < e. Now, u - F is
nondecreasing, u(a) — F(a) = 0 and u(b) — F(b) < u(b) — l{b) < e. Hence
V(u - F, /; 0) < e, so that u - F is e-PAC above on /. Similarly, F - I is
e-PAC above on /. Consequently, from the representations F = (F — 1) + / and
-F = (« - F) + (-w), it follows by Theorem 5.1(iii) that F is both 2e-PAC
above and 2e-PAC below on /. Since e > 0 is arbitrary, the proof ends.

COROLLARY 6.4.1. An indefinite AP-integral is PAC.

THEOREM 6.5. -oo < {ap)F' = / < oo a.e. on I.

PROOF. The usual method of proof (see Sonouchi and Utagawa (1949);
Theorem 1.5), with minor modifications, gives -oo < PD+F = PD + F = / < oo
a.e. on /. Then, by Theorem 4.2, F is measurable on / and so, by Theorems 6.4
and 5.3, (ap)F' exists finitely a.e. on / (alternatively, recalling Corollary 3.1.l(i),
we could use a result of Denjoy-Khintchine (Saks (1937); (10.1), p. 295)), which
completes the proof.

By our convention, there is the theory of left Perron integral in the proximal
sense, Wj-integral, analogous to that of the i'Pr-integral. Lest there arise any
confusion, we mention that a left upper function will differ from a right upper
function in respect of the use of derivates only. We prove below that these
integrals are compatible.

THEOREM 6.6. Let f be both PPr- and PP,-integrable. Then the two definite
integrals are equal.

PROOF. Let the indefinite PPr- and P^-integrals of / on / be denoted by F,
and F2, respectively. Fix e > 0, and define F(x) = F,(x) - F2(x) + ex, x e. I.
Then, by Theorem 6.5 and its analog, PDF = (ap)F' = e > 0 a.e. on /. There-
fore, if E = {x e I\PD+F(x) < 0}, then | £ | = 0. Bu, by Theorem 6.4 and its
analog, F, and F2 are PAC on / and, hence, by Theorem 5.1(iv) it follows that F
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is PAC on /. So by Theorem 5.2 we have \F(E)\ = 0. Also, by Theorem 6.3 and
its analog, F is proximally continuous on /. Hence by Theorem 4.3 F is
nondecreasing. Since e > 0 is arbitrary, it follows that Fl — F2 is nondecreasing.
Similarly, F2 — Fl is nondecreasing. Therefore Fx = F2 on /, since Fx(a) —
F2(a) = 0, which completes the proof.

We observe that if / = / , + gx = f2 + g2 where /. is PPr-integrable and g, is
PP,-integrable (/ = 1, 2), then / , — f2 = g2 — gx a.e. on / and, hence, by the
preceding theorem

PPr ~ f\fl ~ fl) - PP, ~ f\g2 ~ gl),

whence
rb rb rb rb

PPr-J A + PP,-J gt = PPr-J h + PP,-) 82-
•>a

 J a Ja Ja

This justifies the following definition.

DEFINITION 6.3. A function / : / = [a, b] -» Re is said to be Perron integrable
in the proximal sense, PiMntegrable, if / can be expressed as / = / , + gj where
/ , is />Pr-integrable and g, is P^-integrable on /, and then the unique number
PP, - Sb

a fi + PPt - I* gt is called the definite PP-integral of/.
Evidently the PP-integral comprises both the PPr- and PP/'integrals and

shares their properties.

7. The proximally continuous Denjoy integral

If Flt F2: I = [a, b]-> R are both PACG and both proximally continuous on
/, then by Theorems 4.2, 5.3, both (cp)F{ and (ap)F'2 exist finitely a.e. on /.
Hence, if further (ap)F'x = {ap)F2 a.e. on /, then {ap\Fx - F^' = 0 a.e. on /, so
that, arguing as in the proof of Theorem 6.6, Fx — F2 is a constant. This
observation justifies the following definition.

DEFINITION 7.1. A function/: / = [a, b] -» Re is said to be Denjoy integrable
in the proximal sense, PZMntegrable, if there exists a function F: I -* R such
that (i) F is proximally continuous on /, (ii) F is PACG on / and (iii) {ap)F' = /
a.e. on /; and the increment F(b) - F(a) is then called the definite PZ)-integral
of / , and F is called an indefinite PD-integral of / on / .

A function F is termed an indefinite /4Z)-integral of the function / if F is
approximately continuous and ACG on / and {ap)F' = / a.e. on / (Kubota
(1963); Definition 2.3). Hence the P£>-integral comprises the >4Z)-integral. The
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a.e. finite approximate derivatives of the functions in Announcement 5.1 provide
examples of functions which are not y4Z)-integrable but are T'D-integrable with
indeed approximately continuous indefinite integrals. Evidently the i*Z)-integral
possesses properties analogous to those of the P-P-integral, and it comprises the
latter. We note in conclusion that, by Theorem 4.1, indefinite PP- and PD-in-
tegrals are necessarily continuous in Darboux sense.
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