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Abstract

Background. Schizophrenia (SCZ) and genetic high-risk (GHR) individuals exhibit deficits in
brain functional networks and cognitive function, potentially impacted by SCZ risk genes. This
study aims to delineate these impairments in SCZ andGHR individuals, and further explore how
risk genes affect brain networks and executive function.
Methods. A total sample size of 292 participants (100 SCZ, 68 GHR, and 124 healthy controls
[HCs]) in the study. The Wisconsin Card Sorting Test (WCST) and resting-state functional
magnetic resonance imaging (rs-fMRI) are utilized to evaluate executive function and brain
network topology. SCZ-related polygenic risk scores (SCZ-PRS) were used to evaluate genetic
risk levels. WCST and PRS were not applied to all participants.
Results. Significant reductions in nodal efficiency and degree centrality (Dnodal) were observed
within the right median cingulate and paracingulate gyri (MCPG_R) in both SCZ and GHR
groups, compared to HCs. There were significant correlations between SCZ-PRS, Dnodal in
MCPG_R, andWCST scores.Moreover, Dnodal inMCPG_R completelymediated the relationship
between SCZ-PRS and executive function. The enrichment analysis of these risk genes indicates
their involvement in biological processes of signal transduction and synaptic transmission.
Conclusions. This study highlights the pivotal role of impaired cingulate function in mediating
the effects of genetic risks on executive deficits, offering new insights into the genetic-neuro-
cognitive nexus in schizophrenia and potential targets for clinical interventions.

Introduction

Schizophrenia (SCZ) is a markedly heritable neurodevelopmental disorder characterized by
brain functional and structural abnormalities alongside cognitive impairments (Jauhar, John-
stone, & McKenna, 2022). Existing heritability estimates range from 64% in familial investiga-
tions to approximately 80% in twin studies (Hilker et al., 2018; Lichtenstein et al., 2009; Sullivan,
Kendler, & Neale, 2003). Relatives of patients with SCZ face a significantly higher risk than
individuals without a family history, possibly up to 11-fold (Le, Kaur, Meiser, & Mj, 2020) and
manifest subtle changes in imaging traits and cognitive performance (da Motta, Pato, Barreto
Carvalho, & Castilho, 2021; Dodell-Feder, Delisi, & Hooker, 2014). The study of individuals with
SCZ and those at genetic high risk (GHR) is pivotal for elucidating the genetic underpinnings of
neurodevelopmental and cognitive impairment.

Since the late 19th century, pioneers have suggested that SCZ might stem from brain
connectivity aberrations (Collin, Turk, & van den Heuvel, 2016), a concept that evolved into
the dysconnection hypothesis later proposed by Friston and Frith (Friston & Frith, 1995).
Advancements in neuroimaging have supported these theories, revealing anomalies in both
white matter fibers and functional connectivity (FC) in patients with SCZ (Camchong, MacDo-
nald, Bell, Mueller, & Lim, 2011; Carreira Figueiredo, Borgan, Pasternak, Turkheimer, & Howes,
2022; W. Zhu, Wang, Yu, Zhang, & Zhang, 2023). The application of graph theory and network
analysis to neuroimaging data further identified atypical changes in brain networks of patients
with SCZ, such as altered clustering coefficients and efficiency levels (Y. Liu et al., 2008),
deepening our understanding of the widespread connectivity disorder in SCZ. A crucial question
for future research, highlighted by a meta-analysis, is whether disparities in functional networks
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represent susceptibility traits inherent in subjects genetically pre-
disposed to SCZ (Kambeitz et al., 2016).

GHR individuals hold great value, as they can identify genetic
liability across various phenotypes and reflect susceptibility.
Approximately 62.5% of functional dysconnectivity is linked to
genetic predisposition (Guo et al., 2020; Yin et al., 2021). Shared
abnormalities were observed in both SCZ and GHR individuals,
such as decreased FC, lower clustering coefficients, and higher
global efficiency of networks (Lin et al., 2021; Lo et al., 2015).
Noteworthily, despite the observed aberrant changes in brain func-
tion of GHR, they do not progress to SCZ but rather exhibit
cognitive impairments (da Motta et al., 2021).

Cognitive function relies on the complex neural coordination
within brain networks (Shine et al., 2019, 2016; van den Heuvel,
Stam, Kahn, & Hulshoff Pol, 2009), and its impairments are asso-
ciated with brain functional networks in patients with SCZ (Bassett
et al., 2009; He et al., 2012;Menon, Palaniyappan, & Supekar, 2023).
Executive function as a vitally cognitive domain is impaired in both
SCZ and GHR individuals (da Motta et al., 2021; Thuaire, Ronde-
pierre, Vallet, Jalenques, & Izaute, 2022). Moreover, machine-
learning analyses have further divulged that themore the functional
brain patterns of GHR individuals approximated those of patients
with SCZ, the lower their cognitive assessment scores were (Jing
et al., 2019; W. Liu et al., 2020). These studies indicate that SCZ
genetic loadings may be crucial in influencing the dysconnection of
SCZ brain networks and cognitive impairments.

SCZ, characterized by polygenic variations, can be initially iden-
tified via genome-wide association studies (GWASs) aimed at dis-
cerning millions of SCZ-associated single nucleotide polymorphisms
(SNPs) dispersed throughout the genome (Schizophrenia Working
Groupof the PsychiatricGenomicsConsortium, 2014). Subsequently,
polygenic risk scores (PRSs) are utilized to calculate the additive
genetic susceptibility of each individual, complemented by functional
gene enrichment analysis (A. R. Martin, Daly, Robinson, Hyman, &
Neale, 2019). Our preceding study identified a correlation between
SCZ-PRS and deficits in local efficiency based on structural hemi-
spheric asymmetry in SCZ and GHR cohorts (Zhu et al., 2021). One
study involving two cohorts found that SCZ-PRS is associated with a
wide functional connectome in healthy controls (HCs) and a reduced
connectome correlated with intelligence quotient (IQ) in SCZ (Cao,
Zhou, & Cannon, 2021). Additionally, the fractional amplitude of
low-frequency fluctuations (fALFF) was found to mediate the asso-
ciation between SCZ-susceptible SNPs and working memory in a
mixed SCZ and HC cohort (Luo et al., 2018). However, current
research into the relationship among SCZ-PRS, brain functional
networks, and executive deficits is scarce. Whether and how SCZ-
PRS influences cognitive impairments in SCZ and GHR individuals
through the mediation of neural development in functional networks
remains unclear.

To explore the relationships among SCZ-associated risk genes,
function networks, and neurocognition in SCZ andGHR, this study
proposes two hypotheses: first, that SCZ and GHR share altered
functional networks, where these abnormal networks are associated
with SCZ-related risk genes and contribute to executive deficits.
Second, compared to GHR and HC, SCZ exhibits unique disease-
specific alterations, characterized by broader network dysconnec-
tivities. Based on these hypotheses, the study outlines four aims:
identify common functional network alterations and executive
impairments in SCZ and GHR, explore whether these shared
changes are associated with risk genes, elucidate how risk genes
have impacts and their biological role, and finally, identify disease-
specific changes.

Methods

Participants

This study comprised a cohort of 292 participants (aged 18–
55 years), comprising 100 SCZ patients, 68 GHR individuals, and
124 HCs.

The SCZ patients were recruited from two clinical centers: the
First Affiliated Hospital of China Medical University and the
Shenyang Mental Health Centre. The GHR participants were all
first-degree relatives of patients presenting with SCZ in these two
clinical centers. HCs were recruited from the local community via
targeted advertisements. All participants underwent psychiatric
evaluation using the Structured Clinical Interview for the Diagnostic
and StatisticalManual ofMental Disorders-IV-Text Revision (DSM-
IV-TR) Axis I Disorders (SCID-I). Assessments were conducted by
two trained psychiatrist co-authors (S.T. and Z.Y.). SCZ participants
met DSM-IV-TR diagnostic criteria. GHR individuals showed no
personal history of Axis I disorders, and HCs exhibited neither
personal nor familial history of Axis I disorders. Moreover, GHR
underwent the Structured Interview for Prodromal Syndromes
(SIPS) to confirm the absence of prodromal psychotic symptoms.

All participants were subjected to strict exclusion criteria, which
encompassed the following: (1) substance abuse or dependence,
including alcohol; (2) presence of any major medical condition;
(3) neurological disorders; (4) history of head trauma resulting in
loss of consciousness for ≥5 min; (5) contraindications for MRI;
and (6) suboptimal quality of acquired MRI data.

Ethical approval for the study was obtained from the Medical
Science Research Ethics Committee of the First Affiliated Hospital
of China Medical University ([2012]25-1), and written informed
consent was obtained from all participants.

Clinical and cognitive data

To assess symptom severity, three scales were applied: the Brief
Psychiatric Rating Scale (BPRS) (Bech, Larsen, & Andersen, 1988),
the 17-item version of the Hamilton Rating Scale for Depression
(HAMD-17) (Hamilton, 1960), and the Hamilton Rating Scale for
Anxiety (HAMA) (Hamilton, 1959).

To evaluate executive cognition, the Wisconsin Card Sorting
Test (WCST)was completed by 56patientswith SCZ, 57 individuals
at GHR, and 120 HCs, including the scores of correct responses
(CR), categories completed (CC), total errors (TE), perseverative
errors (PE), and nonperseverative errors (NPE).

MRI data

Image acquisition
MRI scans were conducted at the Image Institute of the First
AffiliatedHospital of ChinaMedical University utilizing aGE Signa
HD 3.0-T scanner (General Electric, Milwaukee, USA). Resting-
state functional MRI (rs-fMRI) data were collected with a gradient-
echo planar imaging sequence (TR = 2000 ms, TE = 30 ms, flip
angle = 90°, slice thickness = 3 mm, number of slices = 35, no gap,
FOV = 240 × 240 mm2, matrix = 64 × 64), including 200 volumes
over 400 s. To reduce noise and motion, participants used earplugs
and foampads andwere instructed to keep their eyes closedwithout
falling asleep during the scan.

Data preprocessing
Rs-fMRI data preprocessing, conducted using SPM12 (www.fil.ion.
ucl.ac.uk/spm/software/spm12/) and DPABI6.1 (Advanced edition;
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Yan, Wang, Zuo, & Zang, 2016) on MATLAB 2022a, involved steps
such as converting DICOM to NIFTI, removing the first 10 time
points, slice timing, realignment for excessive head motion (>3 mm
or 3° were excluded), spatial normalization to MNI space (3 mm
voxels), Gaussian smoothing (6 mm FWHM), linear detrending,
removing nuisance covariates (Friston 24, white matter, cerebrospinal
fluid, global signals), and low-frequency filtering (0.01–0.08 Hz).

Construction of brain functional network
To construct a brain functional network, the Automated Anatom-
ical Labeling (AAL) template divided the brain into 90 regions of
interest (ROIs), serving as network nodes. Edges were established
by FC between ROIs. Blood oxygen level-dependent signal averages
from voxels in each ROI provided time series data. A 90 × 90 matrix
emerged fromcalculatingPearson correlation coefficients amongROI
pairs, later transformed into Fisher’s Z-scores. A weighted approach
then assigned varying weights to edges based on FC strength (Wen
et al., 2018; Yang et al., 2021).

Brain functional network analysis
To ensure the small-world attributes of the network and align with
prior studies, a wide range of network sparsity thresholds was set:
0.09–0.30 (step size 0.01) (Su, Hsu, Lin, & Lin, 2015; Zhang et al.,
2011). Supplementary Table 1 provides a explanation of the net-
work metrics, as established in previous studies (Wang, Zuo, & He,
2010; Wu, Li, Zhou, Zhang, & Long, 2020). This study assessed
global efficiency (Eglob), local efficiency (Eloc), and the shortest path
length (Lp), alongside nodal metrics including nodal degree cen-
trality (Dnodal), nodal global efficiency (Enodal), and nodal local
efficiency (Enodal_loc). Areas under the curve (AUCs) were calcu-
lated for these metrics across all sparsity thresholds to provide a
summary scalar. The analysis was facilitated by GRETNA, a dedi-
cated network analysis toolbox operating on the MATLAB platform
(Wang et al., 2015).

Genetic data

Genotyping and imputation
Genome-wide genotype data were available for 78 participants
(30 SCZ and 48 GHR). Blood samples were obtained between 10:00
and 15:00, utilizing ethylenediaminetetraacetic acid anticoagulant
tubes, and subsequently stored at a temperature of �80 °C until
subjected to assay. Genomic DNA extraction from the whole blood
samples was conducted by standard methods. The Illumina Global
Screening Array-24 v1.0 BeadChip (Illumina, San Diego, CA) was
employed for genome-wide variant screening, rendering data of
642,824 predetermined gene variants, alongside 53,411 custom
variants. Comprehensive criteria for data exclusion and genotype
imputation can be found in the Supplementary Materials (Section 1,
page 1).

Calculation of PRSs
PRSs were computed by multiplying the count of risk alleles by the
effect size attributed to each allele, followed by the summation of
the products across all SNPs for each individual (Martin et al.,
2019). In line with our previous study (Zhu et al., 2021), we used the
2018 GWAS results as the discovery sample (Bipolar Disorder and
Schizophrenia Working Group of the Psychiatric Genomics Con-
sortium. & Bipolar Disorder and Schizophrenia Working Group of
the Psychiatric Genomics Consortium, 2018). In this study, genetic
factors associated with SCZ were analyzed in 33,426 individuals

with SCZ and 32,541 controls from this dataset. Using our imputed
genotyping data as the target sample, we performed p-value clump-
ing in PRSice (www.PRSice.info) to retain strongly correlated SNPs,
applying parameters of r2 = 0.1 and a distance of 250 kb. PRSs were
then calculated for each participant across eleven p-value thresh-
olds (PTs): 0.0001, 0.001, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04,
0.045, and 0.05.

Functional enrichment analyses
Based on the dbSNP database, all SNPswithin the SCZ-PRS under a
certain p-value threshold most associated with network metrics
were extracted andmapped to genes using position-basedmapping,
aligning SNPs to corresponding gene annotations by their rs names.
Specifically, we utilized the latest dbSNP information available in
the file All_20180423.vcf.gz, which can be downloaded from ftp://
ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/
VCF/. This file is based on the GRCh37p13 genome build. Further
details are provided on the NCBI dbVar resource page at https://
www.ncbi.nlm.nih.gov/dbvar/content/org_summary/. The result-
ant gene lists were then uploaded into DAVID V6.8 (https://
DAVID.ncifcrf.gov/) to conduct Gene Ontology analyses (Huang,
Sherman, & Lempicki, 2009a; 2009b). Bonferroni correction was
applied, ensuring a significance level of 0.05.

Statistical analysis

Differences in demographic, clinical, and cognitive variables
Differences across the three groups were assessed using chi-squared
tests to compare sex andhandedness variations and one-way analysis
of variance (ANOVA) to investigate differences in age and total
scores on clinical scales (BPRS, HAMD-17, and HAMA). To discern
distinctions in WCST scores, a one-way analysis of covariance
(ANCOVA) was used, with sex and age as covariates. In cases
where post hoc comparisons were required, a pairwise analysis was
performed. The least significant difference (LSD) correctionwas used
for homogenous variance, and the Tamhane correction was used for
other cases (significance at adjusted p < 0.05).

Differences in network metrics
ANCOVAs with sex and age as covariates were employed to assess
differences in global network metrics (Eglob, Eloc, Lp) and the AUC
for each nodal metric (Dnodal, Enodal, Enodal_loc) across the 90 nodes
(significance at pFDR < 0.05).

Relationship between PRS, network metrics, and cognitive tests
In the SCZ and GHR groups, the partial correlation analysis (sex
and age as covariates) was applied to investigate the relationship
between SCZ-PRS, shared alterations in topological properties, and
similar changes in WCST scores observed in both SCZ and GHR
individuals (significance at pFDR < 0.05). Additionally, mediation
analysis was executed to probe the potential impact of the common
network metric alterations as mediators on the association between
SCZ-PRS (causal variable) and cognitive function (outcome variable),
with sex, age, and group as covariates. To conduct this analysis, the
PROCESSmacrowithin SPSS (Version 3.2, developed byDr.Andrew
F. Hayes) was utilized, and significance testing was performed using
5000 bias-corrected bootstrap samples. By summarizing the methods
used by mediators, standard deviation (SD) and 95% confidence
interval (CI) were utilized.

Significance was set at p < 0.05 (two-tailed) for all tests. Analyses
not specifically delineated were performed using SPSS 26.0.
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Results

Demographic, clinical, and cognitive characteristics

In the total sample with neuroimaging data (N = 292), no significant
differences in terms of age and sex were observed among the SCZ,
GHR, and HC groups. All participants were right-handed. Com-
pared to the GHR and HC groups, the SCZ group exhibited signifi-
cantly higher scores across the BPRS, HAMD-17, and HAMA total
scores (see Table 1).

In the subsample with both neuroimaging and WCST assess-
ments (N = 233), group differences emerged in executive function
measures. The WCST scores of CR and CC were the highest in the
HC group, followed by the GHR and SCZ groups. The scores of TE,
PE, and NPE were the highest in the SCZ group, followed by the
GHR and HC groups (see Table 1, Figure 1a).

Within the genetic subsample with PRS data (N = 78), age
remained balanced across groups, while the SCZ group had a higher
female proportion than GHR. This demographic variation was
accounted for in subsequent association and mediation analyses
through covariance adjustment.

Brain functional network characteristics

In comparison to GHR and HC groups, the SCZ group displayed
increased Lp (p = 0.006, pFDR = 0.042) and reduced Eglob (p = 0.012,
pFDR = 0.042), see Figure 1b,c and Supplementary Table 2.

Regarding Enodal, significant distinctions emerged in the
right median cingulate and paracingulate gyri (MCPG_R),
where post hoc analysis revealed a reduction in both SCZ
and GHR groups compared to the HC group (p < 0.001,
pFDR < 0.001). Moreover, in MCPG_R, both SCZ and GHR
groups exhibited a decreased Dnodal (p = 0.001, pFDR = 0.045).
Dnodal in the right middle temporal gyrus (MTG_R) exhibited
variance, with the SCZ group surpassing the GHR and HC
groups (p < 0.001, pFDR < 0.001), see Figure 1d–e. Enodal_loc
levels were decreased in specific brain regions within the SCZ
group, including the left calcarine fissure and surrounding
cortex (CAL_L), right calcarine fissure and surrounding cortex
(CAL_R), left lingual gyrus (LING_L), and right lingual gyrus
(LING_R) (p<0.001,pFDR<0.001), see Figure 1f,g andSupplementary
Table 2.

Table 1. Demographic, clinical, and cognitive characteristics of the SCZ, GHR, and HC

Characteristic Mean ± SD or no. (%) F/χ2 p value Post hoc analysis

n = 292 with Network data SCZ (n = 100) GHR (n = 68) HC (n = 124)

Age, years 29.37 ± 9.54 28.82 ± 8.28 31.15 ± 9.79 1.687 0.187 –

Female 62 (62%) 34 (50%) 76 (61%) 2.915 0.233 –

Handedness, right 100(100%) 68(100%) 124(100%) – – –

Medication, yes 74 (74%) N/A N/A – – –

First episode, yes 62 (62%) N/A N/A – – –

Outpatients, yes 87 (87%) N/A N/A – – –

Duration, months 33.04 ± 47.03 N/A N/A – – –

BPRS, total score 32.36 ± 12.07 18.87 ± 1.84 18.47 ± 1.19 114.148 <0.001* SCZ > HC SCZ > GHR

HAMD–17, total score 7.59 ± 6.49 2.28 ± 3.54 1.22 ± 2.23 60.117 <0.001* SCZ > HC SCZ > GHR

HAMA, total score 7.41 ± 7.39 1.59 ± 3.21 1.21 ± 2.29 49.113 <0.001* SCZ > HC SCZ > GHR

n = 233 with Network and WCST SCZ (n = 56) GHR (n = 57) HC (n = 120)

Age, years 28.71 ± 9.19 29.46 ± 8.47 31.05 ± 9.91 1.353 0.261 –

Female 34 (60.7%) 30 (52.6%) 74 (62%) 1.374 0.503 –

Medication, yes 45 (80%) N/A N/A – – –

First episode, yes 37 (66%) N/A N/A – – –

Outpatients, yes 48 (86%) N/A N/A – – –

Correct responses (CR) 20.89 ± 9.05 26.65 ± 11.28 31.08 ± 11.79 16.434 <0.001* SCZ < GHR < HC

Categories completed (CC) 2.04 ± 1.84 3.16 ± 2.18 4.07 ± 2.17 18.363 <0.001* SCZ < GHR < HC

Total errors (TE) 27.00 ± 9.24 21.35 ± 11.28 16.92 ± 11.79 16.003 <0.001* SCZ > GHR > HC

Perseverative errors (PE) 9.45 ± 6.26 7.12 ± 5.56 5.82 ± 6.53 6.472 0.002 SCZ > GHR > HC

Nonperseverative errors (NPE) 17.55 ± 7.20 14.05 ± 8.07 11.06 ± 7.11 15.139 <0.001* SCZ > GHR > HC

n = 78 with Network and PRS SCZ (n = 30) GHR (n = 48) HC (n = 0)

Age, years 28.00 ± 9.36 29.77 ± 8.26 – �0.875 0.384 –

Female 23 (76.7%) 25 (52.1%) – 4.714 0.030* SCZ > GHR

Abbreviations: BPRS, Brief Psychiatric Rating Scale; HAMD-17, the 17-item version of the Hamilton Rating Scale for Depression; HAMA, Hamilton Rating Scale for Anxiety; WCST, Wisconsin Card
Sorting Test; PRS, polygenic risk scores.
*p < 0.05.
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Correlation between PRS and network metrics

There were 78 individuals (30 SCZ and 48 GHR) with available
genetic data (demographic characteristics of participants see
Supplementary Table 3). Significant correlations were identified
between SCZ-PRS and two nodal metrics – Enodal and Dnodal within
MCPG_R. These metrics displayed concurrent alterations in both
the SCZ and GHR groups. After FDR correction, the association
with Dnodal in MCPG_R remained significant across six thresholds:
PT_0.015 (r = �0.274, p = 0.016, pFDR = 0.035), PT_0.025
(r = �0.267, p = 0.020, pFDR = 0.037), PT_0.035 (r = �0.298,
p = 0.009, pFDR = 0.049), PT_0.040 (r = �0.288, p = 0.012,
pFDR = 0.033), PT_0.045 (r = �0.293, p = 0.010, pFDR = 0.037),

and PT_0.050 (r =�0.266, p = 0.020, pFDR = 0.031). However, there
was no significant correlation observed in Enodal after FDR correc-
tion (Figure 2 and Supplementary Table 4). There was no associ-
ation between the PRS and SCZ disease-specific alterations
(Supplementary Table 5).

Correlation between network metrics and WCST

There were 113 individuals (56 SCZ and 57GHR) competedWCST
(demographic characteristics of participants see Supplementary
Table 6). Significant correlations were established between the five
subtest scores and the two nodal metrics - Enodal and Dnodal within
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Figure 1. WCST and brain functional network characteristics.
(a) was the violin diagram showing the comparison of WCST scores among groups. (b) LP was increased in the SCZ group. (c) Eglob was decreased in the SCZ group. (d) and (f) were
the violin diagram showing the comparison of nodal metrics among groups. (e) and (g) were the regions showing a significant difference in nodal metrics.
Abbreviations: WCST, Wisconsin Card Sorting Test; CR, correct responses; CC, categories completed; TE, total errors; PE, perseverative errors; NPE, nonperseverative errors; Lp, the
shortest length path; Eglob, global efficiency; Enodal, nodal efficiency; Dnodal, nodal degree centrality; Enodal_loc, nodal local efficiency; R, right; L, left; MCPG, median cingulate and
paracingulate gyri; MTG, middle temporal gyri; CAL, calcarine fissure and surrounding cortex; LING, lingual gyri.
A significant level of pFDR < 0.05.
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MCPG_R (see Supplementary Table 7). After FDR correction, the
Dnodal of MCPG_R was positively correlated with CR (r = 0.234,
p = 0.013, pFDR = 0.033), CC (r = 0.220, p = 0.020, pFDR = 0.033), and
negatively correlated with TE (r =�0.220, p = 0.020, pFDR = 0.025)
(see Figure 3a–c and Supplementary Table 7). There was no asso-
ciation between the PRS and cognitive alterations (Supplementary
Tables 8 and 9). There was no association between the WCST and
SCZ disease-specific alterations (Supplementary Table 5).

Mediated moderation analysis

After mediation analysis, three mediation models were established
(demographic characteristics of participants see Supplementary
Table 8). Dnodal in MCPG_R fully mediated the association between
the SCZ_PT_0.035 and CR (Path AB, Indirect effect = �14886.854;
95%CI:�29495.314 to�844.529, Figure 3d), between thePRS andCC
(PathAB, indirecteffect=�3150.880;95%CI:�5891.580to�473.907,
Figure 3e), and between the PRS and TE (Path AB, indirect effect =
14886.854; 95%CI: 481.107 to 29223.972, Figure 3f).

Functional enrichment analyses

To elucidate the biological underpinnings of SCZ-associated genes
within SCZ-PRS, we conducted functional enrichment analyses for
SCZ-PRS genes at a p-value threshold of 0.035 (PT_0.035), which
has the smallest p-value and the most significant association with
Dnodal in MCPG_R. A total of 30 Gene Ontology terms, mainly in
biological processes, were identified for these SCZ-PRS genes.
These enriched terms chiefly revolved around the regulation of

signal transduction (particularly small GTPase-mediated signal
transduction), Ca2+ transmembrane transport, and the modulation
of synaptic transmission (Figure 4 and Supplementary Table 10).

Discussion

This study uniquely integrates genetics, brain functional networks
(endophenotype), and executive function (clinical symptoms) in
individuals with SCZ and those at GHR, providing valuable insights
into the disease progression trajectory of polygenic hereditary
disorders. The results showed how SCZ-associated risk genes influ-
ence altered functional networks and the association between
executive deficits and genetically regulated alterations in functional
networks. Specifically, we found that the common functional net-
work alterations related to genetic susceptibility in both SCZ and
GHR groups manifested as decreased Enodal and Dnodal in the
MCPG_R. Additionally, the diminished Dnodal levels were associ-
ated with SCZ-PRS and executive deficits. Importantly, our study
revealed that the effect of SCZ-PRS on the executive functions is
completely mediated through altered Dnodal in MCPG_R. And the
biological function of SCZ-PRS involves intracellular signal trans-
duction, Ca2+ transmembrane transport, and modulation of syn-
aptic transmission.

Brain network alterations in SCZ and GHR

We found common alterations in brain functional network metrics
within the SCZ and GHR groups. Compared to the HC group, both

Figure 2. Association of SCZ-PRS with nodal metrics in the SCZ and GHR group.
Abbreviations: PT, p-value threshold; Enodal, nodal efficiency; Dnodal, nodal degree centrality; MCPG, median cingulate and paracingulate gyri; R, right.
*a significant level of p < 0.05, bold type was pFDR < 0.05.
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SCZ and GHR groups exhibited decreased Enodal and Dnodal in
MCPG_R, with no significant differences between them. The
decreased Dnodal represented the reduced direct connections of
the cingulate gyrus with other nodes, while the decreased Enodal
indicated a declined capacity for information exchange in the
cingulate gyrus. Futhermore, our findings revealed these alterations
potentially represent genetic susceptibility to SCZ. The results
partly align with Lo et al., who also found altered Enodal of the
cingulate gyrus in both SCZ and GHR groups, specifically in the

anterior and posterior cingulate cortex, and theMCPG_R (Lo et al.,
2015).

Moreover, multiple studies have consistently reported com-
promised cingulate gyrus function in SCZ, manifesting as reduced
Enodal_loc, diminished Dnodal and clustering coefficient, and lower
activation during task-based fMRI (Lynall et al., 2010; Oertel et al.,
2019; Yan et al., 2015). The collective evidence highlights a reduced
involvement of the cingulate gyrus in overall brain activity in
patients with SCZ and individuals at GHR, indicating its role as a
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Figure 3. Scatter plot and mediation model in SCZ and GHR groups.
(a) was scatter plots showing Dnodal in the right MCPG was positively correlated to the scores of WCST correct responses. (b) showed Dnodal was positively correlated to WCST
categories completed. (d) showed Dnodal was negatively correlated WCST total errors. (d) was mediation model showing Dnodal in the right MCPG significantly mediated the
association between SCZ-PRS and correct responses. (e) showed Dnodal significantly mediated the association between SCZ-PRS and categories completed. (f) showed Dnodal

significantly mediated the association between SCZ-PRS and total errors. The dotted line represents a non-significant correlation.
Abbreviations: Dnodal, nodal degree centrality; MCPG, median cingulate and paracingulate gyri; R, right; WCST, Wisconsin Card Sorting Test.
A significant level of pFDR < 0.05.
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genetic susceptibility marker that could contribute to preventing
disease development.

Unique brain network alterations in SCZ

We also found the SCZ group exhibited unique disease-specific
alterations, compared to GHR and HC. Firstly, increased Dnodal in
the MTG_R of the SCZ group suggests heightened interactions
between the temporal gyrus and other brain regions and potentially
a compensatory response, a known phenomenon in SCZ (Lynall
et al., 2010). Additionally, the SCZ group showed reduced Enodal_loc
in the bilateral calcarine and lingual gyri, indicating less efficient
information transfer. The role of Enodal_loc in SCZ, however, requires
further exploration.Moreover, we observed lower Eglob and higher Lp
in SCZ, indicating the network global information processing was
diminished, aligningwithprevious SCZ research (Ganella et al., 2017;
Ho et al., 2020; Zhu et al., 2016). The SCZ group exhibits broader
abnormalities in functional networks compared to the GHR group,
manifesting as a gene-susceptibility reduction in specific brain region
FC and a disease-specific decline in whole brain network efficiency.

Associations between PRS, networkmetrics, and executive deficits

We observed a negative correlation between decreased Dnodal in
MCPG_R and SCZ-PRS scores in the SCZ and GHR groups. This
implies that higher PRSs are associated with reduced connections
between the cingulate gyrus and other brain regions. Concur-
rently, analyses utilizing UK Biobank data revealed significant
associations of SCZ-PRS with fractional anisotropy, mean diffu-
sivity, and neurite density index of cingulate gyrus, suggesting
that genetic effects onmultipleMRI phenotypes are located in the

cingulate (Stauffer et al., 2021). Further supporting this, recent
Mendelian randomization analysis posits that genetic variations in
the cingulate gyrus may be causal for SCZ (Stauffer et al., 2023). In
addition, this is complementary to our early finding in brain struc-
tural networks that PRSs are associated with Eloc deficits in SCZ and
GHR populations (Zhu et al., 2021). In summary, our PRS findings
suggest that aberrant brain functional networks may reflect the
overall additive genetic vulnerability of SCZ.

This study demonstrated that, in both SCZ and GHR groups,
Dnodal in MCPG_R was positively correlated with both CR and CC
scores, while negatively correlated with TE scores. This suggests
that altered brain functional networks may impact cognitive per-
formance, aligning with previous research. Specifically, task-based
fMRI investigations have revealed that prolonged task completion
times in patients with SCZ are linked to reductions in the clustering
coefficient and Eloc (He et al., 2012). Additionally, Bassett et al.
identified a correlation between impaired working memory and
decreased Eglob in SCZ (Bassett et al., 2009). Furthermore, machine-
learning analyses revealed that the closer the functional brain
patterns of GHR approximated those of SCZ, the poorer their
executive function performance (Liu et al., 2020). Our findings
provide additional evidence, indicating a decline in genetic
susceptibility-related connectivity between the cingulate gyrus
and other brain regions, correlating with reduced executive func-
tion in SCZ and GHR.

Altered functional networks mediating the association between
SCZ-PRS and executive deficits

Our findings indicated that Dnodal in MCPG_R fully mediated the
association between SCZ-PRS and executive function in both SCZ

Figure 4. Significant gene ontology enrichment analysis for risk genes of SCZ-PRSs.
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and GHR groups, suggesting that gene-regulated functional net-
work disruption may serve as an early biomarker for executive
function impairments. Our findings were similar to a study using
independent component analysis, which found that fALFF medi-
ated the relationship between SCZ-susceptible SNPs and working
memory in mixed SCZ and HC cohorts, considering diagnosis as a
covariate (Luo et al., 2018). Another study found an association
between SCZ-PRS and the functional connectome in HCs, with
parallel findings of reduced connectomes and associated IQ deficits
in an independent SCZ cohort (Cao et al., 2021). However, the two
teams failed to encompass continuous pathophysiology in one
patient cohort and ignored cognitive impairment in GHR. Our
study revealed that brain dysfunction mediated the association
between genetic factors and cognitive deficits in both individuals
with SCZ and those at GHR.

Furthermore, our functional enrichment analysis revealed that
risk genes are implicated in processes like signal transduction, Ca2+

transmembrane transport, and synaptic transmission. Signal trans-
duction, particularly small GTPase-mediated signaling, acts as a
messenger for information carriage and contributes to axon guid-
ance (Nikolic, 2002). Ca2+ transmembrane transport plays a pivotal
role in regulating neurotransmitter release and synaptic strength
through Ca2+ levels (Neher & Sakaba, 2008). Synaptic transmission
regulation directly impacts information transfer between neurons
(Martin, Grimwood, & Morris, 2000). Overall, these risk genes
significantly affect synaptic plasticity and transmission, impacting
neurodevelopment and information exchange. This leads to dis-
rupted connectivity between the cingulate gyrus and other brain
regions, manifesting as noticeable declines in cognitive functions.

Limitations

This study has some limitations. First, although we observed no
significant differences in cognitive performance or networkmetrics
between medicated and unmedicated SCZ patients – likely due to
the small size of the unmedicated subgroup – we cannot fully
exclude antipsychotic effects on their relationships; larger, drug-
naive cohorts are needed. Similarly, no differences emerged
between first-episode and multiepisode – perhaps because most
SCZ participants were first-episode with limited medication expos-
ure – and no differences between in- and outpatients, suggesting
these factors had minimal impact on our results. Second, its cross-
sectional design limits the ability to observe longitudinal brain
alterations and cognitive changes in GHR individuals, particularly
whether GHR progresses to SCZ. Third, the modest SCZ sample
size limits our ability to explore disease-specific brain regions fully.
Similarly, WCST and PRS analyses were restricted to subgroups,
although post hoc power analyses confirmed sufficient statistical
power. Moreover, future studies could examine gene–environment
interactions to clarify how environmental factors shape SCZ risk-
gene effects on brain networks and cognition.

Conclusion

Thedecreased connections of the rightmedian cingulate-paracingulate
gyri with other regions were observed in both SCZ and GHR groups,
potentially indicating genetic susceptibility. Additionally, these
reduced connections were linked to SCZ-related risk genes and
WCST scores. Crucially, the reduced involvement of the cingulate
gyrus in overall brain activity mediated the effect of SCZ-related risk
genes on executive deficits in SCZ and GHR groups, and these risk

genes were involved in signal transduction, Ca2+ transmembrane
transport, and synaptic transmission. Significantly, the SCZ group
displayed broader functional network abnormalities, characterized
by reduced gene susceptibility in specific regions and a disease-
specific decline in whole network efficiency. Our findings provide
new insights into the genetic link to neurodevelopmental mechan-
isms and cognitive impairment, highlight the role of the cingulate
gyrus, and contribute to a deeper understanding of the genetic and
neuropathological basis of SCZ.
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