Check for
updates
Natural Language Processing (2025), 31, pp. 1-25

doi:10.1017/nlp.2024.53 CAMBRIDGE

UNIVERSITY PRESS

ARTICLE

Maximizing RAG efficiency: A comparative analysis of
RAG methods

Tolga Sakar ©© and Hakan Emekci

Applied Data Science, TED Universitesi, Ankara, Turkey
Corresponding author: Tolga Sakar; Email: tolga.sakar@tedu.edu.tr

(Received 29 May 2024; revised 17 September 2024; accepted 17 September 2024; first published online 30 October 2024)

Abstract

This paper addresses the optimization of retrieval-augmented generation (RAG) processes by exploring
various methodologies, including advanced RAG methods. The research, driven by the need to enhance
RAG processes as highlighted by recent studies, involved a grid-search optimization of 23,625 iterations.
We evaluated multiple RAG methods across different vectorstores, embedding models, and large lan-
guage models, using cross-domain datasets and contextual compression filters. The findings emphasize the
importance of balancing context quality with similarity-based ranking methods, as well as understanding
tradeoffs between similarity scores, token usage, runtime, and hardware utilization. Additionally, con-
textual compression filters were found to be crucial for efficient hardware utilization and reduced token
consumption, despite the evident impacts on similarity scores, which may be acceptable depending on
specific use cases and RAG methods.

Keywords: Large Language Models; Vector Databases; Retrieval-Augmented Generation; Contextual Compression;
Embedding Models

1. Introduction

The use of goal-oriented large language models (LLMs) (Devlin et al. 2019; Brown et al. 2020;
Chowdhery et al. 2022), coupled with diverse LLM-oriented frameworks, is continually broaden-
ing the spectrum of Al applications, enhancing the proficiency of LLMs across complex tasks (Wei
et al. 2022). Contemporary LLMs demonstrate remarkable capabilities, from answering questions
about legal documents with latent provenance (Jeong 2023; Nigam et al. 2023; Cui et al. 2023) to
chatbots adept at generating programing code (Vaithilingam et al. 2022). However, this increased
capability also introduces additional complexities. Emerging LLMs, formidable in conventional
text-based tasks, necessitate external resources to adapt to evolving knowledge.

To address this challenge, non-parametric retrieval-based methodologies, exemplified by
retrieval-augmented generation (RAG) (Lewis et al. 2020), are becoming integral to the latest
LLM applications, especially for domain-specific tasks (Vaithilingam et al. 2022; Manathunga
and Illangasekara 2023; Nigam et al. 2023; Pesaru et al. 2023; Peng et al. 2023; Gupta 2023).
The evolution of Al-stack applications underscores the critical role of fine-tuning RAG meth-
ods in updating the knowledge base of LLMs (Choi et al. 2021; Lin et al. 2023; Konstantinos
and Pouwelse Andriopoulos and Johan 2023). Retrieval-based applications demand optimization
when searching the most relevant passages, or top-K vectors, through semantic similarity search.

Querying multi-document vectors and augmenting LLMs with relevant context introduce
dependencies on both time and token limits. The ‘bi-encoder’ retrieval models (refer to Figure 1)
leverage cutting-edge approximate nearest-neighbor search algorithms (Jégou et al. 2011).

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/nlp.2024.53 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.53
https://orcid.org/0009-0009-3684-9755
https://orcid.org/0000-0002-4074-5600
mailto:tolga.sakar@tedu.edu.tr
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nlp.2024.53&domain=pdf
https://doi.org/10.1017/nlp.2024.53

2 T. Sakar and H. Emekci

However, diverse data structures (e.g., multimedia, tables, graphs, charts, and unstructured text)
pose additional challenges, including the potential generation of hallucinative responses (Sean
et al. 2019; Konstantinos and Pouwelse Andriopoulos and Johan 2023) and the risk of surpassing
LLM token limits (Roychowdhury et al. 2023). Overcoming the hallucination problem and staying
within the token generation limit is a difficult task. The tradeoff is that once the retrieval process is
complete and top-K documents are obtained by the search algorithm, the total number of tokens
sent may exceed the token limit for the specific LLM in use.

On the other hand, constraining the retrieval capabilities may limit the LLM’s ability to suc-
cessfully generate the relevant response based on the restrained context. Optimizing the tradeoff
requires an in-depth analysis involving various processes, including experimenting with diverse
and hardware-optimized search algorithms (Chen et al. 2019; Zhang and He, 2019; Malkov and
Yashunin 2020; Johnson et al. 2021; Lin et al. 2023), applying embedding filters based on similarity
score threshold, and routing the LLM inputs and outputs along with the filtered context. These
processes play a crucial role in fine-tuning LLM responses by optimizing the retrieval process. In
the pursuit of optimization, commonly known vector databases, such as Pinecone (Sage 2023),
ChromaDB, FAISS, Weaviate, and Qdrant, find application for various reasons. These databases
are classified based on criteria like scalability, ease of use (versatile Application Programming
Interface [API] support), filtering options, security, efficiency, and speed (Han et al. 2023). The
integration of these databases into the LLM operational pipeline not only enhances the overall
efficiency and effectiveness of retrieval-based methodologies but also contributes significantly to
the optimization of LLM performance.

Optimization initiates with document preprocessing. Chunking the multi-document into
smaller paragraphs and overlapping the chunks (sentence tokens) could potentially affect the
retrieval process since the embedded documents in the vector space are selected as a candidate
context by the search algorithm (Schwaber-Cohen 2023; Zhou et al. 2023). Chunks and over-
lapping chunk hyper-parameters control the granularity of text splitting, making fine-tuning
crucial, especially when dealing with documents of a similar or reasonably uniform format
(Schwaber-Cohen 2023). In addition to optimizing data preprocessing, there are various known
RAG methodologies, such as ‘Stuff’, ‘Refine’, ‘Map Reduce’, ‘Map Re-rank’, ‘Query Step-Down’,
and ‘Reciprocal RAG’ (refer to Figures 2.4.1-2.5.3), which significantly impact vectorstore scala-
bility, semantic retrieval speed, and token budgeting. When making an LLM call, RAG methods
either feed the retrieved documents as the unfiltered context to the call or apply re-ranking
within the retrieved context based on the highest individual similarity for each document vec-
tor. More importantly, in multi-document tasks, fine-tuning the context routing in the LLM call
sequence can dramatically affect the response generation time, hardware resources, and token
budgeting (Nair et al. 2023). Despite the recognition of the importance of optimizing RAG pro-
cesses in numerous papers (Vaithilingam et al. 2022; Nair et al. 2023; Topsakal and Akinci 2023;
Manathunga and Illangasekara 2023; Nigam et al. 2023; Pesaru et al. 2023; Peng et al. 2023;
Konstantinos and Pouwelse, Andriopoulos and Johan 2023; Roychowdhury et al. 2023), there
remains a notable gap in previous work on the methods of optimization. Therefore, this paper
aims to illuminate the process of optimizing RAG processes to improve LLM responses.

2. Materials and methodology

2.1 Retrieval-augmented generation

RAG method enables continuous updates and data freshness for question-answering chatbots
by retrieving latent documents as provenance, without the need of re-training or fine-tuning
the LLMs for domain-specific tasks. First-generation RAG models tackled challenges (Mialon
et al. 2023) in knowledge-intensive text generation tasks by combining a parametric pretrained
sequence-to-sequence BART model (refer to Figure 1) (Sutskever et al. 2014; Lewis et al. 2019)
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Figure 1. First-generation retrieval-augmented generation (RAG) methodology: Non-parametric RAG with a parametric
sequence-to-sequence model. (Refer to RAG for knowledge-intensive natural language processing tasks.

with a non-parametric memory. This memory is a vectorized dense representation of latent doc-
uments from Wikipedia, accessed through a pretrained neural retriever (Lewis et al. 2020). This
integration of a sequence-to-sequence encoder and a top-K document index enables token gen-
eration based on latent provenance augmented with context from the query. The ‘Retrieval and
Generation’ sequence efficiently produces output by leveraging both the pretrained sequence-to-
sequence model and the non-parametric memory with a probabilistic model (refer to Figure 1).

The non-parametric retriever conditions latent provenance on the input query (x), and sub-
sequently, the parametric sequence-to-sequence model (P,) is then conditioned on this new
information along with the input (x) to generate the output response Py(yil|x,z, yi—1). The
combined probabilistic model then marginalizes to approximate the top-K documents (latent
documents). This can occur either on a per-output basis, meaning that a single latent document
is responsible for all output generation, or different indexed documents are responsible for dif-
ferent output generations. Subsequently, the parameterized 6 generates the y; token based on the
top-K context from a previous token, y;_1, x, z, where x is the original input, and z is a retriever
document (refer to Figure 1).

Recent advancements in retrieval methods involve prominent embedding models, which are
extensively trained on a large corpus of data in diverse languages. Notably, a significant shift
has occurred, with a preference for LLMs over traditional models like sequence-to-sequence
for token generation in the context of RAG. This transition builds on the foundations laid by
first-generation RAG models, expanding the possibilities for more efficient and versatile text
generation using latent documents as provenance. The latest RAG methods (refer to Figures
2.4.1-2.5.3) used in LLM-powered chatbots involve much more sophisticated retrieval processes.
Using frameworks such as LangChain and LIAma-index, LLMs can now have direct access to
SQL, vectorstores, Google search results, and various APIs. This increased capacity in generating
more accurate results by having access to concurrent information allows LLMs to expand their
knowledge base for domain-specific tasks. Moreover, using embedding filters provided by frame-
works, RAG processes can become even more efficient in terms of retrieval speed when querying
from vector databases. Embedding filters apply thresholds during the similarity search process to
select text vectors (embeddings) that have similarity scores above the threshold while removing
the redundant vectors, achieving efficiency in both retrieval speed and token budgeting.

2.2 Vectorstores

Vectorstores, playing a crucial role in RAG-based LLM applications, are distinguished by their
proficiency in executing fast and precise similarity searches and retrievals. Unlike traditional
databases reliant on exact matches, vector databases assess similarity based on vector distance
and embedding filters, enabling the capture of semantic and contextual meaning (Han et al. 2023)
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(refer to Figure 2). This positions them as pivotal components in the ongoing effort to optimize
the intricate interplay between language models and retrieval methodologies.

Prominent vector databases, such as FAISS, Pinecone, and ChromaDB, find applications in var-
ious domains, each offering key differentiators. FAISS, acknowledged as a leading vector database,
excels in high-speed vector indexing for similarity searches. Its memory-efficient search algo-
rithm enables the handling of high-dimensional data without compromising speed and efficiency
(Johnson et al. 2019). Adding to the strengths of FAISS, Pinecone emerges as a notable choice,
providing a high-level API service and delivering comparable performance to FAISS in similar-
ity searches (Sage 2023). However, as a managed service, Pinecone raises scalability concerns.
Limitations on the number of queries pose a barrier to large-scale data processing needs, especially
for high-volume applications.

Unlike Pinecone, ChromaDB is an open-source vector database that offers more flexibility in
terms of scalability and usage. This open-source nature facilitates adaptability to different needs
and use cases, making it a compelling option for customization and control over vector database
infrastructure. Semantic similarity search is the retrieval of information or data based on semantic
relationships that go beyond exact keyword or text matching. It focuses on understanding the con-
textual and conceptual relationships between words, phrases, or documents. A specific application
within semantic similarity search is the exploration of semantic connections between embeddings.

Vector representations (embeddings) of words, phrases, or documents are used for similarity-
based search. The process begins by converting documents or text into vectors using an embed-
ding model. Then, similarity search algorithms identify the vectors most similar to the query based
on various metrics, such as cosine similarity. In the final step, the output contains the response
corresponding to the most similar vectors within the vector space. When calculating the sim-
ilarity, cosine similarity is especially effective in this context as it measures the cosine of the
angle between two vectors, providing a normalized measure that captures the directional simi-
larity between vectors. This property makes it particularly useful for evaluating the similarity of
embeddings in semantic search tasks.

Cosine similarity
Cosine similarity measures the cosine of the angle between two vectors. Given two vectors A and
B in a vector space:

A-B 2ioi4i-Bi
IAT-NBI s (a2 [, (B2

cos(A, B) =
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Figure 3. Semantic similarity search process when finding top-K documents in a vector space based on input query to assign
score-weighted ranks.

» A and B are vectors in a vector space.

« A, and B; are the components of vectors A and B at index i, respectively.

« nis the dimensionality (number of components) of the vectors.

o The numerator ) .. | A; - B; represents the dot product of vectors A and B.

o The denominators \/ Yo (A2 \/ Y%, (Bi)* represent the Euclidean magnitudes
(lengths) of vectors A and B, respectively.

2.3 Search algorithms

At the forefront of enhancing retrieval efficiency and speed, search algorithms play a pivotal role.
Specifically, tree-based algorithms are widely employed in vector databases to measure the dis-
tance between similar top-K vectors. Nearest neighbor search (NNS) (Chen et al. 2019; Zhang
and He 2019; Malkov and Yashunin 2020; Han et al. 2023) identifies the data points in a dataset
that are nearest to a particular query point, often based on a distance measure such as Euclidean
distance or cosine similarity. Exact closest neighbor search uses methods like linear search or
tree-based structures like kd-trees (Bentley 1975; Dolatshah, Hadian, and Minaei-Bidgoli 2015;
Ghojogh, Sharifian, and Mohammadzade 2018) to identify the genuine nearest neighbors without
approximations. However, the computational complexity of accurate search might be prohibitive
for big or high-dimensional data sets.

Approximate NNS (ANNS) (Zhang and He 2019; Christiani 2019; Li and Hu 2020; Singh et al.
2021), on the other hand, achieves a compromise between accuracy and efficiency. By adopting
index structures such as locality-sensitive hashing (LSH) (Dasgupta, Kumar, and Sarlos 2011), or
graph-based techniques, it trades some precision for quicker retrieval. ANNS is especially benefi-
cial in situations involving high-volume or high-dimensional data sets, such as picture retrieval,
recommendation systems, and similarity search in massive text corpora. To meet the issues of
both precise and ANNS, several methods such as k-d trees, LSH, and tree-based structures are
utilized, with tradeoffs to fit specific use cases and computational restrictions.

The process of similarity search begins by transmitting the vector embeddings of the input
query to a preexisting vector store, which contains embeddings of various documents (Feature
Embeddings) (refer to Figure 3). The initial step involves identifying the most similar vector
embeddings within the available vector space. Subsequently, upon locating the most relevant or
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Figure 4. Stuff retrieval-augmented generation method.

top-K documents, these documents are retrieved and ranked based on their individual cosine sim-
ilarity to the input query (see: Figure 3). This retrieval mechanism is fundamental to every RAG
methodology. Consequently, the similarity search and retrieval processes are indispensable and
necessitate thorough evaluation and optimization.

2.4 RAG methods

Various RAG methods offer distinct benefits when augmenting LLMs with latent information.
Selecting the appropriate RAG method is crucial for optimizing retrieval speed, token budget-
ing, and response accuracy. RAG methods, such as Stuff, Refine, Map Reduce, and Map Re-rank
can directly influence the number of top-K documents, retrieval speed, the number of input
tokens used for generation, and response time. Therefore, optimizing the RAG methods to suit
the specific task is of utmost importance.

2.4.1 Stuff method

The stuff method is the most straightforward RAG technique for updating the knowledge base of
an LLM with latent information (refer to Figure 4). The query received from the user is sent to the
existing vector store to search for similar content based on the specified number of documents.
These documents are then incorporated into the system prompt template as context, which the
LLM uses to generate a response. This method aims to enable LLMs to generate well-structured
responses based on all relevant information within the entire context. However, the Stuff method
also presents cost-efficiency challenges. Providing an LLM with multiple contexts could poten-
tially increase token usage, as both input and output tokens will be significantly higher unless
limited by max token hyperparameter. It is generally an appropriate option for applications where
RAG processes do not involve long documents (Nair ef al. 2023, LangChain n.d.).

Moreover, the context window of the selected LLM plays a crucial role, as certain models
have quite a limited context window, such as GPT-3.5-Turbo with only a 4096 context token
limit. Therefore, the more documents retrieved from the vector store, the more likely the context
window limit will be reached.

2.4.2 Refine method

The refine method, in contrast to the *Stuff’ method, creates an answer by iteratively looping over
the input documents and refining its response (refer to Figure 5) (LangChain n.d.). Essentially,
after the first iteration, an additional context is generated from LLM call using document,,_.
The generated context from document,_; is then inserted into the successor system prompt tem-
plate as additional context, along with the next document context in the iteration ( document,),
and then with the combined context ( document,_y + document,) and the user query, another
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answer is created. This loop continues until the specified number of top-K documents is reached.
Because the refine method only sends a single document to the LLM at a time, it is ideally suited
for applications that require the analysis of more documents than the model can accommodate,
which addresses the token context window issue. The clear disadvantage is that this method will
make significantly more LLM calls, which is not ideal for token budgeting and response time.
On the other hand, the final response will be ‘refined’ due to the enriched context supplied from
predecessor LLM calls using numerous documents.

2.4.3 Map-reduce method
In the ‘Map Reduce’ method, similar to 'Refine’, each document is iteratively used to generate a
response (refer to Figure 6) (LangChain n.d.). However, one key difference in this method is that,
rather than combining predecessor context with the successor, the final responses are ‘mapped’
together (refer to Figure 6). These mapped responses are then used as the final context when gen-
erating the ‘reduced’ response. In the initial phase of the map-reduce process, RAG method is
systematically applied to each document independently (mapping phase), with the resulting out-
put from the method treated as a single document. Subsequently, all newly generated documents
are directed to a separate chain designed to consolidate them into a single output (reduce step).
The Map Reduce method is suitable for tasks involving short documents, containing only a few
pages per document. Longer contexts or long documents might cause the LLM to reach its token
context window limit.

Moreover, if the LLM is not limited by a maximum token hyperparameter or is not instructed
to provide concise and short answers, the ‘reduced’ context could also cause token context limit
issues, even if not caused by the document itself.

2.4.4 Map re-rank method
This method closely resembles the Map Reduce method but incorporates a filtering application
on each document, based on an assigned cosine similarity score, which ranks each response from
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highest to lowest in terms of similarity to the query (refer to Figure 7) (LangChain n.d.). The
map re-rank documents chain initiates a preliminary query on each document, aiming not only
to perform a task but also to assign a confidence score to each answer. The answer with the highest

score is then provided as the output.

2.5 Advanced RAG

The RAG methods discussed in Section 2.4 (2.4.1-2.4.4) primarily address issues related to
the quality of the final response. However, another significant challenge during retrieval stems
from the ambiguous nature of queries. This ambiguity can result in relevant information being
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overlooked during retrieval, leading to the inclusion of irrelevant documents as context during
generation (LangChain n.d.; Zheng et al. 2023; Rackauckas 2024).

To enhance response accuracy and quality, and to prevent irrelevant documents from being
inserted into the system prompt as context, more advanced methodologies are needed. These
include filtering out irrelevant documents, creating alternative questions based on the original and
then ranking each answer based on similarity (similar to the ‘Map Re-rank’ method), or generating
less abstract alternatives of the input query and then proceeding with answer generation. Filtering
irrelevant documents by applying similarity score thresholds can potentially exclude irrelevant
documents and enable the retriever to insert only relevant documents as context. Moreover, with
similarity filtering applied, token usage efficiency is achieved by limiting input token usage during
filtering.

Another approach involves populating the input query with less abstract alternative questions
to address the ambiguity issue (refer to Figure 8). Attaching a question ‘generator chain’ could
potentially provide more relevant questions that align more closely with the actual intent of the
original query. This reduction in abstraction could be achieved by providing a set of instructions
for the generator chain to generate questions based on the content available in the vector store.
Consequently, the generator chain would not produce irrelevant questions. One drawback of this
approach is that each query results in a total of GC; + Q; LLM calls.

« GC;: The number of generator chain calls per user query.
+ Qj: The number of alternative questions generated per user query.

To exemplify, in a scenario where each query is decomposed (generated by the ‘genera-
tor chain’) into four different alternatives, and for each generated question, there will be four
standalone RAG chain calls, totaling up to five calls for each query received from the user.
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Alternatively, the generated questions and their follow-up answers could be ranked based on
how closely the answers match the original query. While this approach would result in more LLM
calls and could potentially address the ambiguity issue and improve response quality, it would also
deteriorate token usage efficiency and runtime performance.

2.5.1 Contextual compression

Contextual compression resolves the problem of inserting irrelevant documents caused by the
ambiguous nature of a query by compressing retrieved documents based on the cosine similar-
ity score between the query and each document (LangChain n.d.). The Contextual Compression
retriever sends queries to the vector store, which initially filters out documents through the
Document Compressor. This first step shortens the document list by eliminating irrelevant
content or documents based on the specified similarity threshold. Subsequently, if needed, the
Redundancy Compressor can be applied as a second step to perform further similarity filtering on
the retrieved documents, compressing the context even more (refer to Figure 9).

Selecting an appropriate document chain is essential. Enhancing this process with contextual
filters on embeddings, based on similarity scores, can significantly reduce both input and output
token generation. However, applying embedding filters necessitates a careful balance between the
threshold score in similarity search and the relevancy of the response. As the similarity threshold
scores increase, the number of context documents decreases, thereby affecting the relevance and
comprehensiveness of the responses.

Utilizing Contextual Compression along with various RAG methods could potentially provide
further efficiency in both input token and output token generation.

2.5.2 Query step-down

To address the issue of ambiguity, the ‘Query Step-Down’ method offers a potential solution
by generating variant questions based on the content within the documents (refer to Figure 10)
(Zheng et al. 2023). This approach can be particularly useful for domain-specific tasks where users
may lack sufficient information about the content.

The Query Step-down process initiates a ‘generator chain’ tasked with formulating questions
based on the content available within the documents and the user query. Subsequently, for each
generated question, the vector store is employed to retrieve the top-k documents correspond-
ing to each question,. To further optimize this approach, employing diverse RAG methods could
enhance various aspects such as response time, token usage, and hardware utilization. Given the
high volume of LLM calls made during each conversational transaction, reducing the context
retrieved from the vector store through advanced methodologies (e.g., Contextual Compression)
could address efficiency concerns effectively.

2.5.3 Reciprocal RAG
Reciprocal RAG, akin to the ‘Query Step-Down’ method, addresses the issue of ambiguity through
a similarity score-based ranking process. Rather than aggregating all generated responses for
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each produced query to form a final answer, reciprocal RAG employs a ranking mechanism—
comparable to ‘Map Re-Rank’—to selectively filter and retain only the most pertinent or relevant
answers from the pool of possible responses (refer to Figure 11). This method potentially reduces
token usage by prioritizing relevance and precision in the final output (Rackauckas 2024).
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3. Data

This paper utilizes three domain-specific datasets. The first dataset, the Docugami Knowledge
Graph RAG dataset, includes 20 PDF documents containing SEC 10Q filings from companies
such as Apple, Amazon, Nvidia, and Intel. These 10Q filings cover the period from Q3 2022 to Q3
2023. The dataset comprises 196 questions derived from the documents, with reference answers
generated by GPT-4. The second dataset employed is the Llama2 Paper dataset, which consists of
the Llama2 ArXiv PDF as the document, along with 100 questions and GPT-4 generated reference
answers. The third dataset utilized is the MedQA dataset, a medical examination QA dataset.
This dataset focuses on the real-world English subset in MedQA, featuring questions from the US
Medical Licensing Examination (MedQA-US), including 1273 four-option test samples.

The significance of utilizing diverse datasets in optimizing RAG processes is rooted in the com-
plex nature of the content within each dataset. These datasets often contain a variety of elements,
including numerical values, multilingual terms, mathematical expressions, equations, and tech-
nical terminology. Given the distinct nature of these documents, optimizing the RAG processes
becomes crucial. This optimization ensures efficient handling of the retrieval process during sub-
sequent analysis. To process the data, we initially split the characters into tokens based on 1000
chunk size along with 100 overlapping chunks for each dataset. We employed the tiktoken encoder
and the Recursive Character Split method for recursive splitting, ensuring that splits do not exceed
the specified chunk size. The subsequent merging of these splits together completes the data
processing steps.

In the next step, a grid search optimization was conducted, exploring different datasets, vector
databases, RAG methods, LLMs, Embedding Models, and embedding filter scores. RAG perfor-
mance was assessed by measuring the cosine similarity between the embedded LLM answer and
the reference answer from each dataset and question-answer pairs.

Additionally, various performance metrics were created to monitor parameters such as run
time (sec), central processing unit (CPU) usage (%), memory usage (%), token usage, and cosine
similarity scores. Token usage calculation was done by applying the following formula: T; =
(LR; x 4)/3, where T; is the token usage at the ith iteration, and LR; is the length of the response
generated by LLM for the i*" iteration.

4. Results

A comprehensive set of 23,625 grid-search iterations was conducted to obtain the results presented
herein. Various embedding models were employed, including OpenAT’s flagship embedding
model (text-embedding-v3-large), BAAT's (Beijing Academy of Artificial Intelligence) open-
source bge-en-small, and Cohere’s cohere-en-v3. The LLMs used in this study comprised GPT-3.5,
GPT-40-mini, and Cohere’s Command-R. For vectorstores, we utilized ChromaDB, FAISS, and
Pinecone. Additionally, seven different RAG methodologies were implemented to complete the
trials, and lastly, we deployed a wide range of contextual compression filters. In total, 42.12 million
embedding tokens and 18.46 million tokens (combined input and output) were generated by the
deployed LLMs. The cumulative runtime for all iterations was approximately 112 uninterrupted
hours.

4.1 Similarity score performances

We implemented a range of RAG methodologies, LLMs, embedding models, and datasets to deter-
mine which combination would produce the highest similarity score. Among the RAG methods,
Reciprocal RAG emerged as the most effective with a %91 similarity (Figure 12), followed by Step-
Down (%87), Stuff (%86), and Map Reduce (%85) methodologies. As elaborated in Section 2.5.3,
Reciprocal RAG aims to populate input queries based on the content within the documents and

https://doi.org/10.1017/nlp.2024.53 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.53

Natural Language Processing 13

Median Run Time by RAG Methods Median Run Time by Datasets
E 3433 2104 3149

26.16 16.65

Run Time
>
5
5

Run Time

3 & B & o 2 <3 o
o & & & q»sﬁ & &+ & 5
4 ¢ K & ¥ #
& & L & Datasets
RAG Methods
Median Run Time by Embedding Models Median Run Time by LLMs
20.19 2187
200 19.28 18.55 20.11
oo 20
17.5 18.15
15.0
15
2 125 2
E £
E E
g 100 13
a 210
1.5
50 5
25
0.0 o
& ) s o &
_‘fv bﬁd _\’&% & & &
& ' A & o o
! ; & S s
o« {.ég 9‘9 & & &
,o“b WMs
&

o
&
Embedding Models

Figure 12. Median run time (sec) comparisons by retrieval-augmented generation methods, datasets, embedding models,
and large language models.

the generated alternative questions. Each question is then queried within the vectorstore to gen-
erate an answer. Subsequently, all generated answers are filtered based on a desired number of
documents or similarity score. We used 50% similarity threshold, which is the default value across
all iterations where Reciprocal RAG method is utilized.

This filtering step is particularly advantageous in scenarios where some of the generated ques-
tions may be less pertinent to the original query. By omitting the answers and documents retrieved
from less-relevant and populated queries (refer to Section 2.5.3), this filtering process ensures that
only the most relevant information is retained. This distinguishes Reciprocal RAG from the Step-
Down method, which aggregates all answers without filtering (refer to Section 2.5.2), as well as
from other methodologies that do not adequately address or aim to resolve query ambiguity.

In the evaluation of LLMs, Cohere’s Command-R model stands out as the top performer,
achieving an impressive similarity score of 83%, which is 2.4% higher than that of GPT-3.5 and
3.75% higher than GPT-40-Mini (refer to Figure 12). The significance of employing various LLMs
is underscored when tested against different datasets across diverse domains. For instance, 10Q
documents, which predominantly contain financial information such as income statements and
balance sheets, are largely composed of numerical data. Similarly, LLama2 documents include not
only numerical values but also mathematical expressions, notations, and formulas. Consequently,
any errors in generation by an LLM when dealing with complex or challenging contexts could sub-
stantially impact the similarity score. Furthermore, MedQA documents are replete with technical
and multilingual terminology, primarily in Latin. Certain LLMs may not be extensively trained
on such documents or may have been trained on a smaller corpus of similar content compared
to other datasets. Therefore, evaluating different datasets enables a comprehensive capability
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Table 1. Similarity scores, run time, and token usage for various retrieval-augmented generation methods
across different datasets. The datasets used in this study differ in complexity and domain specificity, thus the
results are separated and evaluated separately

Dataset RAG method Similarity scores Run time (sec) Token usage
Median Std Median Std Median Std

10Q Reciprocal 0.971 40.015 24.56 +2.51 3187 +411
10Q Step-Down 0.890 +0.029 33.46 +8.85 5527 + 926
100 MapReduce 0873  +0190 2425  +£840 896  +609
loQ [ .R.eﬁr." [ 0836 A i0088 — 2974 . i1104 . 2298 R i940
loQ R M.a.p.he.rén.k. 0801 B i02781874 R i348 R 308 B i365
Llama2 Reciprocal 0.930 +0.105 24.81 +3.04 2707 + 689
Llamaz stepDown 0927 iooel 3494 — i261 — 4308 illgg
.I._l.a.m.a.z.. R ét.u%f. R 0905 i iozoo i 1505 R i381 . 89066 — i1147
Llama2 ‘Map Reduce » 6.892 F:i: 0.267 o 25.89 F:I:lb3.64‘ lléO » :E1240
Llama2 Refine 0.830 +0.135 29.16 +15.28 1982 + 1509
Llamaz - MapRerank i 0827 — i0310 i 1762 — i390 R 418 e i400
MEdQA R StepDown e 0678 . i0045 e 3301 R i397 R 4393 R i 600
MedQA Reciprocal 0.673 +0.183 19.97 +5.55 703 + 629
MedQA Stuff vvvvv 0641 i02841348 i086 . 155 ilgz
MedQA R .R.eﬁl..le. R 0609 A ioogs — 2518 R i542 R 3174 R i 558
MedQA B Mé.p.éea.uc.é 0569 B i0288 1766 R i158 R 220 B i275
MedQA Map Rerank 0.148 +0.312 15.21 +0.60 56 +76

comparison of various LLMs, particularly in tasks such as accurately handling numerical values,
mathematical expressions, and multilingual terminology.

In the evaluation of embedding models, BAAI’s 'Bge-en-small’ model demonstrated remark-
able performance, achieving a median similarity score of 94%. This score is notably 20.5% higher
than Cohere’s flagship embedding model ’Cohere-en-v3” and 22% higher than OpenAT’s flagship
embedding model *Text-embedding-v3-large’ (refer to Figure 12). The significance of embedding
models is paramount, extending beyond the initial conversion of documents into dense vector
representations (embeddings) to encompass the retrieval of semantically meaningful text from
the vector space (vectorstore). Embedding models trained for complex tasks—such as capturing
semantic relationships between textual and numerical data, mathematical expressions, or multi-
lingual texts—introduce additional considerations for enhancing the processes and efficiency of
RAG systems.

Upon all possible iterations and datasets, Reciprocal RAG’ achieved the highest similarity score
(Median score: 97.1%, Std: £0.015) across both Dokugami’s 10Q and Llama2 datasets, yet not the
lowest run time (sec) or token usage (refer to Table 1). The tradeoff between response accuracy,
run time, and token usage plays crucial significance when designing RAG process for specific
tasks.
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As a result, we concluded that in RAG-based applications where response accuracy is
paramount, Reciprocal RAG yields the best performances. RAG processes that might require
the highest possible response accuracy could involve financial, insurance, and research-related
documents. On the other hand, in applications where response time and token usage are
more significant, such as building chatbots for high volume usages, *Stuff method could
be utilized, since it yielded the 70.5% lower token usage, along with 38.9% faster response
time, while only giving up 7.2% response accuracy compared to ‘Reciprocal RAG’ (refer to
Table 1).

Additionally, in terms of minimizing token usage, the '"Map Re-rank’ method demonstrated
exceptional performance. It achieved similarity scores of 83.0% and 82.7% with the Llama2 and
10Q documents, respectively, while generating only 418 and 308 output tokens.

All RAG methods exhibited significantly lower similarity scores—some even yielding the poor-
est results—when applied to the MedQA dataset. This outcome can be primarily attributed to the
dataset’s nature, which involves challenging question-and-answer pairs within a highly specialized
domain. MedQA documents focus on medical surgery content, where abstract or nuanced ques-
tions can substantially alter the expected answers, presenting a more formidable challenge for
RAG-based applications. Consequently, methods designed to address ambiguity yielded higher
similarity scores, with *Step-Down’ achieving 67.8% and ‘Reciprocal’ attaining 67.3% (refer to
Table 1), compared to other methodologies that do not address such ambiguity. Moreover, ‘Map
Re-rank’ yielded the lowest score on MedQA dataset with only 14.8% similarity. These results
underscore the importance of retrieving the correct documents with sufficient context, highlight-
ing that filtering context for LLMs prior to generation is not of even greater significance than
the quality context. The results demonstrate that even with less content if it is irrelevant, the
performance is adversely affected.

4.2 Hardware utilization

Another critical aspect of this research is to assess how various LLMs, embedding models, datasets,
and RAG methods impact hardware consumption, including CPU (%) usage, memory (%) usage,
and runtime. Hardware utilization becomes increasingly significant when deploying RAG-based
applications for high-volume usage.

Further, we evaluated hardware utilization across three categories: runtime (in seconds),
which measures the speed of obtaining an answer; CPU usage (percentage), which indicates the
proportion of the workload handled by the CPU; and memory usage, which assesses the mem-
ory consumption during retrieval. Additionally, we considered the impact of different LLMs,
embedding models, RAG methods, and datasets on these metrics.

We observed that the *Step-Down’ method resulted in the highest median run time of 34.33 s,
whereas the ’Stuff’ method exhibited the lowest run time at 14.29 s (refer to Figure 13). As detailed
in Table 1, the difference in similarity scores between the top-performing methods is only 7.2%
compared to the "Stuff’ method. Additionally, the *Stuff method demonstrated a 71.7% improve-
ment in token usage efficiency relative to the top-performing method. Despite being the simplest
approach and not addressing query ambiguity, the *Stuff’ method proves to be the most efficient,
albeit with marginally lower similarity scores.

Furthermore, the comparative results revealed that among the embedding models, Cohere’s
"Cohere-en-v3’ exhibited the slowest median run time of 20.19s, whereas OpenAI’s ‘“Text-
embedding-v3-large’ demonstrated the fastest median run time of 18.55s, achieving a 0.91%
improvement in run time efficiency (refer to Figure 13). The inclusion of embedding mod-
els in the experiment was intended to assess which model could achieve the most rapid run
time. This aspect is crucial for high-volume and high-scale applications with even denser
vectorstores.
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Figure 13. Median run time (sec) comparisons by retrieval-augmented generation methods, datasets, embedding models,
and large language models.

Additionally, we assessed the run time differences among various LLMs. The OpenAl GPT-
3.5-Turbo model emerged as the top performer in terms of generation time, with a median run
time of 18.15s. This model achieved generation times that were 9.7% and 17.0% faster compared
to GPT-40-Mini and Command-R, respectively (refer to Figure 13). Achieving rapid generation
times is particularly crucial for applications such as educational chatbots, where swift responses
are needed to accommodate lower attention spans. Moreover, the tradeoff between run time and
response accuracy becomes more pronounced as tasks or domains vary. In cases where the pri-
mary goal is to mitigate response hallucination or address query ambiguity, generation time may
be of lesser concern. Conversely, chatbot applications designed for roles such as information desks
or promotional purposes, such as university promotion, may tolerate certain levels of response
hallucination in favor of minimizing response time.

We also evaluated the performance of different embedding models and LLM combinations
in terms of hardware utilization. GPT-3.5-Turbo, when paired with ‘Bge-en-small‘, achieved the
fastest run time of 17.55 +5.92 s, though it did not exhibit the lowest CPU utilization percent-
age (refer to Table 2). Generally, GPT-3.5-Turbo is identified as the fastest in response time, but
the choice of embedding model also significantly impacts this efficiency. The difference in run
time for GPT-3.5-Turbo, when used with various embedding models, is 3.7% between the fastest
and slowest configurations (refer to Figure 14). Considering CPU and memory usage-critical
factors for cloud-deployed applications handling high-volume requests—we concluded that the
‘Text-embedding-v3-large’ embedding model when used with the GPT-3.5-Turbo LLM, results
in the lowest CPU % usage. This configuration sacrifices only 3.7% of run time compared to the
fastest setup, which is GPT-3.5-Turbo paired with ‘Bge-en-small’ (refer to Table 2).
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Table 2. Utilization metrics for various embedding models and large language models
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LLM Embedding Model Run time (sec) CPU usage Memory usage
Median Std Median Std Median Std
gpt-3.5-turbo bge-en-small 17.55 +5.92 2.95 +8.31 0.0 +0.5904
gpt-3.5-turbo cohere-en-v3 18.11 +6.09 2.70 +4.326 0.0 +0.5590
gpt-3.5-turbo  text-embedding-v3-large 18.28 +5.60 1.40 +4.759 0.0 +0.2674
gpt-4o0-mini bge-en-small 18.67  +10.17 3.20 +9.45 0.0 +0.2645
gpt-40-mini text-embedding-v3-large 19.87 +9.68 3.19 +9.147 0.1 +0.2247
command-r text-embedding-v3-large 20.41 +14.09 3.95 +7.907 0.1 +0.2827
command-r bge-en-small 21.80 +17.36 3.20 +7.912 0.1 +0.2492
gpt-40-mini cohere-en-v3 22.07 +10.42 3.09 +3.683 0.1 +0.797
command-r cohere-en-v3 25.64 +18.42 2.00 +3.964 0.0 =+ 0.3547
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Figure 14. Median CPU (%) usage comparisons by retrieval-augmented generation methods, datasets, embedding models,
and large language models.

4.3 Vector databases

Another aspect of our evaluation involved identifying which combination of vectorstores and
embedding models provides the lowest run time while also minimizing hardware utilization. This
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Table 3. Performance metrics for vectorstore systems with different embedding models

Vectorstore  Embedding model Run time CPU usage Memory usage
median std median std median std

ChromaDB  text-embedding-v3-large 18.34 +6.21 1.50 +1.93 0.00 +0.20
bge-en-small 19.15 +13.998 1.98 +2.20 0.00 +0.432
cohereenyd 1922 13528 265 4259 000 0485

FAISS  bgeensmall 1940 1133 975 410178 010  £035

text-embedding-v3-large 19.75 +12.22 6.80 +10.89 0.10 +0.365

cohere-en-v3 33.60 +7.69 3.54 +1.044 0.15 +0.936
Pmecone ”bg;e;‘;‘s?ﬁvé“ S 1964 e :t959 . 170 . :t766 e 010 . i052
textembeddingva-large 2185 4831 179 838 010 4065
cohere-en-v3 24.835 +9.88 2.84 +8.68 0.15 +0.62

configuration is crucial for achieving cost-efficiency in high-volume, scalable, and cloud-deployed
applications. Notably, maintaining scalability of the vectorstore without significantly compro-
mising performance is essential, as the primary goal of RAG is to expand the vectorstore with
additional documents. The performance metrics displayed in Table 3 underscore the significance
of selecting the appropriate vectorstore and embedding model combination, as variations in run
time, CPU usage, and memory usage are evident across different setups. For instance, ChromaDB
paired with the "Text-embedding-v3-large’ model exhibits a median run time of 18.34 &+ 6.21s,
alongside a median CPU usage of 1.50% and virtually negligible memory usage.

Conversely, the combination of FAISS and the ’Cohere-en-v3’ model results in a higher median
run time of 33.60 £7.69 s and an increased memory usage of 0.15 £0.936%, along with a relatively
high CPU demand compared the remaining configurations. These discrepancies highlight that a
tailored approach in configuring vectorstores and embedding models is essential for optimizing
performance parameters critical to RAG tasks. Thus, identifying the best configuration can signif-
icantly enhance processing efficiency, resource management, and overall system responsiveness,
which are crucial for high-volume and large-scale RAG-based applications. Upon further exami-
nation of various RAG methodologies and vectorstores, we observed that the *Stuff’ method, when
combined with the Pinecone vectorstore, achieved the lowest run time, averaging 12.14 +1.136 s
(refer to Figure 15). Conversely, despite being one of the top performers in terms of similarity
scores, the Step-Down’ method consistently resulted in the slowest run times, regardless of the
vectorstore configuration.

Additionally, the discrepancy between response accuracy and hardware utilization becomes
more pronounced when considering CPU (%) and Memory (%) usages, as displayed in Figure 15
for both the Reciprocal and Step-Down RAG methodologies. Although both methodologies
demonstrate impressive performances in similarity scores (refer to Table 1), they are also con-
cluded to be the most demanding in terms of hardware utilization. These results signify the
importance of selecting a suitable configuration for RAG applications, which utterly depends on
the use case and available resources. These findings underscore the critical importance of select-
ing an appropriate configuration for RAG applications, which should be determined based on
the specific use case and available resources. We also observed that across all RAG methodolo-
gies, ChromaDB yielded the lowest run time, CPU (%), and memory (%) consumption (refer to
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Figure 15. Median run time (sec), CPU, and memory usage comparisons by retrieval-augmented generation methods on
different vectorstores.
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Table 4. Performance metrics for vectorstore systems

Run time CPU usage Memory usage
Vectorstore median std median std median std
ChromaDB 18.635112 +9.733899 1.800 +2.133639 0.0 +0.319043
FAISS 19.888412 +11.792252 7.300 +10.447708 0.1 40.459941
Pinecone 22.582000 +9.277844 2.495 +8.196688 0.1 40.598845

Table 4) with 18.63 +9.73, 1.80 £2.13, and 0.0 £-0.31, run time (sec), CPU (%), and memory (%)
usage, respectively.

Considering the above factors, the optimal configuration of the RAG method, LLM, embedding
model, and vector store is highly dependent on the specific use case. However, the combination
of the "Stuff’ method, ‘GPT-3.5-Turbo’ as the LLM, ‘ChromaDB’ vector store, and ‘Bge-en-small’
embedding model demonstrated better performance, exhibiting lower median scores in runtime,
CPU usage (%), and memory usage (%).

4.4 Embedding filters

To enhance each RAG methodology, we applied Contextual Compression (see Section 2.5.1) to
each retrieval process. This approach aimed to reduce token usage, lower run times, and improve
similarity score performance. Due to the delicate balance between filters—such as similarity and
redundancy thresholds—and the similarity between document embeddings in vectorspace and
user queries, we conducted a grid search over a range of filters on each RAG method and different
datasets. Starting from 0.5 for similarity and redundancy scores to 0.9, we used a step value of 0.1
to derive the results presented below (refer to Table 5).

As highlighted in Table 5, we achieved significant efficiency in token usage and runtime across
various RAG methods. With the ‘Map Reduce’ method, we observed an 8.99% reduction in token
usage and a 7.2% decrease in runtime. Conversely, the ‘Map Re-rank’ method did not show
improvements in token usage or runtime; however, it concluded with lower standard deviations.
Moreover, the 'Reciprocal’ method demonstrated substantial efficiency with a 12.5% reduction in
token usage and a 4.40% decrease in runtime. Similarly, the 'Refine’ method resulted in an impres-
sive 18.6% reduction in token usage and a 3.05% improvement in runtime. Additionally, the
"Step-Down’ method achieved an 8.04% reduction in token usage and a notable 13.98% improve-
ment in runtime. Lastly, the ’Stuff method did not show a median improvement in token usage;
however, it achieved a 13.18% reduction in standard deviation and a 1.39% improvement in
runtime.

While filtering out document embeddings below a certain threshold value, some valuable
information might not retrieved by the retriever. This issue is particularly pronounced when
similarity scores are evaluated after applying the contextual compression filters. Our analy-
sis indicates that across all RAG methods, the similarity score deteriorates, emphasizing the
tradeoff between response accuracy and resource management once again. Specifically, in the
’Map Reduce’ method, the similarity score deteriorated by 4.7%, in "Map Re-rank’ by 7.89%,
in 'Reciprocal’ by 7.69%, in ’Refine’ by 7.59%, and in "Stuff’ by a notable 17.44% (refer to
Table 6).

As discussed in Section 2.5.1, contextual compression filters out irrelevant documents by eval-
uating document embeddings based on their similarity scores relative to the user query. If certain
document embeddings contain both valuable and irrelevant information, they may be filtered
out due to a lower overall similarity score resulting from the redundant information within.
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Table 5. Comparison of Contextual Compression on median and standard deviation of token usage, run time,

and score

RAG Method Token usage Run time Score
Median Std Median Std Median Std

cc map_reduce 602.67 +964.04 21.09 +10.50 0.85 +0.28
map_rerank — 6000 . i34694 — 1649 — i345 S 076 i035
rec,procal e 313200 B i57094 R 2498 R i387 R 091 . iom
r‘efibne‘ ‘ 17‘68.00 +1314.15 26.16 » +12.61 0.79 +0.15
step-down 4436.00 +938.43 34.33 +6.03 0.87 +0.12
Stuff [ 60600 . igoglg S 1429 S i293 e 086 . i026

CC+ R map_reduce e 54844 . i81337 R 1957 . i681 R 081 R i024
map_rerank 64.48 +267.78 16.89 +1.35 0.70 +0.28
reciprocal 273800 474304 2388 4300 084  £025
refine 143001 £115374 2536 4221 073 +024
step-down 407928 4118714 2953 310 078 0.9
stuff 670.00 +789.30 14.09 +1.43 0.71 +0.21

Note: CC* Contextual Compression method applied

Table 6. Comparison of run time, score, and similarity threshold

Dataset CC~ Score CC* Similarity CC* Redundancy CC* Score
threshold threshold
Median Std Median Std Median Std Median Std
10Q 0.865 +0.200 0.80 40.100 0.80 +0.100 0.821 40.189
Llama2 0.871 +0.217 0.70 40.100 0.80 +0.100 0.791 +0.346
MedQA 0.605 +0.291 0.50 40.100 0.60 +0.100 0.510 +0.170

Note: CC* Contextual Compression method applied

Consequently, the retrieved document may lack sufficient information to provide adequate con-
text for the LLM to generate a relevant answer. Furthermore, applying a redundancy threshold
adds another layer of filtering, potentially excluding additional documents and limiting the LLM’s
context to generate a comprehensive response. This issue, where documents contain dispersed
and mixed information, significantly deteriorates the response accuracy performance when con-
textual compression is applied. As observed in Table 6, we conclude that the optimal configuration
of both similarity and redundancy threshold filters varies significantly depending on the quality
of the documents or whether there is a disparity of information within documents.

Our findings indicate that each dataset possesses distinct optimal filter thresholds, beyond
which performance significantly deteriorates due to sufficient information not being available at
higher thresholds when generating adequate responses. For the 10Q dataset, we determined that
a similarity threshold of 80% and a redundancy threshold of 80% would limit the deterioration in
similarity score to 5.08%. In the case of the Llama2 dataset, we concluded that the optimal thresh-
old values are 70% for similarity and 80% for redundancy. Lastly, for the MedQA dataset, a lower
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threshold value was required to mitigate deterioration, with the best configuration being 50% for
similarity and 60% for redundancy, resulting in a 15.7% reduction in similarity score performance
(refer to Table 6). Beyond these optimal filtering values, or thresholds, we observed a significant
decline in the similarity score. This decline is attributable to either an insufficient number of rele-
vant documents or the omission of critical information buried within other irrelevant document
embeddings. (refer to Table 6).

In essence, contextual compression should be employed to achieve a balance between token
usage, run-time, and similarity score. However, this balance must be carefully fine-tuned to
minimize the deterioration of the similarity score.

5. Conclusion

In addressing the existing gap in research on the optimization of RAG processes, this paper
embarked on a comprehensive exploration of various methodologies, particularly focusing on
RAG methods, vector databases/stores, LLMs, embedding models, and datasets. The motivation
stemmed from the recognized significance of optimizing and improving RAG processes, as under-
scored by numerous studies (Vaithilingam et al. 2022; Nair et al. 2023; Topsakal and Akinci 2023;
Manathunga and Illangasekara 2023; Nigam et al. 2023; Pesaru et al. 2023; Peng et al. 2023;
Konstantinos and Pouwelse Andriopoulos and Johan 2023; Roychowdhury et al. 2023).

Through a comprehensive grid-search optimization encompassing 23,625 iterations, we con-
ducted a series of experiments to evaluate the performance of various RAG methods (Map
Re-rank, Stuff, Map Reduce, Refine, Query Step-Down, Reciprocal). These experiments involved
different vectorstores (ChromaDB, FAISS, and Pinecone), embedding models (Bge-en-small,
Cohere-en-v3, and Text-embedding-v3-large), LLMs (Command-R, GPT-3.5-Turbo, and GPT-
40-Mini), datasets (Dokugami 10Q, LLama2, and MedQA), and contextual compression filters
(Similarity and Redundancy Thresholds).

Our findings highlight the significance of optimizing the parameters involved in developing
RAG-based applications. Specifically, we emphasize aspects such as response accuracy (similarity
score performance), vectorstore scalability, hardware utilizations; run-time efficiency, CPU(%),
and Memory(%) usages. These considerations are crucial under various conditions, including dif-
ferent embedding models, diverse datasets across various domains, different LLMs, and various
RAG methodologies.

The results of our grid-search optimization highlight the significance of context quality over
similarity-based ranking processes or other methods that aggregate all responses iteratively as the
final output. Specifically, context quality demonstrates greater importance than simply applying
similarity-based methods, which may result in only marginal improvements in similarity scores
by excluding less relevant context from the rankings. Additionally, the discussion on the distinc-
tion between ambiguity and specificity in user queries (see Section 2.5) further emphasizes the
need for increased focus on this methodology. Methods addressing the ‘ambiguity’ issue yield
higher similarity scores (refer to Table 1) compared to those that do not address it. However, a
higher similarity score incurs a cost, creating a tradeoff between response accuracy (represented by
the similarity score) and resource management, which includes run-time, token usage, and hard-
ware utilization (see Sections 4.1-4.4). To address this issue, our objective was to determine the
optimal configurations that balance similarity score performance with run-time efficiency, vec-
torstore scalability, token usage, as well as CPU and memory usage. The results revealed nuanced
performances across different iterations.

In our evaluations for RAG methods, The 'Reciprocal’ method emerged as a particularly effec-
tive approach, demonstrating higher similarity score compared to other methods, achieving up
to 91% (see Figure 13 and Table 1). However, this method also led to an increased number of
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LLM calls, resulting in greater token usage and extended run time, as it addresses the query-
ambiguity problem (refer to Section 2.5.3, Figure 14). In contrast, although the *Stuff’ method
does not address query-ambiguity issue, it exhibited an acceptably lower similarity score perfor-
mance compared to that of the "Reciprocal’ RAG method while only sacrificing 7.2% performance,
while cutting down token usage by 71.3% and improving run time by 33.89%(see Table 1 and
Figure 14). Moreover, we also observed that, when inadequate context is retrieved, regardless of
any post-retrieval ranking processes, the response accuracy significantly deteriorates across all
datasets (refer to Table 1), especially with ’Map Re-rank’ method and MedQA dataset.

In consideration of hardware utilization, our analysis reveals that GPT-3.5-Turbo, when
employed with the ’Bge-en-small’ embedding model, demonstrated a median run-time perfor-
mance of 17.55 £ 5.92 s, alongside a CPU usage of 2.95% £8.31. Conversely, when integrated with
the *Text-embedding-v3-large’ embedding model, we noted a marginal 3.99% reduction in run-
time, paired with a significant 52.5% enhancement in CPU usage efficiency for GPT-3.5-Turbo.
This underscores the importance of selecting the optimal configuration of embedding models and
LLMs to achieve scalability improvements in high-volume RAG-based applications.

Furthermore, we conclude that vectorstores (vector databases) also play a crucial role in
optimizing hardware utilization. Notably, the ChromaDB vectorstore demonstrated superior
performance in terms of runtime, CPU, and memory usage across all iterations with different
embedding models and vectorstores. Specifically, when employed with the "Text-embedding-v3-
large’ embedding model, ChromaDB achieved a runtime as low as 18.34 &+ 6.21s, and a CPU
usage of 1.50% = 1.93. These results put forth another aspect of developing RAG-based appli-
cations with more scalable and stable configurations in order to expand the capabilities of RAG
processes.

In contextual compression evaluations, we observed that the tradeoff between similarity score
performance and runtime, along with token usage, necessitates a tailored optimization process
due to the sensitive nature of similarity search. Inadequate context can significantly deteriorate
similarity scores due to the application of higher filters (refer to Table 6) where we can observe the
evident reduction in similarity score performances, such as 5.08% for 10Q, 9.18% for Llama2 and
15.7% for MedQA datasets. Conversely, identifying the most optimal configuration can substan-
tially reduce both token usage and runtime. This highlights the necessity of deploying contextual
compression for specific use cases where slight deteriorations in similarity scores can be tolerated
in exchange for lower runtime and token usage (refer to Tables 5 and 6).

In light of our findings, it is evident that optimizing RAG-based applications is essential, given
the critical role that parameters such as similarity score performance, run-time efficiency, vector-
store scalability, token usage, and CPU and memory utilization play in the effectiveness of various
tools, Al chatbots, and Al agents. Consequently, we emphasize the importance of further research
into optimizing RAG processes, which could lead to significant advancements in performance.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/nlp.2024.53.
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