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1. Introduction. The purpose of this note is the classification of thediffer-
entiable points on curves in the conformai plane. We introduce tangent and 
osculating circles at such points and study the intersection and support properties 
of these circles. 

Our paper is related to the case n = 3 of the classification of the differentiable 
points on curves in projective n-space given in [4]. The connecting link is a 
stereographic projection of a curve in the conformai plane on a spherical one. 
Naturally, this note is also connected with the many discussions of the curva­
ture and the osculating circles of curves in the Euclidean plane [1; 2; 3; 5]. 

2. Pencils of circles. In the following, P , Q, . . . denote points in the con-
formal plane; C, C, . . . denote oriented circles. Such a circle C decomposes 
the plane into two open regions, its interior C and its exterior1 C. The circle 
through three mutually distinct points, P , Q, and R will occasionally be denoted 
by C(P, Q, R). 

FIG. 1 

The set of all circles that intersect two given circles at right angles form a 
linear pencil ir of circles. A pencil -K of the first kind possesses two fundamental 
points such that ir is identical with the set of all circles through these points. 
A pencil ir of the second kind has one fundamental point and is identical with 
the set of those circles that touch a given circle at that point. If ir is of the 
third kind, then any two circles of ir are disjoint. To any pencil ir and to any 

Received May 16, 1952; in revised form December 11, 1952. This paper was prepared 
while the authors attended the Research Institute of the Canadian Mathematical Congress. 

1 The meaning of these terms is not identical with that given in ordinary plane geometry. 
The interior of the oriented circle C lies at its left; cf. Fig. 1. 
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point Q which is not a fundamental point of TT, there exists one and only one 
circle C{ir, Q) of w through Q. We consider the fundamental point of a pencil 
7T of the second kind as a point-circle belonging to T. 

The set of the circles perpendicular to a given pencil IT form again a pencil p. 
If 7T is of the pth kind, then p is of the (4 — p)th kind {p = 1, 2, 3). The relation 
between -w and p is involutory. If C C p, then every circle of 7r meets C, and C 
contains a fundamental point of ir if and only if ir is of the second kind. 

3. Convergence. We call the sequence of points Pi , P2 , . . . convergent to 
P if there exists to every C with P C C a number w = w(C) such that Pv Q C 
if v > n. 

In the same way, the convergence of circles to a point is defined. 
We call the sequence Ci, C2, . . . convergent to C if there exists to every pair 

C'CQ and C ' C C a number n = »(C", C") such that C" C Ç, and C" C<?> 
for every v > n. 

4. Support and intersection at a point of an arc. An arc A is the continuous 
image of a closed interval. Thus if a sequence of points of that parameter interval 
converges to a point s, then their image points converge to the image of s. 
We shall use the same letters s, s', . . . to denote both the parameter (i.e., the 
points of the parameter interval) and their images on A. The end {interior) 
points of A are the images of the end (interior) points of the parameter interval. 

A neighbourhood of 5 on A is the image of a neighbourhood of the parameter 
s on the parameter interval. If s is an interior point of A, this neighbourhood 
is decomposed by s into two (open) one-sided neighbourhoods. 

From our definition, different points of A, i.e., points with different parameters, 
may coincide with the same point of the conformai plane. However, we shall 
assume that each point s of A has a neighbourhood such that no other point 
of that neighbourhood coincides with s. (The notation P 9e- s will indicate 
that the points P and s do not coincide.) 

Suppose 5 is an interior point of A. Then we call s a point of support {inter­
section) with respect to the circle C if a sufficiently small neighbourhood of 
5 is decomposed by s into two one-sided neighbourhoods which lie in the same 
region (in different regions) bounded by C. C is then called a supporting {inter­
secting) circle of A at s. Thus C supports A at s if s (£ C. By definition, the 
point-circle 5 always supports A at 5. 

It can happen that every neighbourhood of 5 has points ^ s in common with 
C. Then C neither supports nor intersects A at s. 

5. Tangent circles of s. Suppose the point s C. A satisfies the following 

CONDITION I. To every point P ^ s and to every sequence of points s' —» s 
{s' 9e s; s'C. A) there exists a circle C such that C(s', s, P) —» C. 

Obviously, the tangent circle C is independent of the choice of the sequence s'. 
We admit the point 5 itself as the tangent point-circle of A at s. 
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THEOREM 1. The set r = r{s) of all the tangent circles of A at s is a pencil 
of the second kind with the fundamental point s. 

Proof. Let P , Q, R be three mutually distinct points. If the point R'^R 
converges to P , then the angle between the circles C(R\ R, P) and C(R', R} Q) 
converges to zero.2 We choose R = s and R' = sr. Since the angle between 
two circles depends on them continuously, we conclude that any two tangent 
circles at 5 touch each other at that point. Thus two tangent circles that have 
another point in common are identical. In particular, there exists one and only 
one tangent circle at 5 through each point different from s. 

Suppose the circle C touches the tangent circle C at 5. Let P C C, P ^ s. 
Then C also touches the tangent circle through P. Hence C is equal to that 
circle. 

By Thereom 1, the tangent circle C(T, P) through P depends continuously 
on P as long as P ^ s. 

THEOREM 2. Suppose the point s C. A satisfies Condition I. Let ir be a pencil 
of the second kind with s as its fundamental point; w ^ r. If the points sf converge 
to s (s' 9^ s), then C(T, S') —» s. 

Proof. If our statement were false, there would exist a circle C such that 
s C C and a sequence of points s' —* 5 (V 9e s) such that C(ir, s') <X_ C for each 
sf. Let C\ and C2 be the two circles of w that touch C. We may assume that T is 
oriented such that C lies in the closure of C\ C\ C2. Then this closed domain 
also contains the circles C(ir, s') and therefore the points s' (cf. Fig. 1). 

Let P be any point of C\\ P 9^ s. If a sequence of points Q converges to 5 
through the above domain, then the circles C(s, P , Q) converge to C\. Choosing 
Q = s', we obtain C\ = C(T, P) , while r ^ T. This is a contradiction. 

6. Non-tangent circles. Let 5 be an interior point of A. Suppose again that 
5 satisfies Condition I (cf. §5). 

THEOREM 3. Every non-tangent circle either supports or intersects A at s. 

Proof. If the circle C neither supports nor intersects A at s, then s (Z C and 
there exists a sequence of points s' —> 5 such that s' C_ A C\ C and sf ^ s. 
Let P C Cj P T^ s. Then C = C(s\ s, P) for each s', and Condition I implies 
C = C(T, P). 

THEOREM 4. Non-tangent circles through s all intersect or all support. 

Proof (cf. Fig. 2). Let d and Ci be two distinct non-tangent circles through 
5. We assume at first that they have another point P ^ s in common. Suppose 
for example, that C\ intersects and C2 supports at 5. Thus A C\ C\ and A C\ C\ 
are non-void. Without restriction of generality, we may assume that A C C?2. 

If s' C A C\ Ci, then C(s, s\ P) lies in the closure of (Ci HC2) U (Ci H Ç2). 
2 The circles themselves need not be convergent. 
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By having s' converge to s, we conclude that C(T, P) lies in the same closed 
domain. By having s' converge to 5 through A r\C\, we obtain symmetrically 

FIG. 2 

that C(T, P) also lies in the closure of (Ci Pi Ç2) U (Ci UC2). Hence C(r, P) lies 
in the intersection C\ \J C2 of these two domains, i.e., C{j, P) is either C\ or 
C2, contrary to our assumptions. Thus C\ and C2 either both support or both 
intersect. 

If Ci and C2 meet only at s, then they touch at that point. Choose any non-
tangent circle C3 through 5 that does not belong to the pencil through C\ and 
C2. From the above, C\ and C3, and also C3 and C2, either both support or both 
intersect. Hence our statement remains valid for C\ and C2 also in this case. 
This completes our proof. 

7. Differentiable points. We call the point s differentiable if it satisfies not 
only Condition I but also the following one : 

CONDITION II. If s' converges to s (sf 7^ s), then C{T, sf) converges to some 
circle C(s) (cf. §5). 

If 5 is differentiable, then the osculating circle C(s) is obviously independent 
of the choice of the points s'. Furthermore, r being closed, we certainly have 
C(s) C r. 

THEOREM 5. The point s is differentiable if and only if the limit circle 

limC(7T, s') s'^s 

exists for every T. 

Proof. This follows at once when the continuity of A at s and the Conditions 
I and II are combined with §5. 

As a consequence of Theorem 5, we may define 

C(ir, s) = lim C(T, 5') s'^ s 
s'-$s 

if 5 is a fundamental point of TT. In this way C(w, s') will become continuous at 5 
for every T. 
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The following example shows that Condition II does not follow from Condition 
I. We introduce retangular cartesian coordinates x, y. Then the arc A defined by 

x = Siy = Jtt " Vl-*2)sms-\ 0 < \s\< 1 

I 0, 5 = 0 

lies between the two circles x2 + (;y ± l)2 = 1. In particular A satisfies Con­
dition I at 5 = 0, and r consists of all the circles that touch the x-axis at the 
origin. Since every neighbourhood oî s = 0 on A has points in common with 
both of the above circles, II does not hold. 

8. Non-osculating tangent circles of s. Let 5 be a differentiate interior 
point of A. 

THEOREM 6. Every non-osculating circle either supports or intersects at s. 

Proof. If the circle C neither supports nor intersects at s, then C C r (cf. §6) 
and there exists a sequence of points s' —> s, s' ^ s on C. Thus C = C(r, sf) 
for each s'. From Condition II, 

C = lim C(T,S') = C(s). 

THEOREM 7. If C(s) j* s, then every non-osculating tangent circle supports. 

Proof. Suppose that C C r. C 9^ C(s). If a sequence of points s' exists 
such that s' C A O C , s' 9^ s, s' —» s, then each C(T} s

f) lies in the closure of C. 
Hence C(s) will lie in the same domain and therefore even in s VJC. Similarly 
the existence of a sequence sf C Ç, sf ^ s, s' —* s implies C(s) C s U Ç. Since 
( 5 U C ) n ( 5 U Ç ) = 5, CM = 5. 

It remains to consider the case that C(s) is the point-circle s. In this case 
we prove 

THEOREM 8. Either the other tangent circles all support or they all intersect. 

Proof. Let C\ and C2 be two distinct non-osculating tangent circles. We may 
assume that r is oriented such that C2 C (s ̂ JCi) ; thus G C (s\J C2) (compare 

C±nCa 

FIG. 3 

Fig. 3). From the above, there exists a neighbourhood N of 5 on A which has 
no other points in common with C\ \J Ci. 
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Charac­
teristic 

Non-
tangent 

circles 
through 5 

Tangent 
circles 

C{s) 

C(s) Examples 

(1,1,1) intersect 

support C(s) ^ s 

intersects 

n < m 

n = 1, 
m = 0 

regular 
point 

(1,1,2) intersect 

support C(s) ^ s 

supports 

n < m 

n = m 
vertex 

(2,2,1) support 

support C(s) ^ s 

intersects 

n < m 
w== 0, 

m = 1 
cusp of 
the first 
kind3 

(2, 2, 2) support 

support C(s) ^ s 

supports 

n < m 

= 0 
cusp of 
the second 
kind3 

(1,1, 2)o intersect support 

point-circle 72 > m 

n^ m 

(1,2, l)o intersect intersect 

point-circle 72 > m 

n = 1, 
m = 0 

(2,1, l)o support intersect 

point-circle 72 > m 
« s 0, 

m = 1 

(2, 2, 2)o support support 

point-circle 72 > m 

s 0 

(1,1,°°) intersect 

support 

neither intersects 
nor supports 

n < m 

w = 1 

(2, 2, oo ) support 

support n < m 

«== 0 

5These names apply if we choose the infinite point on C(s) but different from 5. 
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Suppose that Ci, for instance, supports, while C2 intersects A at s. Then 
some points of N lie in(72 and therefore inCi. Hence N C s UC\. Furthermore, 
from our assumption, there is a sequence of points s' which converge to s through 
C2 and therefore through Ci O C> Consequently C(T, sf) C s \J (Ci Pi C2). 
Hence C(r, s') cannot converge to C(s) = s if s' converges to s. This is a 
contradiction. 

9. A classification of the differentiable points. Sections 6 and 8 yield a 
classification of the differentiable interior points of A, as on page 517. The first 
eight examples refer to the curves x = sn, y = sn+m\ the last two refer to 
% = s

n, y = sn+m sin s -1. In all these cases we consider the point 5 = 0. Con­
gruences are mod 2. 

The characteristic (a0, ai, a2), where a0, #i = 1 or 2, and a2 = 1, 2, or 001 

has the following properties: a0 is even or odd according as the non-tangent 
circles through 5 support or intersect; a0 + a\ is even or odd according as the 
non-osculating tangent circles support or intersect; a0 + a,\ + a2 is even if 
C(s) supports, odd if C(s) intersects, while a2 = °° if C(s) neither supports 
nor intersects. We shall use the notation (a0, &i, a2)o whenever C(s) is the 
point-circle 5 (cf. §4). 
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