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STRANGE TRIANGULAR MAPS OF THE SQUARE

G.L. FORTI, L. PAGANONI AND J. SMITAL

We show that continuous triangular maps of the square I7, F : (z ,y) •-» {f{x)i
g(x, y)) , exhibit phenomena impossible in the one—dimensional case. In particular:
(1) A triangular map F with zero topological entropy can have a minimal set
containing an interval {a} X / , and can have recurrent points that are not uniformly
recurrent; this solves two problems by S.F. Kolyada.

(2) In the class of mappings satisfying Per(.F') = F i x ^ ) , there are non-
chaotic maps with positive sequence topological entropy and chaotic maps with
zero sequence topological entropy.

1. INTRODUCTION

Let / = [0,1] be the unit interval. By triangular map we always mean a continuous
map F : I2 -> I2 of the form F(x,y) = (f(x),g(x,y)) = (f(x),g,(y)) . The map / of
the corresponding dynamical system is called the base for F; and gx is a map from the
layer Ix = {x} x I to I. Recall that recent results by Kolyada and Sharkovsky show
that the dynamical systems generated by triangular maps are essentially more complex
than one-dimensional systems, regardless of the fact that for both the same version of
Sharkovsky's theorem [14] on the coexistence of cycles is valid [9]; for other references,
see [1] and the survey paper [10].

In the present paper we first give a solution to the following two problems from
[10]:

P\: Can a minimal set of a triangular map contain an interval?
P2 : Is the condition h(F) = 0 equivalent to the property that any recurrent point

of F is uniformly recurrent, in the class of triangular maps of the square?
(Here h(F) denotes the topological entropy of F.) In Section 2 we provide exam-

ples showing that the answer to Pi is positive and to P2 negative. (See Theorem 1
below.) In Section 3 we exhibit other examples of strange triangular maps showing that
some conditions characterising chaos in the sense of Li and Yorke in the one-dimensional

Received 14th June, 1994
Work supported by M.U.R.S.T. Research funds (40%) and C.N.R. Most of the work on this paper was
done while the third author was a Visiting Professor at the University of Milan. The support of this
institution is gratefully acknowledged.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 SA2.00+0.00.

395

https://doi.org/10.1017/S0004972700014222 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014222


396 G.L. Forti, L. Paganoni and J. Smital [2]

case are not equivalent even in the class of triangular maps satisfying Per (F) — Fix (F);
it turns out that such maps can have positive sequence topological entropy without be-
ing chaotic (Theorem 2).

Throughout our paper we use standard terminology as, for example, in [10] (see
also [2] or [15]). Some basic notion and results are stated in the text.

2. SOLUTION OF KOLYADA'S PROBLEMS

THEOREM 1. There are triangular maps Fi,F2 : I2 -* I2 with the following
properties:

(i) Both JFI , F2 have zero topological entropy.

(ii) F\ has a minimal set M containing an interval of the form {a} x I.

(iii) Fz has a recurrent point which is not uniformly recurrent.

REMARK 1. Recall that M is a minimal set for F if, for any z G M, the w-limit
set wp{z) of z is the whole of M. Note that the projection of any minimal set for
a triangular map F onto the x-axis is a minimal set for the base map / , and hence,
a Cantor set or a cycle [15]. However, the second case implies h(F) > 0, as can be
easily verified (see also [9]), so our minimal set M is contained in Q x I, where Q is a
minimal w-limit set of the Feigenbaum's type.

PROOF: The proof of our theorem has three parts. First we introduce a general
construction of triangular maps F with zero topological entropy, and then in the next
two parts, by specifying parameters, we prove (ii) and (iii).

PART I. GENERAL CONSTRUCTION. Let / : / — » / be a continuous map of type 2°°
having a unique infinite w-limit set Q such that / | Q is one-to-one. In this case Q is
homeomorphic to the space {0,1}^ of sequences of two symbols equipped with a metric
p of pointwise convergence defined, for example, by p(a,j3) = max{l/t ; a(i) ^ /?(*)}
for any distinct a = {a(i)} and /3 = {(3(i)} in {0,1}^. Moreover, / acts on Q as
the adding machine, that is, for a G {0,1}^, f(a) — a +1000 • • • where the addition is
modulo 2 from left to right; for example, /(101100• • •) = 011100• • • , /(11100•• •) =
00010 • • • , et cetera. For details the reader is referred to [3] where the representation
of Q is described; the concept of the adding machine was indicated in [13]. Clearly
uf(x) = Q f°r a n3 r " £ Q | hence Q is a minimal set for / .

Our general map F with free parameters will be monotonic on any layer Ix. This
will imply h(F) = 0. Indeed, we have (see [9])

Sup{h(F,Ix) ; x £ / } + h{f) > h{F),

where h(F,Ix) denotes the topological entropy of the map F : I2 —» I2 with respect to
the compact subset Ix, that is, the entropy h(F,Ix) is computed only from trajectories
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starting from / „ . But since Fx is monotonic on Ix for any t , we clearly have h(F, Ix) =
0, and of course, h(f) = 0 since / is of type 2°°. Thus, h(F) = 0. To have F
monotonic on all layers, it suffices to define its restriction to the set Q X I, monotonic
on all layers, and then extend it continuously and monotonically to the whole of I2.

So we shall define F on Q x / . As already mentioned, we may assume without
loss of generality that Q is the space {0, \}N with the metric p as above. For any
Jfe ^ 1 and any a € {0,1}2 , let <p(k,a) be a monotonic continuous map I —* I with
the following properties:

(1) <p(k, 10) o <p(k, 00) = <p(k, 11) o p(Jb, 01) = Id

where Id is the identity map of / , that is, <p(k, l i) is a left-inverse (but not necessarily

a right-inverse) of <p(k,Qi),i = 0 ,1 , and

(2) \\<f{k,a) - Id\\ =6k->0 as Jfc - • oo.

We shall call any <p(k,a) a map of rank k.

Let x G Q, x = z(l)a;(2) • • • ; we shall call x(3i) the i-th control digit of x. Define
gx as follows. If all control digits of x are equal to 1, let gx be the identity map.
Otherwise let the first zero control digit of x be the fc-th one. Then put

gx=<p(k,x(3k-2)z{3k-l)).

Now let p(u,v) < l/3Jfe, for some u,v £ Q. If there exists i ^ k with u(3z) = 0
(— v(3i)) then gu — gv, otherwise \\gu — Id\\ ^ Sm and \\gv — Id\\ ^ Sm for some
m > k. Hence, in any case \\g-u, - gv\\ ^ 26m which by (2) implies lim \\gu — gv\\ = 0

11—*V

and hence implies the continuity of gx(y) in Q x I.

Next we prove some identities for F. Let 0 be the zero sequence in Q and let

j ) £ / . Denote by yj the second coordinate of F*(0,yo), for j> ^ 0. Let m ̂  4 - 8 * .

Then

(3) y m = <pmo<pm-i o-oip^yo)

where every <fi is a map of rank ^ Jfe + 1 since during the first 4 • 8* = 23*+ 2 iterations,
the (k + l)-th control digit of /*(Q) is zero. If m ̂  22 then <̂ 4 o yj3 o yj2 ° <Pi is the
block

0) = Jd

(see (1)) and this block ft repeats in (3) periodically with period 8 (since /*(0) begins
with three zeros periodically with period 8). Hence, in (3) there are, from the right to
left, the block ft , then a block of four maps, then ft again, et cetera.
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Similarly, if m ^ 2s then tp32 ° • • • o ipi is the block ft of the form

ft = v?4(2,11) o ft o p4(2,01) o f t o yj4(2,10) o ft o y)4(2,00) of t

which, by ft = 7<f and (1), again gives ft = Id. Block ft repeats in (3) periodically
with period 28 = 6 4 . By induction we get that the block ft of the first mk - 23*"1

maps in (3) amounts to the identity; so

(4) ymk =i/o for k ^ 1

and for large TO the structure of (3) is

(5) ••• ° f t 0/3;'oft o/?; oft.

where (3'k, /3J.', • • • are blocks of the same length m* as ft. Since the maps of rank less
than k + 1 are organised into blocks ft, i ^ &, that by (4) can be cancelled and since
the number of appearances of <p(k + 1,00) in (3) for m = 2mj. is equal to the number
of n ' s satisfying 0 ^ n < 2mj. for which the first k control digits in /™(Q) are ones,
that is 2mk/2

k = 22k, we get

(6) V2mk =¥>2"(fc +

and by (5) and (4), y3mk - y2mk • Similarly, yimk = y0 = ySmk and

(7) y6mk =v>2"(fc +

Thus we have constructed, under conditions (1) and (2) in particular, a triangular map

F : I2 —»I2 of zero topological entropy satisfying the identities (4)-(7).

Now we specify parameters to get F\ and F2.

PART II. PROOF OF (ii). Let {r*}£li be a sequence of rational numbers from (0,1),
dense in / and such that

(8) Km̂  r # f = 1.

1/2**

It is easy to construct such a sequence. Put 6k+i = 1 — fk+i ^ d , f° r anJr * € / ,

<p(k, 00) = (1 -

<p{k,10) = majL{0,{t

<p(k,01) = (1 - 6k)t
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Note that the (p(k,a)'s satisfy (1) and that ||y?(A;,a) — Id\\ — 6k which, by (8), implies
(2). Let Fi be the function F from part I with the specification as above. Now (6)
and (7) can be rewritten as

(9) V2mk = rk+1{y0 - 1) + 1, k ^ 1

(10) yBmk - rk+iyo, k ^ l .

For any yo G [0,1] the set {y2mk,y6mk}'kLi *s dense in I; indeed, it is dense in [O,t/o]
by (10) and in [yo,l] by (9). And since both / 2 m i (0) and / 6 m t (0 ) have zeros at the
first 3fc places, we have lim/2m*(0) = l im/6 m i(0) - 0 for k -» oo and consequently

(11) uFl (z) D {Q} x I for any z G {0} x / .

Put M = wjr^O, 0), and let w — (u,v) G M. Since F{(w) visits any neighbourhood U

of {0} X I (note that {/'(u)} is dense in Q), wj?x(u») contains a point from {0} X /
and consequently, by (11), Wfjftc) D M. Thus M is a minimal set for Fi containing
the interval {0} x / , which proves (ii).

PART III. PROOF OF (iii). For any k, let t/j. and rk+i = v\+1 be numbers such that

(12) 0 < vk < 1, Em i/i = l and lim rk+i = 0.
Jb—>oo k—>oo

For t E I put

(13) <p(k,oo) = <p(k,n) = r«

and

(14) y,(fc, 01) = ¥>(*, 10) = <1/"*.

By (12)-(14), both (1) and (2) are satisfied. Let F2 be the function F from part I with
the specification as above. Formulas (6) and (7) reduce to

(15) y 2 m k = y r
o

k + l , k>\

(16) 2/8 m t=2/0
1 / r i + l , fc^l-

Put yo = 1/2, and w = (Q,j/o)- By (4), w is recurrent, that is, w G WF,(IO). On
the other hand, w is not uniformly recurrent. To see this assume the contrary. Take
U = Q x [0,3/4] as a neigbourhood of w in the .^-invariant set Q x I. Let m = m(U)
be such that for any i ^ 0 there is a j < m with F% }(w) G U. Let k be such that
mk > m and let s > k. Take i = 2m,. Then /*(Q) has zeros at the first 3s places,
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hence by (15), Jtem.+j = <Pj ° • • • ° <f2 ° <fii (yl'+l) where the maps <fi,- •• ,(pj have rank
^ k (see the definition of F2 on Q x I), if j < m. Note that all maps <p(k,a), for all
k and a, commute. Hence, it is easy to see that

1/2*,.+; > <P23i"~l\k,i0)o• • • ov2'(2,io)ov,(i,io)(j,0
r '+ l)

since only the maps <p(i, 10) = <p{i, 01) among the maps of rank i are pushing yl'+l to
the left, and since, after cancellation, the number of (p(i + l ,a) ' s among <pi,- • • ,<fj,

cannot exceed 22*. By (7) and (16) we get

•u, . - >ur

y2m.+] if J/o

But because of (12), inf r ,+i/(ri • • -rj.) = 0. This means that for some a > k,

j/2m,+j > 3/4, hence y2m,+j £ U for any j < m, a contradiction. Thus, the point
w = (0,1/2) is recurrent but not uniformly. D

REMARK 2. Our construction of maps F\, F2 above was inspired by Kolyada's example
of a triangular map F of type 2°° with positive topological entropy [10]. Of course, in
the latter case not every gx is monotonic. However, it seems that the use of the binary
representation of Q as in our theorem would simplify Kolyada's construction.

3. CHAOTIC AND NONCHAOTIC TRIANGULAR MAPS

We shall say that a map F : I2 —• I2 is chaotic (in the sense of Li and Yorke) if
there are points u,v £ I2 such that

(17) 0 = liminf \Fn(u) - Fn(v)\ < limsup \Fn(u) - Fn(v)\
7 1-> o° n-»oo

where \u — v\ denotes the distance in I2.

A set S C I2 is a scrambled set for F if (17) is satisfied for any distinct u and v

in S. If, however, there exists e > 0 such that, for any distinct it and v in S,

(18) Urn sup \Fn(u) - Fn(v)\ > e,
n—»oo

5 is called an e-scTambled set for F.

The next theorem gives a survey of some main conditions characterising chaos for

continuous maps of the interval.

THEOREM A • For a continuous map / : / — » / t i e following conditions axe
equivalent:

(i) / is chaotic.
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(ii) / lias an uncountable scrambled set.
(iii) / has a non-empty perfect £-scrambled set for some e > 0.

(iv) / has an infinite w-Hmit set with two points non-separable by periodic
neighbourhoods.

(v) / has a trajectory that cannot be asymptotically approximated by peri-
odic trajectories.

(vi) / has a positive sequence topological entropy / » A ( / ) with respect to a
sequence A.

(vii) w(/) ? {x £ / : Jim^ pn(x) = x).

(viii) IsR(f)^u,(f)n^°°
(ix) / | w(/) is not stable in the sense of Ljapunov.
(x) / | fi(/) is not stable in the sense of Ljapunov.

In the above theorem hji(f) denotes the sequence topological entropy with respect
to an increasing sequence A = {n(i)}^l1 of positive integers, defined for a continuous
map / of a compact metric space X as follows [7]: For m > 0 and e > 0, a set
E C X is an (A,m,f,e)-span, if for any x £ X there is some y £ E such that
\fnU\x) ~ fnU)(v)\ < e for 1 < j < m. Let S (A ,m, / , e ) be an (A,m,/ ,£)-span with
the minimal possible number of points. Then

(19) hA(f) = Urn Urn sup ~ l o g # S ( A , m , / , e ) .

(In particular, / I N ( / ) = M / ) ^ N is the set of positive integers). In Theorem A,
fl(/) is the set of non-wandering points, and IaR(f)(= AP(f)) is the set of isochron-
ically recurrent (or almost periodic) points, that is of the points y such that for any
neighbourhood U of y there is an n > 0 such that ftn(y) 6 U for any i.

HISTORICAL REMARKS TO THEOREM A. Condition (ii) is essentially the original notion
of chaos by Li and Yorke [12] from 1975. Equivalence of (ii),(iii),(iv) and (v) was proved
in 1986 in [16] for maps with zero topological entropy and in [8] for other maps. Keeping
chronological order, (i) <=> (ii) was proved in [11], (vii) <& (viii) O (ix) in [15] (however,
parts of these equivalences are contained in Sharkovsky's papers from 1965-1968), (i)
-» (ix) in [4], (ix) <£> (x) in [5], and (i) <& (vi) in [6]. Note that [8] contains other
conditions not displayed here.

In this section we exhibit examples indicating that for triangular maps, conditions
from Theorem A are not equivalent. We shall consider only triangular maps F : I2 —> I2

with linear base and with fixed layer Io, that is, maps such that {x,y) i—> (^x,gx(y))
and go —Id, where X £ (0,1) is fixed. Denote the class of such maps by T\. Our main
result in this section is the following
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THEOREM 2 . There is F £ TX with positive sequence topological entropy, but
satisfying no other condition from Theorem A. Moreover any w-limit set of F is a
one—point set.

REMARK 3. It is easy to see that none of the conditions (vii), (viii), (ix), (x) can be
satisfied for F € Tx. Clearly, any F in Tx has zero topological entropy (see also [9]).

REMARK 4. Surprisingly, the map Fi from Theorem 1 satisfies all conditions from

Theorem A. To see this it suffices to use (4) and (9) to construct a perfect 1-scrambled

set S C Q x {0} supporting positive sequence entropy. To prove (v), (vii) and (viii)

consider the point u — (0,0), for (iv) points u and v — (0,1). We omit the details.

We have also

THEOREM 3 . There is F eTx such that

(i) F has a two-point scrambled set,

(ii) F has no scrambled set with more than two points,

(iii) F has an infinite w-Hmit set with no two points separable by periodic

neighbourhoods,

(iv) F has a trajectory not approximate by periodic trajectories,

(v) fiA{F) = 0 for any sequence A.

From Theorems 2 and 3, the function constructed in Remark 6, and F(x,y) —

(\x,y) we deduce immediately the following.

COROLLARY. In the class Tx, condition (vi) of Theorem A is independent of

conditions (i), (iv) and (v) of the same theorem.

We conjecture that in Tx also conditions (ii) and (iii) are independent of (vi). (See
also the examples at the end of our paper.)

Note that by Remark 3, in Tx we cannot prove more.

It is known that any scrambled set for a continuous map of the interval must have

empty interior. Contrary to this, we provide examples indicating that in Tx there

is a wide scale of possible scrambled sets between a two-point scrambled set and a

non-empty open 1-scrambled set. (See Examples 1-4 below.)

The next two lemmas will be used later to construct some other examples; moreover

Lemma 1 is used for the proof of Theorem 2.

LEMMA 1 . Let 6 e (0,1/2), <j e (0,1) andiei K,L,M be disjoint compact sets

such that K,L C (A, 1) and M C (A,l] . Then there is a positive integer s — s(6,cr)

and a portion T = T(K, L, M, 6, <r) of a map F STx, defined on [A2*, 1] x / , such that:

(i) \\T — il>\\ ^ 6, where ip is the corresponding portion of the map (x,y) i-»
(Xx,y).
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(ii) For any (x, y) G [A, 1] x I

r2'(x,y) = (X2'x,y)=^'(x,y).

(iii) For any (x,y) G M x I and any i ̂  2a,

(iv) T'(KxI)cf'[K)x[0,a]

T'{LxI)cf'{L)x[l-<r,l}.

PROOF: Let <p{k, a), a G {0,1}2 , be the same functions as in Part II of the proof

of Theorem 1, with 6k = 8. We recall the identity (1). Denote <p(k,a) by tpa-

Define s = s{6, a) as the first integer such that

(20) p;o(0) = 1 - (1 - S)' 2 1 - <r;

note that we have also

(21)

For 0 ̂  i < s - 1, define gx on the interval [A'+^A^] by gx = <pQ1 if x G /*(

Si = ¥>oo if x G /*'(£), and gx = Id ii x e /*(M) U {A% A*+1}. If (a, b) is a component

of (A',1] \ *Q (f{{K U I U M ) U {A'}) , for x G (a, 6) let {5 l} be a family of left-

invertible continuous functions / —» / depending continuously and monotonically on x
and such that

lim gx = ga, lim gx = gb.

In the following we call such a family a connecting family (between ga and gb in the
above case). Thus we have defined gx for x G [A*, 1]. Define now gx on [A2", A*) in the
following way: if x G [A*+*, A*"1"*"1) and x = A~2l+1x, 1 ̂  i ̂  a, gT is the inverse to
g^ when 55- belongs to a connecting family, while gx = <pio or <pn if g^ = <p00 or <pOi
respectively. Define r on [A2*,l] x I by r(x,y) = (Az,5r(j/)). Since ||^JQ — Id\\ — S for
any a G {0,1}2 we have \\gx — Id\\ ^ 8 for any gx in a connecting family. This implies
(i). Properties (ii) and (iii) are immediate and (iv) follows by (20) and (21). D

REMARK 5. With little changes it is possible to prove a more general version of Lemma
1 including also the case when K, L, M axe subsets of [A, 1] and both A and 1 belong
to one of the sets K,L,M.
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LEMMA 2 . Let a e (0,1/2) and Jet K,L C I be disjoint non-empty compact
intervals with max K < min L. Then there is a positive integer p — p(<r) and a
portion n = TT(K,L,(T) of a map F &T\, de£ned on [A2p+2,1] x / , such that:

(i) ||7r — V>|| < <r where ip is the corresponding portion of the map (x,y) H->
(Xx,y).

(ii) For any (x,y) e [A,l] x /

,y) = (\2'+2x,y) = 1>2*+2(x,y).

( )
7rp([A,l] x L) C [AP+1,AP] x [1 -<r,l] .

PROOF: Let p = p(cr) ^ 2 be an integer such that (1 — tr)p ^ <r. Denote a =
max K, b = min L. Let 6 — 6(<r,K,L) : I —* I be the continuous function such
that 0(0) = 0, 6{o) - (1 - a)a, 0(b) — (1 - a)b + a and 6(1) - 1, and linear on the
intermediate intervals. Note that 6 is strictly increasing, hence a bijection, and that

(22) 0p(a) < a, 0p(b) > 1 - <r.

Now define {gx '• x £ [A2p+2,1]} as a family of bijective mappings I —> I such that

(23) 5i = Id and gx = 9

(24) {gx : x 6 (A, 1)} is a connecting family (as in the proof of Lemma 1)

(25) gx = 0 for x £ [Ap, A]

and let gx be the unique map satisfying

(26) gx o 0?-1 o 5 ( A _ P i ) = 0" for x e [AP+1,AP];

in particular gx = Id for a; = Ap+1. On the intervals [AP+2, A**1], [A2p+1,AP+2] and
[A2p+2, A2p+1] gx is defined with the same procedure as in (23)-(26), but applied in the
reverse order and with the corresponding inverse functions (see Lemma 1). Then (i)
and (ii) immediately follow from the definition of {gx}; (iii) follows from (22). 0

In the next proofs of Theorems 2,3 and subsequent examples the following notation
will be useful. Let Fi, F? be two portions of triangular maps defined on [A7*1,1] x /
and [An2,l] x / , respectively, and such that

^ ( l . y ) = F2(l,y) = (A,») and Ft{X^,y) = (\ni+\y), t = 1,2.
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With the symbol [ P i , ^ ] we denote the portion of a triangular map defined on

[Ani+"3,1] x I such that its restriction on [Ani,l] x J is Fi(x,y) and its restriction on

[ A n i + n ' , A n i ] x / i s obtained from F2(\~
nix,y) by multiplying the base function by A"1;

in a similar way we define [Fi,F2,- • • ,Fk\. Finally, if F°° is the identity map on / 0 ,

w e d e n o t e b y [F1,F2,---] t h e m a p F : I2 - > P g i v e n b y ( l i m [Fi,F2, ••• ,Fk])uF°°.
\k—»oo I

PROOF OF THEOREM 2: We apply Lemma 1. Let F = [Fi,F2,---] where
Fi = T(Ki,Li,Mi,6i,l/4) is defined on the rectangle [A2'^1/4),!] X I, hWj = 0
and Ki,Li,Mi are suitable compact sets. Then by (i) of Lemma 1, F is in T\. Denote
Jfc(O) = 0 and k(i) = 2s(«i, 1/4) + • • • + 2a(£,-, 1/4).

Next let {fflj} be a decreasing sequence of points with ai = 1 and limOj = A.
For all i > 0 with 2''1 ^ i < 2> define Mj = [o,-,l] and 5,- = 1/2 '̂. Since limM; =
(A,l], by (iii) of Lemma 1, the trajectory of any point (x,y) € I2 eventually is in
oo

(J (F*(Mj X 7)) for some i. Hence this trajectory is eventually constant in the second
fc=o
variable and consequently, F is nonchaotic.

Let Sj C [a;-+i,a,-) be a set of 22 points, namely

We write the indexes / in base 2: they are all strings of length 2 J - 1 of digits 0 and 1.
For all i with 2 J - 1 ^ i < 2; , define Kt as the set of points of Sj having zero at the
(i + 1 - 2'~1)-th place and define Li = Sj \ K{.

We now show that h^iF) > 0 for a suitable sequence A. By Lemma 1 for any
distinct a, 6 £ Sj there exists i = i(a, b) satisfying 27"1 ^ i < 27 and

1/2

independently of 1/1,3/2, where s(i) = s(6i,l/4) (see Lemma 1). Define

Then, if S(A>m,F,e) is an (A,m,.F,e)-span with the minimal possible number of
points, for e = 1/4 and m = 1? — 1 we have

and so lim lim sup — log #S(A, m, F, e) ^ lim sup —z—- log 22

e-»0 jn-.+oo m j-»+oo & ~ 1

1 D
9 l o « 2 > 02
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REMARK 6. It is possible to modify the function F of Theorem 2 in order to get
a function F' G T\ which still has positive sequence topological entropy but satisfies
conditions (i), (iv) and (v) of Theorem A. To do this, we take a new decreasing sequence
{a,} with lim a,j — fj, > A and we construct the sets Ki, Li as in the proof of Theorem
2. Then we define F' = [F[,F^---] £ Tx where F[ = T(JJT!,£J,0,^,1/4) , K[ =
Ki U [(3fi + A)/4, p] and L\ = U U [(/x + A)/4, (2fj, + A)/4].

Obviously if we don't look for a function in T\ but only for a triangular map, a
much simplier example is

G(x,y) — (Xx,g(y)) where g(y) is the tent map.

PROOF OF THEOREM 3: Instead of a map from T\ we shall construct a topologi-
cally conjugated map F defined on [0,oo] x / (where oo stands for +oo) by F(x,y) =
(x 4- l,gx{y)) if x < oo, a.ndF(oo,y) — (oo,y). Moreover we may assume that [0,oo]x I
is equipped with the metric |(a:i,yi) — (*2,y2)| = rnaxj AZl — A*2 ,\yi — y2\ >, which
makes [0, oo] x / homeomorphic to I2 with the usual metric. This will simplify our
notation and, on the other hand, will not change the properties considered, including
the sequence topological entropy, since they are invariant with respect to homeomorphic
transformations, see [7].

For any integer k > 1 define continuous maps fiki^k '• I —* I by

lik{t) = max{0, t - I/A;}, vk{t) = min{2<, t + I/ft, 1}, t G / .

Then /4( / ) = [0,1 - i/ft] for 0 ^ i < ft, v\ o /ij.(/) = / for 0 ^ i < ft - 1.

For any positive integer ft define a map F^ on [0,2ft] x / by Fk(x,y) =
(x + l,gktX(y)) where

( maja{0,y + hk(x)} if x e [0,ft]
gh'™~\ },l} if a;e[ft,2ft]

and the function hk(x) is piecewise linear and connecting the points (0,0), (1,— 1/fc),
( fc- l , - l / f t ) , ( f t + l , l /fc),(2ft-l , l /fc) and (2fc,0). (Note that gk,x = Id for x =
0,ft,2ft, gkM = M*(y) f o r xe[l,k-l], gk,x(y) = uk(y) for x G [ft + l,2fc - 1].)

The map Fk has the following phase diagram (with ft = 7 ) in which we depicted the
trajectories going through the points of the segments ([0,1] U [ft, ft + 1]) x {i/k}, 0 ^ t <
ft and [ft,ft + l ]x {l/(fc2*)},l < i ^ ft —1. All trajectories are piecewise linear, except
for the trajectory of the segment [ft, ft + 1] x (l/(ft2*-1)} in the interval [2ft, 2ft + 1]
(see Figure 1).
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Finally, let

(27)

Figure 1

fc(l) < 4(2) <

be a sequence of integers greater than 1 (we shall specify it later) and let F =
) r ' ' ] • Clearly F is continuous and topologically conjugate to a map of

OO

For any set B C [0,oo] X I denote by OrbF (-B) the set |J Fn(B); thus, in our
— OO

diagram the curves are just the sets OrbF {[ik, tfc + 1] x {j/k}) for i = 0 , l , l ^ j ' ^ f c ,

and OrbF([fc,Jfc + l] x {l/(k2i)}),l ^ i ^ k - 1 . Put

K = [0, oo) x {0} , L = Orb F ([0,1] x {1})

and

(28) X = OrbF (K), Y = OrbF {L).

It is easy to see that K and L are disjoint continuous curves such that

(29) F(K) C K, F(L) C L.

Moreover, X is the set of points in [0, oo) x I lying below the curve L and

(30) X \JY is a decomposition of [0, oo) X I.
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Now the proof of (i)—(iv) of Theorem 3 is easy. Clearly any set S — {u,v} with u £ K

and v € L is a 1-scrambled set, which implies (i). Since wp(z) = loo for any z £ L

and loo = Fix(F) = Pev(F), we get iv) and since there are no F-invariant nonempty
open sets in [0, oo] x I we have (iii). To prove (ii) let 5 be a scrambled set. Since
wF(K) = {(oo,0)} and /«, = Fix(F), we have # ( S n (K LI/*,)) ^ 1. By (28)-(30),
any z G [0, oo] X / is eventually in K U L U /«,, hence to finish the proof if suffices to
show that # ( S n l ) < 1. But this is easy: let u,v E SD L, u — (ui,U2),*> = (vi,v2)

and let m be the greatest integer with m ^ |«i - «! |. (In the sequel we call this m
the iterative distance between u and v.) Then, for every n there is jfe(t) such that

\F»{u)-F»(v)\<V> + 1?±±±,

and so, by (27), \Fn(u) - Fn(v)\ - » 0 a s n - » o o .

All that remains to prove is (v). Put n(0) = 0, n(i) — 2(fc(l) + Jfe(2) H 1- k(i))

for i > 0, and choose the sequence {&(i)}j>o of (27) so that

(31) k(i) divides k(i +1) and —> 0 monotonically.
nl(i + 1)

Let A — {t(i)}^.1 be an increasing sequence of positive integers. Fix m ^ 1 and
consider the elements U, 1 ^ i ^ m. For each i there exists a unique r such that
n(r) ^U < n(r + 1). Denote by

ri <r2 < • •• <rq> q < m

all such integers r . Fix e > 0 and choose i — ie such that 10/k(i + 1) < e. Put
p := k(i + 1). Since in the definition (19), Ax(F) doesn't change by removing a finite
number of elements from A, we may assume without loss of generality that

and A*1 < e. To prove (v) we need an (A,m,F, e)-span T with sufficiently small
cardinality. Since A*1 < e, for any u,v 6 [0, oo] x / and a ^ t\ we have

(33) |*"(u)- .F ' ( t>) |<e if and only if \F'(u) - F'(v)\y < e,

where |u — v\y denotes (the Euchdean) distance between the second coordinates of u

and v respectively. Thus, in the sequel when proving that a set is an (A,m, F, e)-span
we may, by (33), without loss of generality consider the metric |-| instead of |-|.
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By the definition of F and (27) we easily get

(34) \F'iy.) - UL < TT-—T\ whenever u G [n(i), oo] x I, for anys ^ 0.
k\% -p 1J

Consequently, by (31), (32) and (34),

3 1
(35) \Fu(u)-Fu(v)\y< - <e if u,v G [n(i),oo] x / , |u -v\y < - and t. < n(i).

For simplicity, denote by Uj the intervals

Uj = [ n { T j ) , n { r j + l ) ) , j - 1 , • • • , ( ?

and by Vj the corresponding complementary intervals, that is,

Vo = [0,n(ri)), Vj = (n(r ; - + l ) , n ( T - i + 1 ) ) , l ^ j ^ q - l , Vg = (n(rq + l ) , o o ] ,

and let

Jo = {0}, Jj = (o, -) , Jj = \3-^±, J-) if 2 ̂  i < p, Jp+1 = {1},
\ p/ L v pj

Ii = [n(t),n(t) + 1] and K{ = [n(t) + Jb(t + l ) ,n( i ) + *(t + 1) + 1].

We shall construct a covering of the rectangle [0,n(rq +1)] x 7 by a finite family of
invariant subsets G (that is, F(G) C G) which have small intersections with layers
Ix — {z} x / , for suitable points x. Let

Qi = { Orb F (/r. X Jj) : 0 < j ^ p - 1} U { OrbF (7P.+1 x J,) : 1 ̂  j < p - l }

U { OrbF ((Kri xJj):2^j

U { OrbF ((Kri xJ , )nF)}

for 1 < i < q,

= {OTbF(lrq+1xJp)},

and let Q be the union of Qi, 1 ^ i ^ q + 1. It is easy to see that Q is a cover of
[0,n(r? + 1)] x I consisting of invariant sets. Moreover, G Dlx is connected for every
x G [0,n(r, + 1)] and

(36) diam(G 0 Ix) ^ 1/p if G is a minimal element of £and x G Ui for some i.
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Note that all elements of Q are minimal, except for

Yi = O r b j . ((Kri xJ1)r\Y)cY and X,- = O r b F ( / r . x Jo) C X, 2 ^ i ^ q .

By (34) and (36) we easily get

(37)

diamf G D (la, a + ^* + '] x i) ) < - if G £ Q is minimal, a £ Ui, 1 ̂  i < g.
\ U V 1 ' J V

Now we shall define an (.A,m, .F, e)-span T1 as the union of sets TG, G £ Q, where any
TG is a subset of G and approximates properly the points from G. More precisely, let
TG be a set of minimal cardinality with the following properties:

for any u £ G D (Vj x I) there is a » e TG n G fl (V3- x / ) such that

(38) \u-v\9<±,

and for any u £ G C\ (Uj x I) there is a t; G TQ D 6? D (Uj x I) satisfying (38) and

(39) the iterative distance between u and v is less than —— -.

P
A simple estimation shows that # T Q ^ (q + \)p + 2qp2 < 4mp2 and since #Q —

g(#£i) + 1 = q(3p + 1) + 1 ^ 4mp, we have #T ^ 16m2p3. Now to complete the
proof we have to show that actually T is an (A,m,F, e)-span, since then the sequence
entropy is zero:

hA(F) < lim limsup — log (l6m2ps) = lim 0 = 0.
e—»0 m _ ,oo m «-»0

Assume first that u £ Vq x I. Let u be any point in TC\ (Vq x / ) satisfying (38). Then
by (35) we easily get

(40) \Ft'{u)-F''{v)\ii<e,

for 1 ^ 3 ̂  771.

Next let u £ Vi x I with i < q. Since £/ covers [0,n(rg + l)] x / , there is a
G £ G containing u such that either G is minimal or G — Orbi? ((KTi+1 x Ji) n F) or
G = Orbjr (7r.+1 x Jo) • Take as v any point in TG n (F< x / ) satisfying (38). By (35),
to prove that v approximates u at times tt, 1 ̂  s ̂  m, it is enough to show that (40)
is satisfied when t, ^ n(r,-_|_i). So fix such an s and find Z such that t, £ Ui. By (31)
and (32), the iterative distance a between u and v is less than k(ri + l ) /p . Assume
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JF*'(w),.Fu(v) G Ui xl: if u,v belong to a minimal G, then (40) is true by (37) while in
the other cases (40) follows immediately since both points belong to the same curve K
or L. In all other situations, take the maximal integer t such that F1^), F*(v) G Uixl.
Now we have \F\u) - F*{v)\w < 3/p by (37), \F*'{u)-F*{u)\v < l/p by (31), (32)
and (34) (since 0 <t,—t< n(ri)), and a similar inequality for v, which in view of (32)
imply (40).

Finally, let u G Ui x I with i ^ q. In this case there is a G G G containing u such
that either G is minimal or G = Orbp ((Kri x Ji) HY) or G — Orbf ( j r j x Jo) . Take
as v any point in Ta H (Ui X /) satisfying (38) and (39). If u belongs to one of the
last two sets G, the conclusion is obvious. In the other cases the argument is almost
the same as for the sets Vi x I. Fix an 3 and find / such that t, G Ui. It is enough to
consider only the case I = i; in the other cases we proceed as above.

If Fu(u) eUiXl and F*'(v) £ UiXl then (40) is true by (37), (31) and (32), since
the iterative distance between u and v is less than fc(r< + l)/p- Similarly, if Fl'(v) is
and Fu(u) is not in UiXl. Finally, if neither Fu(u) nor Fu(v) is in UiXl, let t(u)
and t(v) be the maximal integers such that F^u)(u),F^v\v) eUiXl. Then by (37),
(34), (31) and (32) we have

4
< -

v P

and similarly for u replaced by v. Since G is a minimal element of Q, by (36) we
obtain |F*(il)(u) - Ft(r)(w)| < 2/p and consequently,

which completes the proof of (v), and hence of Theorem 3. D

We conclude this paper with the following four examples.

EXAMPLE 1. There is F G T\ having a non-empty open 1-scrambled set S.

Let {Ki,Li}^l1 be an ordering in a sequence of all non-degenerate compact in-
tervals with rational end-points, contained in (A, 1), and such that Ki D Li = 0.
Let {Hi,Ni}'?l1 be an analogous sequence in [0,1], with the further condition that
max Hi < min Ni. Define, by Lemma 1,

and, by Lemma 2,
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We take F — [n,TTI,T2,TT2, • • • ] . For this function F the strip 5 = (A,l) x (0,1) is a
1-scrambled set. Indeed, let (xi,yi), (12,2/2) be distinct points in 5 . If X\ ^ x2 then
x\ £ Ki, X2 £ Li and xi,x2 £ KJ for infinitely many i and for infinitely many j . By
(iv) of Lemma 1 we get

(41) 0 = liminf \Fn(xuyi) - ^"(^2^2)! < hmsup \Fn{xuyi) - Fn(x2,y2)\ = 1.
n-»oo n-»oo

If j / ! 7̂  j/2, then we may assume that j/i < y2 and so yi € Hi, y2 € Ni and 3/1,3/2 £ -By
for infinitely many i and ji and, by (iii) of Lemma 2, again (41) is satisfied.

EXAMPLE 2. There is F £ 7x having a scrambled set 5 with Int(5) ^ 0 and such
that any e-scrambled set So C S with £ > 0 is finite.

Fix a and b such that A < a < 6 < 1 and let {Ki,Li}il1 be an ordering in a
sequence of all non-degenerate compact intervals Ki = [a,cii], Li — [/?<,&] with a* < /?,•
and ai,/3i £ Q. We denote <rt- = j3i — o,- and define

as in Lemma 1 with the further requirement that the connecting families between y?oi
and <poa are of affine functions with the same slope as y>oi (and yoo) and varying
linearly with x. Furthermore let

where K = [a,b]. Finally define F = [TI,T1*,T2,T2*,- • • ] . We prove that the strip
S = [a,b] x I has the desired properties. Let u = (SBI,J/I), V = (x2,y2) be distinct
points in S. By (iv) of Lemma 1 applied to TJ* we have the equality in (17). To prove
the inequality in (17), consider the following two cases:

CASE A. If yi ^ y2 then by (ii) of Lemma 1 applied to r,* we get

hmsup \Fn(u) - Fn(v)\ > |yi - y j | .
n—>oo

CASE B. If j/i = y2 and Xi < x2, there are infinitely many i such that x\ £ Ki, x2 G
Li and \x\ — x2\ /2 < <Ti < \xi — x2\; then by (iv) of Lemma 1 applied to Tj we have

hmsup | F » - Fn(v)\ Z<n> h-Z^il.

Thus S is a scrambled set. Obviously during the application of the portions T* the
y-distance of the two points u,v £ 5 cannot increase. The same happens during
the application of T< when x\ — x2 or when both points belong either to Ki or to
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Li. A simple computation shows that in all other cases, if yi =1/2) the choice of
the connecting families assures that their y-distance remains less or equal to 2<7j <
2 |xi — «21 • Summarising we obtain

|F»(«) - f » | < l ^ ^ i . y i ) - Fn(*i,y2)\ + l l^^i . lf t) - Fn(x2,y2)\

< |yi — a/21 + 3 |xi -x2\

and so
limsup ^" (u) - Fn(«)l ^ |wi - » | + 31*! - *2| •

Assume there exists an e-scrambled set So C 5, e > 0 containing infinitely many
points. Then there is a Cauchy sequence {(a:*,2/*)} C So and so for n,m great enough
|j/n — 2/m| + 3 |zn — xm\ < e, contrary to the definition of an e-scrambled set.

EXAMPLE 3. There is F e T\ having a perfect 1-scrambled set, but no scrambled set
5 with int(S) ^ 0 .

To see this we modify F from Example 1 as follows. Let Q C (A, 1) be a Cantor set
and let {Mf}?^ be an increasing sequence of compact sets with lim Af,- = [A,l] \ Q.

Take F = [ T 1 , T 2 , - ] where T; = r(Ki D Q,Li D Q,Mi,l/i,l/i], and Ki,L{ are as in
Example 1. Clearly, Q x {0} is, by (iv) of Lemma 1, a 1-scrambled set. On the other

oo

hand, no scrambled set contains more that one point from (J Fn(Mi x / ) , by (iii) of

Lemma 1.

EXAMPLE 4. There is F £ T\ having an infinite scrambled set and such that any

scrambled set is at most countable.

As a first step we construct a function F £ T j having a two-point 1-scrambled set,

but no three-point scrambled set, simplier than that used in Theorem 3. Let tp(k,a),

a — {0,0} and a = {1,0} be the same functions as in Part II of the proof of Theorem

1, with 6k —> 0 for A: —» oo. Let F — [Fi, F%, • • • ] where the portions Fk are iteratively

defined as follows.

For x G (A,l] let {gx} be a connecting family between g\ — Id and g\ = y>(l,10).

Then choose gx = <p{l, 10) for all x G (A'W, A], where a(l) = [log (?i)/log (1 - 6^] +2

and px - 1/2. For x € (\'W+1, A'(1)] let {gx} be a connecting family between

<p(l,l0) and <p{l,00). For x £ (Aa*W+1, A'^H1] choose gx = <p(l,00) and finally, for

x G (\2'W+3, \2'W+1], let {gx} be a connecting family between y(l ,00) and Id. The

portion so constructed is Fi. We may now define pi — max{/i(z), x G [A,l]} where

h(x) is the j/-component of the point J^ *(1)+2(x,/>i).
Suppose we have defined the portion Fk, k ^ 1, and we have calculated pk+i • We

may now define the portion Fk+i and the number pk+i as for Fk and pk, simply by
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substituting functions <p(k,a) and parameters 6k,Pk with the corresponding functions
<p(k + l , a ) and parameters 5fc+i,p*+i respectively.

With this function F, for any pair (xi,yi)(x2,y2) with Xi,x2 6 (0,1], yi,y2 €
[0,1) we have

lim \Fn(x1,y1)-F
n(x2,y2)\^0.

n—'oo

It follows that any scrambled set cannot contain more than two points; more precisely,
5 is a scrambled set if and only if

5 = {(a;i,yi),(a52,y2)} with sj <E (0,1], i/i e [0,1), x2 £ I, y2 = 1.

For this two-point set .we have

liminf \Fn(Xl,yi) - Fn(x2,y2)\ = 0 < 1 = Urn sup \Fn{xuyi) - Fn(x2,y2)\.

Now, in order to produce our example, we substitute for the functions <p(k,a) the
functions ij)(k,a) given by:

i>(k,a)(t) = (l - I ) + ̂  ^ M ) ^ * 1 (t - (l - i ) ) ) , ^(k,a)(l) = 1,

where t £ [l - 1,1 - ^ - ) , i> 0.

It is easy to see that this new function F has the required properties.
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