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Abstract
The Pasture, Rangeland, Forage (PRF) insurance program is aimed to assist producers to manage the risk
of forage loss due to the lack of precipitation. However, limited attention has been given to understanding
the implications of policyholders’ coverage selection decisions. In this study, three alternative risk-efficient
portfolio selection strategies are assessed in to the context of the PRF program. Proposed methods consider
all the decision parameters and program restrictions, and they highlighted the underlying relationships
between expected revenue, risk, and choice of the coverage parameters. Selection strategies are illustrated
by examining the optimal coverage for a grid in South Texas.

Keywords: Heuristic estimation; linear programming; mean-variance; quadratic programming; shortfall; South Texas; Value-
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Introduction
Exogenous factors such as fluctuations in prices, weather, global markets, and government policies
could have a significant impact on farm income. For instance, rainfall distribution throughout the
production cycle is of particular importance to livestock and forage producers. It has been docu-
mented that precipitation patterns are associated with significant variations in forage yields1

(Currie and Peterson, 1966; Murphy, 1970; Cable, 1975; Duncan and Woodmansee, 1975;
Lauenroth and Sala, 1992; Dunn et al., 2013). In response, ranchers have adopted climate risk
management strategies that include short- and long-term adjustments in forage supply and
demand, and the implementation of financial risk management measures (Shrum et al., 2018).
In this regard, producers can incorporate existing weather-related crop insurance programs into
their risk management plans to protect against uncertain precipitation levels.

In 2007, the Federal Crop Insurance Corporation (FCIC) introduced the Pasture, Rangeland,
Forage (PRF) pilot insurance program as a tool for livestock and forage producers to mitigate the
risk of forage loss associated with the lack of precipitation. Currently, the PRF insurance program
is available in 48 states and over 201 million acres were enrolled in the program in 2021 (USDA
RMA, 2021a). Compared to traditional crop insurance options, the PRF program is an index-
based insurance that utilizes National Oceanic and Atmospheric Administration Climate
Prediction Center (NOAA CPC) data to estimate the relative temporal precipitation within a
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1Other studies have also found a weak relationship between rainfall and forage yield (i.e., Maples, Brorsen & Biermacher,
2016).
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specific area. Policyholders receive an indemnity payment when the precipitation index falls below
a chosen trigger level. Precipitation or forage production is not measured at the farm level.
Therefore, given exogenous precipitation index realizations, the magnitude of the indemnity
received merely depends on farmers’ ex ante selection of the program coverage parameters.

Farmers can tailor their policies by choosing appropriate index intervals, coverage level, and
productivity factor. These parameters determine the amount of protection, premium rates, sub-
sidy level, and expected indemnity payments. Regardless of their economic implications, only a
handful of studies have been conducted to untangle the relationships between decision parameters
and the impacts they have on expected returns and risk. Previous studies have focused on pro-
viding selection recommendations for specific geographical areas, evaluated a limited number of
decision parameters, and omitted parameter selection restrictions (Jimenez Maldonado, 2011;
Diersen, Gurung, and Fausti, 2015; Stewart, 2018; Westerhold et al., 2018).

Omission of any decision parameter or selection constraint disrupts the set of valid potential
solutions, which could result in suboptimal allocation of resources, and misestimation of the fea-
sible range of returns and underlying risk. The main objective of this study is to develop risk-
efficient coverage selection strategies for the PRF insurance program. Although the proposed
methods are applicable to any participating state, they are illustrated and evaluated using actuarial
data for a grid in South Texas. To the best of our knowledge, this is the first study that considers all
the decision parameters in the selection process and meets all the actual selection restrictions of
the PRF program. Three risk-efficient portfolio allocation methods are applied and adapted to
solve the PRF parameter selection conundrum. Linear and quadratic mathematical programming
techniques are incorporated into a heuristic optimization framework to jointly identify the ideal
level of each decision parameters. Empirical results highlight the underlying relationships between
expected revenue, risk, and the choice of the decision parameters.

PRF program
The PRF insurance program is designed to protect producers of perennial pastures, rangeland, and
forages against precipitation uncertainty. Insurable acres are assigned to a coordinate system with
grids equal to 0.25° in latitude by 0.25° in longitude (or approximately 17 by 17 miles at the equa-
tor). As an index-based insurance, the PRF program does not adjust for crop losses, but from
deviations from historical normal precipitation. Particularly, precipitation is interpolated for each
grid and it is estimated for 11 overlaying 2-month index intervals (i.e., January–February,
February–March, : : : , November–December). The interval precipitation levels estimated for each
individual grid are transformed into a precipitation index, where a value of 100 is assigned to the
interval historical average precipitation.

Besides inherent and fixed location and production practice settings, farmers are allowed to
select a set of independent coverage parameters including the index intervals, coverage level,
and productivity factor. The optimal levels of these decision parameters should be gauged in terms
of their associated expected benefits and costs. For instance, distribution of the percent of value is
used to select a disjoint set of the 11 available index intervals.2 The percent of value allocated to all
index intervals must add up to 100%. Additionally, between 10 and a state-based maximum per-
cent of value (typically between 50% and 70%) can be assigned to each of the selected index inter-
vals. Different premium rates are associated with each index interval, and the premium amount is
proportional to the percent of value allocated to each index interval. Given percent of value con-
straints, a minimum of two index intervals can be chosen and no more than six index intervals are
permitted.

The coverage level serves as the threshold for indemnity payments for all selected index inter-
vals. Coverages levels between 70% and 90% in 5-unit increments are available. An indemnity

2Not all 11 index intervals are available in all participating states.
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payment is triggered when the interval precipitation index falls below the chosen coverage level.
Higher premium rates are associated with higher coverage levels. Premium subsidies are also
determined by the coverage level. Particularly, a subsidy factor of 59% is used for 70% and
75% coverage levels, 55% subsidy when 80% or 85% coverage levels are selected, and a 51% sub-
sidy factor for 90% coverage level. Given a predefined county base value, farmers have the option
to modify the amount of protection by adjusting the coverage level and productivity factor.
Namely, policyholders can choose a productivity factor between 60% and 150% in 1-unit incre-
ments. The amount of protection per acre is equal to:

δ � vλγ; (1)

where v is the county base value, λ is the coverage level, and γ is the productivity factor.
The indemnity payment corresponding to the jth index interval is given by:

lj � wjρjδ; (2)

where wj is the percent of value assigned to the jth interval, ρj � max
λ�Ij
λ

; 0
� �

is the interval pay-
ment factor, and Ij is the observed interval precipitation index.

The farmer-paid premium for the jth interval is equal to:

ϕj � �1 � s�wjβjδ; (3)

where s is the subsidy level, and βj is the premium rate of the jth index interval. Both s and βj
depend on the coverage level selected. Hence, the net indemnity of the PRF program is given by:

R �
X

11
j�1

wjδ�ρj � �1 � s�βj� �
X

11
j�1

wjrj (4)

The overall producers’ net return or net farm income is given by the net farm sales (π) generated
by the marketing or utilization of the forage produced plus the net indemnity received by partici-
pating in the PRF program. Namely, net return is equal to:

Π � π� R: (5)

The PRF program could be considered as an alternative source of revenue to compensate for
the expected reduction in farm income in the event of limited precipitation. Hence, a risk man-
agement strategy could be to choose the PRF coverage that is expected to offset potential yield
losses, while minimizing the joint risk. In general, possible risk management strategies associated
with the PRF insurance program range from hedging a fraction of the forage value to maximizing
the overall net return. Optimal coverage selection and related risk vary with the overall net return
target level.

Special considerations should be given to inherent aspects of the designing of the PRF program
that could affect the effectiveness of a risk management plan. Particularly, as an index-based insur-
ance, the PRF program may suffer from basis risk (the difference between the magnitude and
occurrence of actual forage losses and the corresponding insurance payouts) (Orden et al.,
2020). Furthermore, historical farm- or grid-level production data necessary to estimate net farm
sales and their relationship to net indemnity payments may not be available. Therefore, omitting
farm sale returns or using a proxy for forage yields could aggravate basis risk.

Limited theoretical and empirical work have been conducted to understand the implications of
the selection of the coverage parameters for the PRF insurance program. Preceding studies have
evaluated specific parameters separately or a reduced range of feasible combinations. Namely, in
Pennsylvania, Jimenez Maldonado (2011) identified preferred combinations of index intervals and
coverage levels in terms of specific return and risk criteria. However, in the analysis, the percent of
value was fixed and set to be proportional to the number of index intervals selected, and the effect
that productivity factor has on the inherent uncertainty of the returns was not considered. In
South Dakota, Diersen, Gurung, and Fausti (2015) estimated conditional, risk-efficient index
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interval combinations, where a limited set of potential intervals were considered, minimum per-
cent of value restriction was not imposed, and the coverage level and productivity factor were set
at the maximum possible levels. Similarly, Stewart (2018) identified the distribution of the percent
of value that maximized expected indemnity returns in Utah, but coverage level and productivity
factor were constant in the optimization process, and minimum interval allocations were not con-
strained. Westerhold et al. (2018) evaluated the expected net income and variability of specific
coverage scenarios in Nebraska. The scenarios were constructed by combining two equal-
weighted index intervals, and fixed coverage level and productivity factor were used.

Optimizing all the PRF coverage parameters has been found challenging in practice because
maximizing the program net indemnity described in equation (5) requires solving a constrained
mixed integer nonlinear function with a large number of possible combinations of continuous and
discrete variables. Compared to previous studies, we proposed a comprehensive selection
approach that considers all coverage parameters of the PRF program and meets every parameter
restriction. A heuristic optimization approach is presented to overcome the limitations found in
previous studies to include all the parameters in the selection analysis.

Coverage selection methods
The proposed coverage selection strategies are based on well-known portfolio optimization frame-
works. Particularly, three alternative strategies are presented to assist producers with their cover-
age selection process: mean-variance, Value-at-Risk, and shortfall. These asset selection models
are tailored to the context and data of the PRF insurance program. To the best of our knowledge,
the Value-at-Risk and shortfall method have been barely used in agricultural applications.
However, they provide alternative measures of risk that could be of interest to PRF policyholders.
For instance, the goal of a risk-averse producer may be to select the percent of value, coverage
level, and productivity factor that yield a desired expected net return while minimizing risk expo-
sure. To take more risk, a risk-averse policyholder needs to be compensated with a higher net
expected return. The optimal trade-off between net return and risk will depend on individual risk
preferences. In the case of the mean-variance approach, risk is represented by the resulting vari-
ability of the net return. On the other hand, selection risk in the Value-at-Risk and shortfall mod-
els are given by the probability and expected value of the net returns below a particular value,
respectively.

Mean-variance

The mean-variance analysis was initially proposed by Markowitz (1952) as a risk diversification
strategy for financial portfolio selection. Under the mean-variance framework, a set of assets is
chosen to maximize expected net returns for every level of risk or vice versa. Portfolio risk is typi-
cally described by the variance or standard deviation of the portfolio return. The mean-variance
approach has been widely adapted in agricultural applications to assist with crop variety selection
(Nalley et al., 2009; Nalley and Barkley, 2010), irrigation water use options (Gaydon et al., 2012;
Paydar and Qureshi, 2012), ecosystem services (Alvarez, Larkin & Ropicki, 2017), forest manage-
ment (Zinkhan, 1988; Knoke et al., 2005; Neuner, Beinhofer & Knoke, 2013), among others.
Reduced forms of the mean-variance method were used in Jimenez Maldonado (2011) and
Diersen, Gurung, and Fausti (2015) to select the optimal level for certain parameters of the
PRF insurance program.

In the context of the PRF program, the objective of the mean-variance strategy is to find the
level of the decision parameters – coverage level, productivity factor, and percent of value distri-
bution – that minimizes the variance of the overall net returns (5) for any given expected return
level. Particularly, given producer’s selection of the aforementioned decision parameters (i.e., λ, γ,
and w), the conditional expected value of the net returns is equal to:
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E Π� � � E π� � �
X

11
j�1

wjE�rj�: (6)

It can also be shown that the variance of the net returns can be written as:

V Π� � � σ2
π �

X
11
j�1

X
11
K�1

wjwk σjk � 2
X

11
j�1

wjσπj; (7)

where σπ2 is the variance of the net farm sales, σjk is the covariance between rj and rk, and σπj is the
covariance between π and rj.

The PRF coverage selection process can be represented as a mixed integer nonlinear program-
ming problem of the form:

minλ; γ;ω; d V � σ2
π �

X
11
j�1

X
11
K�1

wjwkσjk � 2
X

11
j�1

wjσπj (8)

s:t: E�π� �
X

11
j�1

wjE�rj� � x

X
11
j�1

wj � 1

wj � djωj j � 1; . . . 11

0:1 ≤ ωj ≤ ϖ j � 1; . . . 11

dj � dj�1 ≤ 1 j � 1; . . . 10

dj 2 0; 1f g j � 1; . . . 11

λ 2 f70; 75; 80; 85; 90g
γ 2 f60; 61; 62; . . . ; 150g;

where x is the expected net return level, ω is a vector of conditional weights, ϖ is the maximum
percent of value that can be assigned to a single index interval, and d is a vector of 11 dj dummy
variables that indicate the index intervals selected. Note that σjk, σπj, and rj are explicit functions of
λ and γ, even though this is suppressed in the notation. Also, it is reasonable to assume that par-
ticipation in the PRF program does not significantly affect farm outcomes. Hence, σ2π and E(π) can
be set or adjusted according to the coverage parameter levels during the optimization process.

Value-at-Risk

The underlying distribution of the net returns could affect the performance of the coverage selec-
tion strategies. For instance, the mean-variance approach may inadequately capture downside risk
when returns are nonsymmetrically distributed (Harlow, 1991; Sing and Ong, 2010). Therefore,
we propose the Value-at-Risk method as an alternative coverage selection strategy that may pro-
vide better tail risk control. Specifically, the goal of the Value-at-Risk approach is to find the cov-
erage parameter values that minimize the chances of obtaining a net return below a certain level.

Let’s define the α-quantile of the net returns in equation (5) as qα such that P Π 	 qα
� � 	 α and

0< α< 1. The objective of the policyholder is then to select the coverage level, productivity factor,
and percent of value distribution that yield the largest qα (i.e., q*α) and desired expected net return.
The combination of parameter values associated with q*α is preferred over all other possible alter-
natives with the same expected net return because their probability of obtaining a net return below
q*α is greater or equal than α. By definition, there is a 1-α chance of obtaining a net return greater
than q*α. Risk is commonly centered at the expected value, and it is referred as Value-at-Risk (Bert-
simas, Lauprete & Samarov, 2004):
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VaRα � E Π� � � qα: (9)

Note that for a fixed expected net return, minimizing VaRα is equivalent to maximizing qα.
Compared to traditional financial settings, in the case of the PRF program, the maximum losses
are bounded by the farmer-paid premiums (ϕj).

Furthermore, the distribution of the net returns can be approximated by the empirical distri-
bution function using sample data. Namely, given a sample of n independent and identically dis-
tributed net returns (Π1; . . . ;Πn), the nonparametric estimator of the cumulative distribution
function of Π is

F̂R qα
� � � 1

n

X
n
i�1

1i; (10)

where 1i is an indicator variable that is equal to 1 ifΠi 	 qα, and 0 otherwise. Hence, the Value-at-
Risk formulation of the PRF coverage selection problem is

maxλ; γ; ω; d; 1i; qα qα (11)

s:t: E�π� �
X

11
j�1

wjE�rj� � x

1
n

X
n
i�1

1i � α

πi �
X

11
j�1

wjrji � qα �M1i > 0 i � 1; . . . ; n

πi �
X

11
j�1

wjrji � qα �M�1i � 1� ≤ 0 i � 1; . . . ; nX
11
j�1

wj � 1

wj � djωj j � 1; . . . 11

0:1 ≤ ωj ≤ ϖ j � 1; . . . 11

dj � dj�1 ≤ 1 j � 1; . . . 10

dj 2 0; 1f g j � 1; . . . 11

λ 2 f70; 75; 80; 85; 90g
γ 2 f60; 61; 62; . . . ; 150g

where πi and rji are the net farming income and unweighted net indemnity of the jth index interval
of the ith sample observation, respectively; and M is large enough so that
M > maxfjπi �

P
11
j�1 wjrji � qαj : i � 1 . . . ng. Note that 1i equals 1 if

πi �
P

11
j�1 wjrji � qα 	 0, and 0 otherwise.

Shortfall

In the shortfall strategy, the goal is to maximize the expected value of the net returns in case they
drop below the qα quantile. Thus, compared to Value-at-Risk, the shortfall selection approach
considers the magnitude of the losses and not only their probability of occurrence. Namely,
the shortfall at risk level α is (Bertsimas, Lauprete & Samarov, 2004):

SFα � E Π� � � E ΠjΠ 	 qα
� �

: (12)
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Note that given n observed net returns, nα= ⌊αn⌋ of them are less than or equal to qα.

Therefore, the sample estimator of the qα-conditional expected net return is
P

n
i
1iΠi

nα
. An additional

auxiliary variable zi is created to represent
P

n
i
1iΠi

nα
as a linear function. Particularly, the expected

value of the net returns that are less than or equal to qα is given by 1
nα

P
n
i zi � n � nα� �qα

� �
, where

zi is equal to Πi if Πi 	 qα, and equal to qα otherwise. Also, note that for a given expected net
return, minimizing SFα is equivalent to maximize its lower conditional expected value. Hence, the
in-sample formulation of the Value-at-Risk problem is modified to incorporate the expected value
of the net returns if they fall below qα. Specifically, the objective function in equation (11) is
replaced by:

maxλ; γ; ω; d; 1i; qα: z
1
nα

Xn
i

zi � n � nα� �qα
( )

; (13)

and two additional sets of constraints are added:

zi � πi �
X

11
j�1

wjrji 	 0; i � 1; . . . ; n (14)

zi � qα ≤ 0; i � 1; . . . ; n

where z is a vector containing the zi variables.

Heuristic estimation
The proposed selection models can be estimated directly using mixed integer nonlinear optimi-
zation techniques (Kronqvist, et al. 2019). However, if only the feasible combinations of the
parameters are considered, the selection of the PRF coverage parameters can be reduced to simple
conditional linear and quadratic programming problems. Particularly, the feasible search space
can be constructed by identifying the combinations of productivity factor, coverage level, and
intervals whose potential net return range enclosed the target return level.

It can be shown that the 11 available index intervals can be selected in 221 different valid com-
binations3 (Jimenez Maldonado, 2011). Given a coverage level (λ) and productivity factor (γ), the
expected individual net indemnities E(rj) of the selected index intervals (i.e., dj= 1) in each of the
221 feasible index interval arrays (d) can be sorted in ascending (rΔ�) or descending (rΔ�) order.
Moreover, the expected lower and upper net return bounds associated with the mth combination
of productivity factor, coverage level, and selected index intervals (i.e., Cm= {λm, γm, dm}) are
[E π� � � g

0
mr

Δ�
m , E(π)� g

0
mr

Δ�
m ], where gm is a column vector of weights with length equal to

the sum of the nonzero elements of dm. The weights in gm meet the percent of value (w) allocation
constraints and they yield the minimum and maximum feasible expected net return for the mth

combination of parameters. For example, if six index intervals are selected, then gm is equal to [0.5,
0.1, 0.1, 0.1, 0.1, 0.1]T, if five index intervals are considered gm= [0.5, 0.2, 0.1, 0.1, 0.1]T, and so
forth until gm= [0.5, 0.5]T when only two index intervals are chosen. Note that the entries of gm
represent the percent of value assigned to each of the selected index intervals. Therefore, for any
feasible expected net return xl, there is a subset Cl= {Cl

1, : : : ,Cl
M

l} containing Ml combinations of
λ, γ, and d, so that xl can be achieved with every element of Cl.

The goal then is to find the distribution of the percent of value (wl
m) and the Cl

m that yield the
desired level of risk. For instance, the local minimum risk associated with the xl expected net
return can be calculated for each Cl

m, and then the global minimum is identified among the
Ml potential candidates. Under this approach, the mean-variance selection strategy can be

3A maximum percent of value (ϖ) equal to 50% is considered.
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represented as a conditional quadratic problem, and the Value-at-Risk and shortfall models can be
formulated as conditional linear optimization problems, respectively. For instance, given the mth

combination of parameters {λlm, γlm, dlm}, the local minimum variance and optimal percent of
value allocation are found by:

minwl
m
V � σ2

π �
X

11
j�1

X
11
K�1

wl
mjw

l
mkσjk � 2

X
11
j�1

wjσπj (15)

s:t: E�π� �
X

11
j�1

wl
mjE�rj� � xlX

11
j�1

wl
mj � 1X

11
j�1

dlmjw
l
mj � 1

0:1dlmj ≤ wl
mj ≤ ϖ j � 1; . . . 11:

The corresponding conditional linear problem for the Value-at-Risk selection approach is

maxwl
m; q

l
α; 1i

qlα (16)

s:t: E�π� �
X

11
j�1

wl
mjE�rj� � xl

1
n

X
n
i�1

1i � α

πi �
X

11
j�1

wl
mjrji � qlα �M1i > 0 i � 1; . . . ; n

πi �
X

11
j�1

wl
mjrji � qlα �M�1i � 1� ≤ 0 i � 1; . . . ; nX

11
j�1

wl
mj � 1X

11
j�1

dlmjw
l
mj � 1

0:1dlmj ≤ wl
mj ≤ ϖ j � 1; . . . 11

Similarly, the conditional selection of wm
l in the shortfall model is reduced to:

maxwl
m; q

l
α; 1i; z

1
nα

X
n
i
zi � n � nα� �qlα

n o
(17)

s:t: E�π� �
X

11
j�1

wl
mjE�rj� � xl

1
n

X
n
i�1

1i � α

πi �
X

11
j�1

wl
mjrji � qlα �M1i > 0 i � 1; . . . ; n

πi �
X

11
j�1

wl
mjrji � qlα �M�1i � 1� ≤ 0 i � 1; . . . ; n

zi � πi �
X

11
j�1

wjrji ≤ 0 i � 1; . . . ; n

zi � qlα ≤ 0; i � 1; . . . ; nX
11
j�1

wl
mj � 1
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X
11
j�1

dlmjw
l
mj � 1

0:1dlmj ≤ wl
mj ≤ ϖ j � 1; . . . 11

Alternatively, the selection process of the PRF coverage parameters can be formulated as a
bilevel optimization problem where the discrete parameters are considered in the upper-level opti-
mization task and the search space is limited to Cl. The lower-level optimization task is repre-
sented by the above-mentioned conditional quadratic and linear functions and constraint sets
(Colson, Marcotte & Savard, 2007).

Empirical application
Significant variability caused by different precipitation patterns along with unique actuarial data is
expected across all the grids where the PRF insurance program is available. Therefore, the main
objective of this section is to illustrate the proposed coverage selection strategies on an empirical
application and not to provide generalized parameter selection recommendations. The models
were used to analyze coverage decisions for Grid 7329 (26.122°, −97.880°). This grid is located
in Hidalgo, Texas. The area is identified as a semiarid climatic zone with variable and unpredicted
rainfall (Enciso andWiedenfeld, 2005). Average monthly precipitation in the county is 2.02 inches
with relatively higher precipitation levels from May to October (NOAA NCEI, 2021). Average
monthly temperatures oscillate between 58.92 °F in January and 86.30 °F in August (NOAA
NCEI, 2021). The coverage selection recommendations presented may not be relevant for other
forage production regions with different climatic conditions. Historical monthly rainfall and aver-
age temperatures in Hidalgo County are presented in Figure 1.

We focused on forage for hay use, as it is an important economic commodity produced in the
region. According to Barnett and Robinson (2019), in 2018, the value of hay production was esti-
mated to be equal to $5.8 million, and about 177,000 acres in the county were enrolled on the PRF
program in 2021 (USDA RMA, 2021a). In terms of irrigation and organic practices, we considered
a conventional, non-irrigated hay operation as these are common practices in the region.
Although the results may only be pertinent to the selected grid and production practices, the pro-
posed strategies can be easily replicated in other locations and forage production systems.

Historical interval precipitation indexes for Grid 7329 are provided in the Appendix and are
summarized in Figure 2. Note that the distribution of the precipitation index for all index intervals
is skewed to the right with higher precipitation index values recorded during most of the index
intervals. The index intervals with the lowest median are July–August (74.3), March–April (78.4),
and January–February (78.9). These three index intervals also have the highest standard

Figure 1. Historical monthly precipitation (a) and average temperature (b) in Hidalgo, Texas, 1948–2020.
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deviations. On the other hand, August–September (48.8), September–October (48.8), and May–
June (58.5) are the index intervals with the lowest standard deviations.

A practical and significant limitation to estimate farmers’ overall net returns described in equa-
tion (5) is the lack of historical grid-level production data. For illustration purposes, hay yield was
calculated as a function of the recorded county monthly precipitation levels. Namely, Texas hay
yields (i.e., 1948−2019) were regressed on the state monthly precipitation and a quadratic annual
trend. Estimated coefficients along with observed historical county precipitation levels were used
to predict the 2020-adjusted yields considered in the analysis. It was further assumed that Hidalgo
hay yields are, on average, 21% higher than the state levels based on limited available data (USDA-
NASS, 2021). Regression results suggest that precipitation levels in the months of March and from
May through August have a positive significant effect on yields. Alternative, Diersen, Gurung, and
Fausti (2015) opted for recovering missing yields based on an observed correlated crop. No such
crop was found for the grid or county in question. Hay yields (excluding alfalfa) reported by
USDA-NASS (2021), and state and county precipitations from NOAA NCEI (2021), were used.
Texas and Hidalgo observed and estimated hay yields are shown in Figure 3, and the estimated
ordinary least squares coefficients are presented in the Appendix. The corresponding net farm
sales associated with the estimated yields were calculated based on Texas A&M AgriLife

Figure 2. Distribution of Grid 7329 interval precipitation indexes, 1948–2019.

Figure 3. Historical Texas hay yield (a) and 2020-adjusted hay yields for Hidalgo (b).
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Extension (2021) hay production enterprise budget for South Texas. Particularly, a hay price of
$136.84/ton, a variable cost equal to $47.37/ton, and a fixed cost of $147.11/ac were used to esti-
mate the expected returns and cost of production. In practice, forage sale prices and cost of pro-
duction could also correlate with observed precipitation levels and be affected by other production
and market conditions.

The proposed models were used to identify the optimal set of parameters using 2020 actuarial
data, estimated hay yields and past interval precipitation indexes (i.e., 1948–2019, Appendix).
Expected net returns for all selection strategies were evaluated in the range of $24.00 to
$28.00 per acre. The estimated risk-efficient frontiers for each model along with their correspond-
ing optimal parameter levels are shown in Figure 4. For all three coverage selection strategies, the
associated risk increased with the expected net return, making higher expected returns more var-
iable. Also, the number of index intervals and the distribution of the percent of value were adjusted
based on target expected net return and risk level. In terms of optimal coverage level and produc-
tivity factor, a 90% coverage level and productivity factors in the upper range shaped the three
efficient frontiers.

In the case of the mean-variance model, the standard deviation of the lowest expected net
return was $26.34/ac, while the standard deviation of the highest expected net return was
$35.35/ac. For instance, risk exposure was mitigated by employing a diversified combination
of index intervals consisting of four intervals for most of the efficient curve, but the number
of index intervals reduced to three at relatively higher expected net returns. For the mean-variance
model, the efficient mean-variance frontier was primarily formed by the January–February,
March–April, May–June, July–August, and September–October intervals. Particularly, the percent
of value assigned to the March–April and July–August increased with the expected net return,
while the percent of value associated with the May–June and September–October intervals

Figure 4. Grid 7329 efficient frontier, percent of value, coverage level, and productivity factor for the mean-variance (a),
Value-at-Risk (b), and shortfall (c) selection strategies.
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decreased as higher expected net returns were targeted. It was also observed that the optimal pro-
ductivity factor increased with the expected net return, reaching the maximum productivity factor
of 150% at an expected net return of $24.50/ac.

For the Value-at-Risk model, we considered the case where the goal was to select the combi-
nation of coverage parameters that minimizes the probability of obtaining a net return below the
first decile (i.e., α= 0.10). The empirical distribution function of the net returns was estimated
using the historical interval precipitation indexes and the estimated 2020-adjusted yields. As
expected, VaRα increased as higher net returns were considered. For instance, the lowest expected
net return (i.e., $24.00/ac) was associated with a VaRα equal to $22.34/ac. Thus, it is anticipated to
obtain a net return higher than $1.66/ac with a 90% confidence level. Conversely, at the highest
expected net return (i.e., $28.00/ac), 10% of the times the observed net return is expected to be less
than or equal to −$12.37/ac. Compared to the mean-variance results, up to five index intervals
were considered along the risk-efficient frontier with most of the optimal combinations of param-
eters including four index intervals. In general, March–April, May–June, July–August, and
November–December were the index intervals with the higher percent of value. Additionally,
the optimal productivity factor for the Value-at-Risk coverage selection strategy fluctuated
between 145% and 150%.

As in the Value-at-Risk application, an α= 0.10 was considered in the shortfall illustration.
The shortfall value ranged between $39.68/ac and $52.25/ac. Relatively smaller qα values were
observed for all expected net returns compared to the counterpart quantiles obtained in the
Value-at-Risk model. For instance, the qα values of the shortfall model were, on average, 83%
smaller than those obtained in the Value-at-Risk. Like the other coverage selection strategies,
the shortfall efficient frontier also consisted mainly of four index intervals. For instance, the
March–April and October–November intervals were considered for most of the target expected
net returns. Other index intervals included in the solution were January–February, May–June,
June–July, July–August, August–September, and November–December. For the expected net
returns evaluated, the optimal productivity factor in the shortfall model increased from 141%
at the lowest net return to 150% for net expected returns higher than $25.83/ac.

Based on the above coverage selection results, it seems to be reasonable that policyholders in
Grid 7329 choose at least four index intervals, a coverage level of 90% and a relatively high pro-
ductivity factor, since these parameter levels were common in the optimal solution of the three
proposed models. Also, the suggested parameter selections tended to provide coverage for a con-
tinuous period. Particularly, the March–April, May–June, and July–August intervals were fre-
quently chosen. These are the same months that were found to be significant predictors of
yield (Appendix). On average, a combined percent of value of 88.15%, 51.64%, and 66.08% were
assigned to these three index intervals in the mean-variance, Value-at-Risk, and shortfall models,
respectively.

Precipitation scenarios

The proposed selection methods were illustrated under three precipitation scenarios. The first
scenario consisted of the observed 2020 precipitation levels for Hidalgo County (NOAA
NCEI, 2021). Hence, the 2020 scenario represents the actual performance of the estimated cover-
age selections. The second scenario considered a rainy year (i.e., wet scenario) and the third sce-
nario exemplified limited rainfall conditions (i.e., dry scenario). The annual distribution of
precipitation for the wet and dry scenarios consisted of the monthly precipitation levels recorded
for the years with the highest (i.e., 1967) and lowest (i.e., 2011) precipitation in Hidalgo County
(NOAA NCEI, 2021 ). Thus, the wet and dry scenarios represent inordinate but potential precipi-
tation outcomes. Forage yields were projected based on monthly precipitation as described in the
preceding section. In 1967, a total of 41.69 inches were recorded, while 10.32 inches were regis-
tered in 2011 and 26.77 inches in 2020. The optimal coverage selections shown in Figure 4 were
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evaluated using the reported interval precipitation indexes and estimated forage yields for Grid
7329 for the years 2020, 1967, and 2011 (Appendix).

The net returns associated with the mean-variance, Value-at-Risk, and shortfall coverage selec-
tion strategies under the three precipitation scenarios along with the corresponding net farm sales
without PRF indemnity payments are presented in Figure 5. Net farm sales were positively related
to the overall precipitation levels. Namely, net hay cash receipts for the dry, 2020, and wet sce-
narios were −$30.99/ac, −$8.62/ac, and $29.40/ac, respectively. Note that without participating in
the PRF program, net returns for 2020 and under dry conditions would have been negative. In
terms of risk, net farm sales alone have an estimated standard deviation equal to $32.28/ac, a VaRα

of $39.74/ac, and a shortfall value equal to $47.93/ac. Overall, the three coverage selection strate-
gies were found to be effective reducing risk exposure and increasing net returns. In fact, when
participating in the PRF program, the net returns for the mean-variance, Value-at-Risk, and short-
fall models in each scenario were higher than the corresponding hay production returns without
PRF coverage. Furthermore, the risk of most of the net returns targeted through the PRF program
was less than the risk of the net cash receipts.

For the mean-variance strategy, overall lower net returns were observed under the dry scenario
followed by the 2020 and wet scenarios. In the case of the 2020 scenario, resulting net returns
ranged between $3.20/ac and $49.12/ac. Net returns below the efficient frontier were observed
for expected net returns equal or less than $27.17/ac ($31.09/ac standard deviation). In the
dry scenario, negative net returns were obtained when expected net returns less than $26.33/
ac were targeted. Conversely, all observed net returns were above the mean-variance efficient fron-
tier in the wet scenario.

Some differences were found when the Value-at-Risk strategy was adopted. Particularly, the
observed net returns in the 2020 scenario were higher than the corresponding values obtained
in the mean-variance strategy, except for those expected net returns greater than $27.83/ac.
Also, most of the net returns in the 2020 scenario were above the efficient frontier. On the other
hand, net returns in the wet scenario tended to be lower than the counterpart returns obtained
under the mean-variance strategy. For the dry scenario, most net returns were less than the cor-
responding expected values, but observed returns were all positive.

In the case of the shortfall coverage selection strategy, relatively higher net returns were
observed compared to the returns obtained with the mean-variance and Value-at-Risk strategies
for all three scenarios. Also, the shortfall strategy was the only case in which the resulting net
returns of the dry scenario were greater or equal than the returns of the wet scenario.
Specifically, this occurred when the expected net returns ranged between $27.17/ac and
$27.67/ac. In this range, also the highest net returns for the 2020 scenario were observed among
the three coverage selection strategies. Particularly, a net return equal to $68.97/ac was obtained
under the shortfall strategy when an expected net return of $27.17/ac was targeted.

Figure 5. Performance of the mean-variance (a), Value-at-Risk (b), and shortfall (c) models under different precipitation
scenarios. Net hay farm sales under the 2020, wet, and dry scenarios are denoted by , , and , respectively.
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Summary and conclusions
This study contributes to mitigate the production risk associated with precipitation uncertainty by
providing comprehensive strategies to effectively participate in the PRF insurance program. This
paper represents one of the first attempts to include all the PRF decision parameters and program
restrictions in the coverage selection process. The three proposed selection methods highlight the
underlying relationships between expected revenue, risk, and choice of the coverage parameters.
Different measures of risk are considered in each of the selection strategies. For instance, risk is
defined in terms of the variability of the resulting net returns in the mean-variance approach.
Conversely, in the Value-at-Risk approach risk is represented by the probability that net returns
drop below a specific level, and by the expected value of the net returns below a threshold in the
shortfall method.

Given the discrete nature of some of the decision parameters and existing coverage selection
constraints, finding the optimal level of the different parameters of the PRF program requires
solving a mixed integer nonlinear programming problem. A heuristic estimation method is pre-
sented to reduce the number of possible parameter combinations to be considered during the
optimization process. By following this approach, we showed that the proposed selection models
can be represented as simple conditional linear and quadratic programming problems, while
imposing all the program restrictions.

A practical limitation to implement the proposed coverage selection strategies may be the lack
of historical forage production data. In the absence of grid-level production information, forage
yields could be approximated using county level data or imputed based on available precipitation
levels or existing correlated crops. Deviations from actual production could aggravate the inherent
basis risk associated with the PRF program payouts. Additional research is needed to develop
consistent grid yield estimators and to evaluate their effects on basis risk.

A grid in South Texas was used to illustrate the coverage selection decisions under the three
strategies considered. Although the selection methods presented in this study can be replicated in
any available grid, the empirical results discussed may be specific to the geographical area con-
sidered given the diverse and large number of participating grids in the country. The optimal set of
parameters depicted similar trends along the risk-efficient frontiers for all coverage selection strat-
egies. Particularly, between three and five index intervals were selected providing continuous cov-
erage from March to August. Precipitation in this period was positively correlated with hay yields.
Also, a 90% coverage level and productivity factors in the upper range were observed in the three
selection strategies. Furthermore, the identified risk-efficient solutions were illustrated under
actual rainfall levels in 2020, and in rainy and dry precipitation scenarios. It was found that par-
ticipating in the PRF program could be an effective strategy to mitigate production risk and to
increase farm income. For instance, net hay sales alone for all precipitation scenarios were lower
and riskier than the corresponding returns obtained in conjunction with the PRF program.

Compared to traditional crop insurance programs, limited public and private resources exist to
support PRF policyholders with their decision-making process at the grid level. For example, the
available PRF USDA decision support tool (USDA RMA, 2021b) evaluates the potential outcome
of specific coverage selections, but it provides no guidelines about how to tailor the selection of the
program parameters to meet the revenue and risk expectations of farmers. This study provides the
foundations to develop inclusive decision support tools for farmers. The methods proposed can be
easily adapted into an interactive platform to simplify policyholders’ assessment of both expected
net returns and corresponding risk associated with their coverage selection decisions. From a
practical perspective, the strategies discussed in the paper have the advantage of providing three
complementary risk measures, a reasonable computer processing time to complete the optimiza-
tion task, and most of the input data required in the models are publicly available. An increase in
the availability of educational resources capable of illustrating the actual economic and risk man-
agement implications of the PRF insurance could improve the participation rate in the program.
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Additionally, all the proposed coverage selection strategies can be extended to analyze the decision
process of other Rainfall Index-based insurance programs such as the Apiculture and Annual
Forage insurance programs.
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Appendix

Appendix A. Grid 7329 interval precipitation indexes and estimated hay yields, 2020

Year
Jan–
Feb

Feb–
Mar

Mar–
Apr

Apr–
May

May–
Jun

Jun–
Jul

Jul–
Aug

Aug–
Sep

Sep–
Oct

Oct–
Nov

Nov–
Dec

Hay yield1

(ton/ac)

2020 16.1 15.7 19.6 47.4 96.6 135 98.1 48.6 30.8 4.1 20.2 1.55

2019 43.3 55.4 66.7 28.4 95.7 100.4 27.4 62.5 71.4 66.5 63.6 2.02

2018 21.2 14.6 31.1 23.7 80.4 91.3 37.8 55.6 68.8 66 25 2.38

2017 97.8 158.9 113.7 64.3 59.6 41.6 62.4 70.6 104.2 140.7 86 1.65

2016 51.8 101.4 133.5 91.4 149.3 107.3 33.1 60.5 46.4 61.2 106.5 1.89

2015 145.6 239.3 311.7 221.1 140.9 64.9 109.5 110.1 153.4 210.2 56 2.36

2014 54.4 83 63.2 70.1 62.4 42.9 65.6 148.2 135.7 130 232.7 1.66

2013 74.8 2 54.3 84.1 60.7 67.1 82.9 126.6 104 104.5 296.4 1.36

2012 152.6 207.3 63.1 52.4 40 57.5 78.8 46.8 37.4 34.2 42.5 1.45

2011 104.7 10.8 7 8.4 116.1 162.4 59.9 27.3 27 28.2 96 1.30

2010 143.6 151.1 117.3 108.6 82.3 312.1 290.5 116.7 105.6 0.8 2.4 2.30

2009 18.1 25.6 23.4 52 71.7 53 32.3 100.2 113 75.7 212.7 1.42

2008 64.4 8.4 95 70.7 19.3 299.5 426.2 151.3 95.8 57 58.7 2.00

2007 105.9 64.7 63.7 98.6 103.3 263.1 334.4 133 103 70.3 23.1 1.97

2006 13.9 61.9 50.7 47.9 54.3 72.9 73.5 152.6 163.8 65.3 129.6 1.59

2005 89 72.4 13.3 30.2 28.3 102.8 116.5 41.6 67.4 106 120 1.32

2004 92.8 198.7 378.4 184.7 200.3 196.7 45.6 117.1 118.3 62.2 56 2.11

2003 62.6 128.4 140.4 41.3 49.9 88.9 110.3 176.3 207.3 178.3 53.6 1.71

2002 18.2 30 27.7 72.4 65.8 51.6 51.2 111.3 182.2 294.8 248.7 1.26

2001 88.3 109.3 103.5 55.2 74.6 96.5 74.4 111.6 77 52.9 110.3 1.75

2000 63.9 97.2 100.9 79.9 92.1 47.9 47.6 45.7 41.9 58.8 59.9 1.57

1999 40.3 128.4 82 33.9 64.9 141.2 179.8 88 52.9 23.3 19.7 2.18

1998 124.5 158.9 23.5 0.6 2 14.9 41.7 153.8 215.4 234.9 148.4 1.14

1997 34.2 356 496.3 198 92.9 40.8 14.1 77.3 175.3 229.4 64 2.02

1996 3.6 21 40.9 25.9 57.5 58.6 137.3 128.6 100.1 143.8 90.5 1.46

1995 24.7 65.8 101.6 169.4 129.3 43.3 221.6 157.8 111.6 186 127.9 1.54

1994 77.7 105.8 110.4 66.4 119.6 91.1 34.9 83.1 110 103.5 119 1.76

1993 69 121 78.3 177.3 257.4 139.4 1.3 51.3 78.4 90 128.2 2.61

1992 183.8 101.6 215.7 283.2 147.9 56.8 68.6 96 81.3 122.8 189 1.61

1991 136.2 146.8 242.9 196 120.8 129.2 74.2 99.6 133.6 119.2 145.1 2.11

1990 84.5 107.2 105 82.2 54.3 53.3 72.4 70 56.9 40.9 55.7 1.51

1989 46.9 15.8 108.7 74.6 44.1 87.8 112.3 58 26.7 23.9 95.8 1.39

(Continued)
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Appendix A. (Continued )

Year
Jan–
Feb

Feb–
Mar

Mar–
Apr

Apr–
May

May–
Jun

Jun–
Jul

Jul–
Aug

Aug–
Sep

Sep–
Oct

Oct–
Nov

Nov–
Dec

Hay yield1

(ton/ac)

1988 205 162.3 88 34.3 56.5 73.2 120.9 151.2 105.6 30.6 13.6 1.46

1987 207 132.3 59.4 103 166.9 197.4 111.6 81.4 77.1 52.2 70 2.08

1986 70.1 62.7 56.3 156 179.5 117 68.6 60.8 52 139.9 322.2 1.73

1985 96.2 85.8 114.4 124.9 130.9 120.2 66.9 85.8 94 58.4 58.5 2.04

1984 199 48.2 2.7 59.1 54.9 42.4 48 174.9 175.7 39.6 70.6 1.47

1983 210.5 234.7 38.4 61.4 124.5 244.9 216.6 91.9 88.5 90.8 101.6 1.82

1982 127.8 142.5 42.5 245.9 169.6 4 28.3 25 39.2 92.6 170.2 1.70

1981 172.3 147.8 194.8 234.5 174 97.3 163.4 88.6 64.9 84.7 30 2.46

1980 71.6 70.6 9.7 58.5 44.1 11 228 156.4 52.4 109.7 118.4 1.72

1979 74.4 45 120.7 117.6 110.7 102.3 140.4 136.2 73 32.3 128.6 1.99

1978 171 46.2 47.1 30.9 37 55 107.2 144 123.9 83.9 82 1.29

1977 151 77.7 112 94.3 165.5 165.6 27.6 54.3 63.1 99.5 105.4 1.69

1976 32.6 36.9 246.3 184.4 70.5 228.5 296.4 116.4 162.3 269.1 205.7 1.80

1975 69.7 28 1.7 42 66.9 197.4 281.1 170.2 116 32.4 73.6 2.41

1974 51.2 105.2 202.7 112.8 77.3 107.3 89 121.4 171.6 139.6 39.5 1.72

1973 445.6 281.5 30.2 71.8 190.7 182.3 138.8 137.9 114.7 152.1 105 2.28

1972 61.8 189.8 184.3 159.5 280.1 260.2 79.2 56.7 77.5 87 53.4 2.57

1971 62.9 63.2 78.4 74.7 70.6 107.1 129.4 220.6 187 50.4 57.8 1.86

1970 164 60.6 99.1 164.1 151.1 115.8 115.4 133.2 136.9 87.5 6.6 2.27

1969 122.8 132.3 34 73.5 68.2 23.3 96.1 125.9 74.8 52.7 71.2 1.55

1968 169.2 98.9 85.1 109 150.2 164.1 117.9 60.4 54.6 47.3 27.5 2.01

1967 110.2 99.5 47.9 45.2 65.9 48.2 128.3 235.4 204.2 170.9 222.3 1.99

1966 207.4 103.2 185.1 346.7 260.1 88.4 43.3 25.4 79.5 132.7 6.4 2.38

1965 94.3 103.1 27.2 78.5 79 39.1 51.6 55.3 49.3 117.6 290.2 1.65

1964 61.7 59.3 49.1 152.3 129.3 47 11.1 38 38.3 22.9 85.7 1.52

1963 24.6 20.7 3.9 161.8 173.8 100.2 75.9 65 106.2 188.2 216.4 1.61

1962 21.4 38 60.9 39.7 99.8 88.8 6.6 31.5 42.8 73.5 155.5 1.67

1961 85.4 44.5 128.5 92.4 49.5 117.1 161.4 163 118.8 59.7 80.4 1.73

1960 80 104.4 206.1 145.6 58.6 36.7 136.1 164.6 130.1 119 150.8 1.77

1959 152.9 113.2 56.4 85.9 102.3 78.1 47.9 22.8 71.7 178.3 98.1 1.14

1958 430.1 232.2 32.4 59.4 108.6 91.5 27.3 93.6 207.8 264 142 1.23

1957 103.1 247.6 272.7 129.2 128.6 105.2 10.5 36.2 32.1 80.4 135.4 1.86

1956 33.5 44.1 87.8 57.6 41.7 48.7 14.6 39 47.4 32.8 19.7 1.32

1955 51.1 22.7 11.3 16.9 8.9 78.6 162.4 170 138.9 72 59.8 1.24

1954 10.2 17.4 218.1 134.4 70.6 76.3 66.8 94.7 154.5 203.3 33.4 1.68

1953 58.2 62.8 34.2 23 15.4 22.1 182.2 106.2 70.6 126.1 48.9 1.43

(Continued)
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Appendix A. (Continued )

Year
Jan–
Feb

Feb–
Mar

Mar–
Apr

Apr–
May

May–
Jun

Jun–
Jul

Jul–
Aug

Aug–
Sep

Sep–
Oct

Oct–
Nov

Nov–
Dec

Hay yield1

(ton/ac)

1952 27 24.9 31.1 125.9 137.5 95.3 44.1 67.2 61.7 75.5 148.9 1.72

1951 23.3 76.8 74.4 72.7 116.3 95.8 71 119.3 114.7 77.1 35.9 2.12

1950 55.3 73.4 109 167.5 153.8 56 24.2 47.6 63.1 72.1 24.5 1.58

1949 177.2 180 116.3 94.3 68.9 61.9 55 77 68.7 27.7 61.7 1.33

1948 125.4 131.7 35.8 66 53.9 31.9 91.1 125.8 129.1 93.2 9.7 1.86

Min2 3.6 2 1.7 0.6 2 4 1.3 22.8 26.7 0.8 2.4 1.14

Max2 445.6 356 496.3 346.7 280.1 312.1 426.2 235.4 215.4 294.8 322.2 2.61

Mean2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.77

Median2 78.9 91.5 78.4 79.2 81.4 88.9 74.3 95.4 94.9 84.3 83.9 1.72

Std
Dev2

80.2 71.5 90.5 68.0 58.5 67.9 82.4 48.8 48.8 64.7 72.9 0.36

1Hay yield represents the expected yield for 2020 based on historical precipitation levels.
2Statistic estimated using 1948–2019 data.

Appendix B. Grid 7329 actuarial data for non-irrigated, conventional haying, 2020

County base
value ($)

Coverage
level (%)

Subsidy
level (%)

Interval premium rate (%)

Jan–
Feb

Feb–
Mar

Mar–
Apr

Apr–
May

May–
Jun

Jun–
Jul

Jul–
Aug

Aug–
Sep

Sep–
Oct

Oct–
Nov

Nov–
Dec

103 70 59 20.11 21.42 25.85 17.95 16.16 19.08 21.66 12.88 10.96 18.73 21.17

103 75 59 22.19 23.18 27.66 19.39 17.63 20.57 23.8 14.62 12.98 20.23 23.17

103 80 55 24.25 24.95 29.43 21.1 19.13 22 26.03 16.33 15.14 21.63 25.02

103 85 55 26.23 26.64 31.18 23.25 20.8 23.62 28.2 18.02 17.24 23.06 26.83

103 90 51 28.2 28.29 32.93 25.37 22.88 25.19 30.22 19.76 19.18 24.52 28.63
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Appendix C. Estimated Texas hay yield coefficients

Parameter Coefficient Standard error

Constant −0.4585*** 0.1303

January −0.0432 0.0302

February 0.0163 0.0288

March 0.0898*** 0.0329

April 0.0221 0.0210

May 0.0816*** 0.0184

June 0.0952*** 0.0197

July 0.0526** 0.0216

August 0.0514*** 0.0183

September 0.0231 0.0171

October −0.0159 0.0145

November −0.0346 0.0221

December 0.0234 0.0257

Trend 0.0687*** 0.0047

Trend2 −0.0007*** 0.0001

Adjusted R2 0.90

Durbin–Watson statistic 1.95 (p-value: 0.65)

**Significance levels of 0.05.
***Significance levels of 0.01.
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