NILPOTENT-BY-NOETHERIAN FACTORIZED GROUPS

BY

BERNHARD AMBERG, SILVANA FRANCIOSI AND FRANCESCO DE GIOVANNI

ABSTRACT. It is shown that a soluble-by-finite product G = AB of a nilpotent-by-noetherian group A and a noetherian group B is nilpotent-by-noetherian. Moreover, a bound for the torsion-free rank of the Fitting factor group of G is given, in terms of the torsion-free rank of the Fitting factor group of A and the torsion-free rank of B.

1. **Introduction.** A group G is *noetherian* if it satisfies the maximum condition on subgroups. It is well-known that a soluble-by-finite group is noetherian if and only if it is polycyclic-by-finite. The group G is called *nilpotent-by-noetherian* if it contains a nilpotent normal subgroup with noetherian factor group. In particular in such a group G the Fitting subgroup Fit(G) is nilpotent and the Fitting factor group G/Fit(G) is noetherian. From this it follows that every group which contains a nilpotent-by-noetherian normal subgroup with noetherian factor group is likewise nilpotent-by-noetherian.

Lennox and Roseblade in [5] and independently Zaicev in [9] have shown that every soluble product G = AB of two noetherian subgroups A and B is noetherian. The proof in [5] even holds when the group G = AB is soluble-by-finite. Also the torsion-free rank of G = AB satisfies the following formula

$$r_0(G) = r_0(A) + r_0(B) - r_0(A \cap B),$$

so that in particular $r_0(G)$ is bounded by $r_0(A) + r_0(B)$ (see [1], Satz 5.2). In this paper we use these results to establish the following theorem.

THEOREM A. Let the soluble-by finite group G = AB be the product of a nilpotent-by-noetherian subgroup A and a noetherian subgroup B. Then the following holds:

- (a) G is nilpotent-by-noetherian,
- (b) If the soluble radical of G has derived length n > 1, then the torsion-free rank of the Fitting factor group of G satisfies the following inequality:

$$r_0(G/\text{Fit}(G)) \le (2n-3)(r_0(B) + r_0(A/\text{Fit}(A))).$$

When A and B are abelian and B is finitely generated, this was obtained by Heineken in [3]; note that in this case G = AB is metabelian by the well-known theorem of Itô

Received by the editors December 22, 1987.

1980 Mathematics Subject Classification: Primary: 20F19 Secondary: 20D40.

© Canadian Mathematical Society 1988.

[4]. The special case of Theorem A when G is soluble and A is nilpotent was already pointed out in [2].

Recently Wilson has shown that every soluble product G = AB of two minimax subgroups A and B is likewise a minimax group (see [8]). In this case for the minimax rank and the p^{∞} -rank of G the following formulas hold:

$$m(G) = m(A) + m(B) - m(A \cap B),$$

$$m_p(G) = m_p(A) + m_p(B) - m_p(A \cap B) \text{ for each prime } p,$$

so that in particular m(G) is bounded by m(A) + m(B) and $m_p(G)$ is bounded by $m_p(A) + m_p(B)$ for each p (see [7], Theorem 1 and Theorem 3).

Here we use these results to obtain our second theorem.

Theorem B. Let the soluble group G = AB with derived length n be the product of a hypercentral-by-minimax subgroup A and a minimax subgroup B. Then the following holds:

- (a) G is an extension of a Gruenberg group by a minimax group,
- (b) If G is not abelian, the minimax rank and the p^{∞} -rank of the Gruenberg factor group satisfy the following inequalities:

$$m(G/K(G)) \le (2n-3)(m(B)+m(A/H)),$$

 $m_p(G/K(G)) \le (2n-3)(m_p(B)+m_p(A/H))$ for each prime p ,

where H is any hypercentral normal subgroup of A with minimax factor group A/H. If, in addition, B is artinian, then G is an extension of a Gruenberg group by an artinian group.

Note that it follows from Theorem B that if A is hypercentral-by-noetherian and B is noetherian, then the group G is an extension of a Gruenberg group by a noetherian group.

Again the special case of Theorem B when A is hypercentral is already contained in [2]. There it was also mentioned that there is no corresponding inequality for the torsion-free rank of the Gruenberg factor group in Theorem B. This theorem also becomes false if "minimax" is replaced by "finite (Prüfer) rank". Similarly Theorem A becomes false when "noetherian" is replaced by "artinian" or "minimax" (see [2]).

Also Theorems A and B do not hold when the subgroups A and B are both nilpotent-by-noetherian or hypercentral-by-minimax, respectively. For, there exist groups which are the product of two abelian subgroups, but which are not even (locally nilpotent)-by-minimax. Let, for example, B be the additive group of rational numbers and let A be its automorphism group. Then the semidirect product G = AB is not (locally nilpotent)-by-minimax, since B is the Hirsch-Plotkin radical of G.

Moreover this example shows that Theorems A and B cannot be extended to a soluble product $G = A_1 \dots A_t$ of finitely many pairwise permutable nilpotent-by-noetherian (hypercentral-by-minimax) subgroups A_1, \dots, A_t , where more than one factor is merely

nilpotent-by-noetherian but not noetherian (hypercentral-by-minimax but not minimax). On the other hand the following statements can be deduced immediately from our theorems.

COROLLARY A*. Let the soluble-by-finite group $G = A_1 ... A_t$ be the product of finitely many pairwise permutable subgroups $A_1, ..., A_t$, where A_1 is nilpotent-by-noetherian and $A_2, ..., A_t$ are noetherian. Then G is nilpotent-by-noetherian and

$$r_0(G/\operatorname{Fit}(G)) \le (2n-3)(r_0(A_1/\operatorname{Fit}(A_1)) + r_0(A_2) + \ldots + r_0(A_t)),$$

where n > 1 is the derived length of the soluble radical of G.

COROLLARY B*. Let the soluble group $G = A_1 ... A_t$ with derived length n be the product of finitely many pairwise permutable subgroups $A_1, ..., A_t$, where A_1 is hypercentral-by-minimax and $A_2, ..., A_t$ are minimax. Then G is an extension of a Gruenberg group by a minimax group and, if G is not abelian, the following inequalities hold:

$$m(G/K(G)) \le (2n-3)(m(A_1/H) + m(A_2) + \dots + m(A_t)),$$

 $m_p(G/K(G)) \le (2n-3)(m_p(A_1/H) + m_p(A_2) + \dots + m_p(A_t))$ for each prime p ,

where H is any hypercentral normal subgroup of A_1 with minimax factor group A_1/H . If, in addition, A_2, \ldots, A_t are artinian, then G is an extension of a Gruenberg group by an artinian group.

NOTATION. The notation is standard and can for instance be found in [6]. We note in particular:

- Fit(G) is the *Fitting subgroup* of the group G, i.e. the product of all nilpotent normal subgroups of G,
- K(G) is the *Gruenberg radical* of G, i.e. the subgroup generated by all abelian ascendant subgroups of G,
- Soc(G) is the *socle* of G, i.e. the subgroup generated by all minimal normal subgroups of G.

A normal subgroup H of G is *hypercentrally embedded* in G if for every G-invariant proper subgroup K of G the intersection $(H/K) \cap Z(G/K)$ is non-trivial.

A group G is artinian if it satisfies the minimum condition on subgroups,

A soluble-by finite group G is a *minimax* group if it has a finite series whose factors are finite or infinite cyclic or quasicyclic of type p^{∞} ; the number of infinite cyclic factors in such a series is the *torsion-free rank* $r_0(G)$ of G, the number of factors of type p^{∞} for the prime p is the p^{∞} -rank $m_p(G)$ of G, and the *minimax rank* of G is

$$m(G) = r_0(G) + \sum_p m_p(G).$$

If N is a normal subgroup of a factorized group G = AB, the *factorizer* of N in G is the subgroup $X(N) = AN \cap BN$.

- 2. **Auxiliary results.** The following lemma which ultimately depends on Dirichlet's Unit Theorem of algebraic number theory will be essential for the proof of part (b) of Theorem A.
- Lemma 2.1. If N is a finitely generated abelian normal subgroup of a soluble-by finite group G with nilpotent-by-noetherian factor group G/N, then the Fitting factor group G/Fit(G) is noetherian and

$$r_0(G/\operatorname{Fit}(G)) \le r_0(N) + r_0((G/N)/\operatorname{Fit}(G/N)).$$

PROOF. If M/N is the Fitting subgroup of G/N, then G/M is noetherian. Let F = Fit(M). Application of Lemma 2.3 of [2] to M yields that M/F is polycyclic and $r_0(M/F) \le r_0(N)$. Since G/M is noetherian, also G/F is noetherian and

$$r_0(G/F) = r_0(M/F) + r_0(G/M) \le r_0(N) + r_0((G/N)/\text{Fit}(G/N)).$$

As a soluble group of automorphisms of a polycyclic group, $M/C_M(N)$ is polycyclic (see [6] Part 1, p. 82). Since N is contained in the centre of $C_M(N)$ and $C_M(N)/N \le M/N$ is nilpotent, also $C_M(N)$ is nilpotent. Therefore the subgroup M is nilpotent-by-noetherian, so that F = Fit(M) is nilpotent and $F \le \text{Fit}(G)$. The lemma is proved. \square

The next lemma plays a similar role in the proof of statement (b) of Theorem B.

LEMMA 2.2. Let N and M be normal subgroups of a soluble-by finite group G with $N \leq M$ and such that N is an abelian minimax group, M/N is hypercentral and G/M is a minimax group. Then the Gruenberg factor group G/K(G) is a minimax group and

$$m(G/K(G)) \le m(N) + m(G/M),$$

 $m_p(G/K(G)) \le m_p(N) + m_p(G/M)$ for each prime p .

PROOF. If L = K(M) is the Gruenberg radical of M, it follows from Lemma 2.3 of [2] applied to M that M/L is a finitely generated nilpotent group with $r_0(M/L) = m(M/L) \le m(N)$. Since G/M is a minimax group, also G/L is minimax and

$$m(G/L) = m(M/L) + m(G/M) \le m(N) + m(G/M),$$

$$m_p(G/L) = m_p(M/L) + m_p(G/M) \le m_p(N) + m_p(G/M) \text{ for each prime } p.$$

Since L is contained in K(G), the result follows.

3. **Proof of Statements (a) of Theorems A and B.** We begin with the proof of statement (a) of Theorem A.

The first lemma gives a criterion for a soluble-by finite factorized group to be nilpotent-by-noetherian.

Lemma 3.1. Let the soluble-by-finite group G = AB be the product of a subgroup A and a noetherian subgroup B, and let K be a normal subgroup of G with nilpotent-by-noetherian factor group G/K. If $A \cap K$ is noetherian, then also K is noetherian and G is nilpotent-by-noetherian.

PROOF. The factor group

$$(A \cap BK)/(A \cap K) \simeq (A \cap BK)K/K \leq BK/K$$

is noetherian, and hence $A \cap BK$ is noetherian. Therefore the factorized group

$$BK = B(A \cap BK)$$

is noetherian by the theorem of Lennox-Roseblade-Zaicev (see [5]). In particular K is noetherian.

As a soluble-by finite group of automorphisms of K also the factor group $G/C_G(K)$ is noetherian (see [6] Part 1, p. 82). Let L/K be a nilpotent normal subgroup of G/K with noetherian factor group G/L. Then $G/(L \cap C_G(K))$ is noetherian. Since Z(K) is contained in the centre of $L \cap C_G(K)$ and

$$(L \cap C_G(K))/Z(K) \simeq (L \cap C_G(K))K/K \leq L/K$$

is nilpotent, also $L \cap C_G(K)$ is nilpotent. Therefore G is nilpotent-by-noetherian. \square

The next lemma is a special case of Theorem A(a).

LEMMA 3.2. Let the soluble-by-finite group G = AB be the product of a nilpotent-by-noetherian subgroup A and a noetherian subgroup B. If there exists an abelian normal subgroup K of G such that G = AK, then G is nilpotent-by-noetherian.

PROOF. Let N be a nilpotent normal subgroup of A with noetherian factor group A/N. Then $N \cap K$ is normal in AK = G and the factor group

$$(A \cap K)/(N \cap K) \simeq (A \cap K)N/N \le A/N$$

is noetherian. By Lemma 3.1 it follows that the factorized group

$$G/(N \cap K) = (A/(N \cap K))(B(N \cap K)/(N \cap K))$$

is nilpotent-by-noetherian.

If c is the nilpotency class of N, then

$$N \cap K = Z_c(N) \cap K \leq Z_c(NK)$$
.

and hence NK is nilpotent-by-noetherian. Since NK is normal in G and $G/NK \simeq A/(A \cap NK)$ is noetherian, G is nilpotent-by-noetherian.

We can now prove Theorem A(a).

Assume that Theorem A(a) is false and let G = AB be a counterexample such that the derived length n of the soluble radical G_0 of G is minimal. Clearly n > 1. If K is the last non-trivial term of the derived series of G_0 , there exists a nilpotent normal subgroup L/K of G/K with noetherian factor group G/L.

By Lemma 3.2 the factorized group

$$AK = A(B \cap AK)$$

is nilpotent-by-noetherian. Put $H = AK \cap L$. Then $K \le H \le L$ and since L/K is nilpotent, H is a nilpotent-by-noetherian subnormal subgroup of G. Let

$$H = H_0 \triangleleft H_1 \triangleleft \ldots \triangleleft H_t = G$$

be the standard series of H in G. Since A normalizes H, it is well-known that A also normalizes each H_i . Then $A \le N_G(H_i)$ and so $N_G(H_i) = A(B \cap N_G(H_i))$. Consider the factorized group

$$N_G(H_i)/H_i = (AH_i/H_i)((B \cap N_G(H_i))H_i/H_i).$$

The group AH_i/H_i is an image of

$$A/(A \cap H) = A/(A \cap L) \simeq AL/L \le G/L$$

and hence it is noetherian. By the theorem of Lennox-Roseblade-Zaicev (see [5]) the group $N_G(H_i)/H_i$ is also noetherian. Hence, if H_i is nilpotent-by-noetherian for some i, also $N_G(H_i)$ and its subgroup H_{i+1} are nilpotent-by-noetherian. Since $H_0 = H$ is nilpotent-by-noetherian, $G = H_t$ is nilpotent-by-noetherian.

The next two lemmas will be used in the proof of Theorem B(a).

LEMMA 3.3. Let the soluble group G = AB be the product of a subgroup A and a minimax subgroup B, and let K and L be normal subgroups of G with $K \le L$ and such that L/K is a Gruenberg group and G/L is a minimax group. If $A \cap K$ is a minimax group, then K and the Gruenberg factor group G/K(G) are minimax groups.

Proof. The factor group

$$(A \cap BK)/(A \cap K) \simeq (A \cap BK)K/K \leq BK/K$$

is a minimax group, so that $A \cap BK$ is a minimax group. Therefore

$$BK = B(A \cap BK)$$

is a minimax group by Wilson's theorem [8]. In particular K is a minimax group.

Let *n* be the derived length of *K*. For every $i \le n-1$ let $T_i/K^{(i+1)}$ be the torsion subgroup of $K^{(i)}/K^{(i+1)}$. Put

$$C_1 = \bigcap_i C_L(\operatorname{Soc}(T_i/K^{(i+1)}))$$

and

$$C_2 = \bigcap_i C_L(K^{(i)}/T_i).$$

Since every $T_i/K^{(i+1)}$ satisfies the minimum condition, the group L/C_1 is finite. As a soluble group of automorphisms of a torsion-free abelian minimax group each $L/C_L(K^{(i)}/T_i)$ is a minimax group (see [6] Part 2, p. 171–173). Hence also L/C_2 is a minimax group. It follows that $G/(C_1 \cap C_2)$ is a minimax group.

Clearly $K \cap C_1 \cap C_2$ is hypercentrally embedded in $C_1 \cap C_2$. Since

$$(C_1 \cap C_2)/(C_1 \cap C_2 \cap K) \simeq (C_1 \cap C_2)K/K$$

is a Gruenberg group, also $C_1 \cap C_2$ is a Gruenberg group. This proves the lemma. \square

Using Lemma 3.3 in the place of Lemma 3.1, our last lemma can be proved similarly as Lemma 3.2.

LEMMA 3.4. Let the soluble group G = AB be the product of a hypercentral-by-minimax subgroup A and a minimax subgroup B. If there exists an abelian normal subgroup K of G such that G = AK, the Gruenberg factor group G/K(G) is a minimax group.

We are now ready to prove Theorem B(a).

Assume that Theorem B(a) is false and let G = AB be a counterexample with minimal derived length n. Clearly n > 1. If K is the last non-trivial term of the derived series of G, there exists a Gruenberg normal subgroup L/K of G/K with minimax factor group G/L.

By Lemma 3.4 the factorized group

$$AK = A(B \cap AK)$$

is an extension of a Gruenberg group by a minimax group. Put $H = AK \cap L$. If V is the Gruenberg radical of H, then H/V is a minimax group. For each element x of V the subgroup $\langle x \rangle$ is ascendant in $\langle x,K \rangle \leq H$. Since $\langle x,K \rangle/K \leq L/K$ is ascendant in G/K, it follows that $\langle x \rangle$ is ascendant in G. Hence V is contained in the Gruenberg radical of G and so V^G is a Gruenberg group.

The factor group

$$(AV^G\cap L)\big/V^G=(A\cap L)V^G\big/V^G\simeq (A\cap L)\big/(A\cap V^G)$$

is a minimax group as an image of the minimax group

$$(A \cap L)/(A \cap V) \simeq (A \cap L)V/V \le H/V.$$

Since also

$$AV^G/(AV^G\cap L) \simeq AL/L \le G/L$$

is a minimax group, AV^G/V^G is minimax. Now by the theorem of Wilson [8] the factorized group

$$G/V^G = (AV^G/V^G)(BV^G/V^G)$$

is a minimax group.

This proves Theorem B(a).

4. Proof of Statements (b) of Theorems A and B. Clearly it is enough to prove that

$$r_0(G/\text{Fit}(G)) \le (2m-3)(r_0(B) + r_0(A/\text{Fit}(A)))$$

where m > 1 is the derived length of an arbitrary (non-abelian) soluble normal subgroup S of finite index of G.

Assume that this is false. Among all the counterexamples G = AB for which the torsion-free rank of B is minimal, consider those for which the index of the soluble subgroup S is minimal and among these choose one for which the derived length M of S is minimal.

The factorizer X = X(S) of S in G = AB has the triple factorization

$$X = S(A \cap BS) = S(B \cap AS) = (A \cap BS)(B \cap AS).$$

If X is properly contained in G, then

$$r_0(X/\operatorname{Fit}(X)) \le (2m-3)(r_0(B \cap AS) + r_0((A \cap BS)/\operatorname{Fit}(A \cap BS)))$$

$$\le (2m-3)(r_0(B) + r_0(A/\operatorname{Fit}(A))).$$

Since Fit(X) is nilpotent, $Fit(X) \cap S$ is a nilpotent normal subgroup of S, so that

$$\operatorname{Fit}(X) \cap S \leq \operatorname{Fit}(S) \leq \operatorname{Fit}(G)$$
.

Therefore

$$r_0(G/\operatorname{Fit}(G)) \le r_0(G/\operatorname{Fit}(S)) = r_0(S/\operatorname{Fit}(S))$$

$$\le r_0(S/(\operatorname{Fit}(X) \cap S)) = r_0(X/\operatorname{Fit}(X))$$

$$\le (2m - 3)(r_0(B) + r_0(A/\operatorname{Fit}(A))).$$

This contradiction shows that

$$G = X = AS = BS = AB$$
.

In the following K denotes the last non-trivial term of the derived series of S. If $A_0 = A \cap S$, then A/A_0 is finite. Let F be the Fitting subgroup of A_0 . Since $A \cap K$ is

an abelian normal subgroup of A_0 , we have that $A \cap K = F \cap K$. Note also that, if c is the nilpotency class of F, then

$$F \cap K = Z_c(F) \cap K \leq Z_c(FK)$$
.

The proof of Theorem A(b) will now be accomplished in a series of steps.

(1) $K/(F \cap K)$ is finitely generated and $r_0(K/(F \cap K)) \leq r_0(B)$.

Suppose first that $F \cap K = 1$. Clearly the subgroup

$$A \cap BK \simeq (A \cap BK)K/K \leq BK/K$$

is noetherian and hence also $BK = B(A \cap BK)$ is noetherian by the theorem of Lennox-Roseblade-Zaicev (see [5]). In particular K is finitely generated and

$$r_0(BK) \leq r_0(B) + r_0(A \cap BK)$$

(see [1], Satz 5.2). It is also clear that

$$r_0(K) = r_0(BK) - r_0(B) + r_0(B \cap K)$$

and

$$r_0(A \cap BK) \le r_0(B) - r_0(B \cap K).$$

Therefore

$$r_0(K) \le r_0(B) + r_0(A \cap BK) - r_0(B) + r_0(B \cap K) \le r_0(B)$$
.

In the general case consider the factorized group $AK = A(B \cap AK)$ and its factor group

$$AK/(F \cap K) = (A/(F \cap K))((B \cap AK)(F \cap K)/(F \cap K)).$$

Since

$$(A/(F \cap K)) \cap (K/(F \cap K)) = 1$$

it follows that $K/(F \cap K)$ is finitely generated and $r_0(K/(F \cap K)) \leq r_0(B)$.

(2) S is not metabelian.

Assume that S is metabelian. Then FK/K is normal in G/K = (AK/K)(S/K), so that FK is normal in G and therefore

$$N = (F \cap K)^G \le Z_c(FK).$$

It follows from (1) that K/N is finitely generated and $r_0(K/N) \le r_0(B)$. Application of Lemma 2.1 to G/N yields that

$$r_0((G/N)/\operatorname{Fit}(G/N)) \le r_0(K/N) + r_0((G/K)/\operatorname{Fit}(G/K))$$
$$= r_0(K/N) \le r_0(B).$$

because G/K is abelian-by-finite.

Let E/N be the Fitting subgroup of G/N and $E_0 = E \cap FK$. Since $N \le Z_c(FK)$ we have also that $N \le Z_c(E_0)$, so that E_0 is a nilpotent normal subgroup of G. Moreover

$$r_0(G/E_0) \le r_0(G/E) + r_0(G/FK) \le r_0(B) + r_0(G/FK)$$
.

Since S is metabelian, A_0K is normal in G = AS, and it follows that

$$r_0(G/FK) = r_0(G/A_0K) + r_0(A_0K/FK)$$

$$= r_0(G/A_0K) + r_0(A_0/(A_0 \cap FK))$$

$$\leq r_0(G/A_0K) + r_0(A_0/F) \leq r_0(G/A_0K) + r_0(A/Fit(A)).$$

If G/A_0K is finite, this implies

$$r_0(G/E_0) \le r_0(B) + r_0(A/\text{Fit}(A)).$$

This contradiction shows that G/A_0K must be infinite. Then also $|G:AK|=|B:B\cap AK|$ is infinite and

$$r_0(B \cap AK) < r_0(B)$$
.

Therefore for the factorized group

$$AK = A(B \cap AK)$$

the rank inequality holds, so that

$$r_0(A_0K/\operatorname{Fit}(A_0K)) \le r_0(AK/\operatorname{Fit}(AK))$$

 $\le r_0(B \cap AK) + r_0(A/\operatorname{Fit}(A)).$

The Fitting subgroup $Fit(A_0K)$ of the normal subgroup A_0K of G is a nilpotent normal subgroup of G and so it is contained in Fit(G). Hence

$$r_{0}(G/\text{Fit}(G)) \leq r_{0}(G/\text{Fit}(A_{0}K))$$

$$= r_{0}(G/A_{0}K) + r_{0}(A_{0}K/\text{Fit}(A_{0}K))$$

$$\leq r_{0}(G/A_{0}K) + r_{0}(B \cap AK) + r_{0}(A/\text{Fit}(A))$$

$$= r_{0}(B/(B \cap A_{0}K)) + r_{0}(B \cap A_{0}K) + r_{0}(A/\text{Fit}(A))$$

$$= r_{0}(B) + r_{0}(A/\text{Fit}(A)).$$

This contradiction proves (2).

(3) If L/K is the Fitting subgroup of G/K and W is the Fitting subgroup of $J = A_0K \cap L$, then W^G is nilpotent with noetherian factor group G/W^G and

$$r_0(J/W) \leq r_0(A_0K/\operatorname{Fit}(A_0K)).$$

If Y is the Fitting subgroup of A_0K , then $Y \cap L$ is contained in W and so

$$r_0(J/W) \le r_0(J/(Y \cap L)) = r_0((A_0K \cap L)/(Y \cap L))$$

= $r_0((A_0K \cap L)Y/Y) \le r_0(A_0K/Y)$.

As $K \le J \le L$ and L/K is nilpotent, J is a subnormal subgroup of G. Let

$$J = J_0 \triangleleft J_1 \triangleleft \ldots \triangleleft J_t = G$$

be the standard series of J in G. Since G is nilpotent-by noetherian, $Fit(J_i) \leq Fit(J_{I+1})$ for each i. Hence W is contained in Fit(G) and so W^G is nilpotent. The factor group

$$(A_0 W^G \cap L)/W^G = (A_0 \cap L)W^G/W^G \simeq (A_0 \cap L)/(A_0 \cap W^G)$$

is noetherian as an image of the noetherian group

$$(A_0 \cap L)/(A_0 \cap W) \simeq (A_0 \cap L)W/W \le J/W.$$

Since also

$$A_0W^G/(A_0W^G\cap L)\simeq A_0L/L \leq G/L$$

is noetherian, it follows that A_0W^G/W^G and also AW^G/W^G are noetherian. Hence

$$G/W^G = (AW^G/W^G)(BW^G/W^G)$$

is noetherian by the Lennox-Roseblade-Zaicev theorem (see [5]).

(4) We have that

$$r_0(A_0K/\text{Fit}(A_0K)) \le r_0(B) + 2r_0(A/\text{Fit}(A)).$$

By (1) $K/(F \cap K)$ is finitely generated and $r_0(K/(F \cap K)) \le r_0(B)$. Consider the factorized group $AK = A(B \cap AK)$. Application of Lemma 2.1 to the group $AK/(F \cap K)$ yields that

$$r_0((A_0K/(F\cap K))/\operatorname{Fit}(A_0K/(F\cap K)))$$

$$\leq r_0((AK/(F\cap K))/\operatorname{Fit}(AK/(F\cap K)))$$

$$\leq r_0(K/(F\cap K)) + r_0((AK/K)/\operatorname{Fit}(AK/K))$$

$$\leq r_0(K/(F\cap K)) + r_0(A/\operatorname{Fit}(A)) \leq r_0(B) + r_0(A/\operatorname{Fit}(A)).$$

Let $V/(F \cap K)$ be the Fitting subgroup of $A_0K/(F \cap K)$ and $V_0 = V \cap FK$. Since $F \cap K \leq Z_c(FK)$, it follows that $F \cap K$ is also contained in $Z_c(V_0)$, and so V_0 is a nilpotent normal subgroup of A_0K . Hence

$$r_0(A_0K/\text{Fit}(A_0K)) \le r_0(A_0K/V_0) \le r_0(A_0K/V) + r_0(A_0K/FK)$$

$$\le r_0(B) + r_0(A/\text{Fit}(A)) + r_0(A_0/(A_0 \cap FK))$$

$$\le r_0(B) + 2r_0(A/\text{Fit}(A)).$$

(5) The final contradiction.

By the minimality of the derived length m of S we have that

$$r_0(G/L) \le (2(m-1)-3)(r_0(B)+r_0(A/\text{Fit}(A))).$$

Application of (3) and (4) yields

$$\begin{split} r_0(G/\mathrm{Fit}(G)) &\leq r_0(G/W^G) \leq r_0(AW^G/W^G) + r_0(BW^G/W^G) \\ &\leq r_0(A_0W^G/W^G) + r_0(B) \\ &= r_0(A_0W^G/(A_0W^G \cap L)) + r_0((A_0W^G \cap L)/W^G) + r_0(B) \\ &\leq r_0(G/L) + r_0(J/W) + r_0(B) \leq r_0(G/L) + r_0(A_0K/\mathrm{Fit}(A_0K)) + r_0(B) \\ &\leq (2(m-1)-3)(r_0(B) + r_0(A/\mathrm{Fit}(A))) + 2r_0(B) + 2r_0(A/\mathrm{Fit}(A)) \\ &= (2m-3)(r_0(B) + r_0(A/\mathrm{Fit}(A))). \end{split}$$

This contradiction proves Theorem A(b).

The proof of Theorem B(b) is very similar.

Assume that Statement (b) of Theorem B is false. Among all the counterexamples G = AB for which the minimax rank of B is minimal choose one such that the derived length n of the soluble group G is minimal. Let K be the last non-trivial term of the derived series of G. If H is any hypercentral normal subgroup of A with minimax factor group A/H, then also $H(A \cap K)$ is a hypercentral normal subgroup of A with minimax factor group, and of course $m(A/H(A \cap K)) \leq m(A/H)$. Hence we may assume that $A \cap K$ is contained in H.

Now the proof of Theorem B(b) is accomplished in a series of steps, which are similar to the corresponding steps in the proof of Theorem A(b). Here the torsion-free rank has to be replaced by the minimax rank and by the p^{∞} -rank, the Fitting subgroup of G by the Gruenberg radical of G and the Fitting subgroup F of A_0 by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G and the Fitting subgroup G of G by the subgroup G of G

(1) $K/(H \cap K)$ is a minimax group and

$$m(K/(H \cap K)) \le m(B),$$

 $m_p(K/(H \cap K)) \le m_p(B)$ for each prime p .

- (2) G is not metabelian.
- (3) If L/K is the Gruenberg radical of G/K and W is the Gruenberg radical of $J = AK \cap L$, then W^G is a Gruenberg group with minimax factor group G/W^G and

$$m(J/W) \le m(AK/K(AK)),$$

 $m_p(J/W) \le m_p(AK/K(AK))$ for each prime p.

(To see that W^G is a Gruenberg group observe that, for any element x of W, the subgroup $\langle x \rangle$ is ascendant in $\langle x, K \rangle \leq J$ and $\langle x, K \rangle / K \leq L / K$ is ascendant in G/K. Hence $\langle x \rangle$ is ascendant in G and W is contained in the Gruenberg radical of G, so that W^G is a Gruenberg group).

(4) We have that

$$m(AK/K(AK)) \le m(B) + 2m(A/H)$$
 and $m_p(AK/K(AK)) \le m_p(B) + 2m_p(A/H)$ for each prime p .

Now we reach a contradiction in the same way as in the final step (5) of the proof of Theorem A(b). This proves Theorem B(b).

REFERENCES

- 1. B. Amberg, Produkte von Gruppen mit endlichem torsionfreiem Rang, Arch. Math. (Basel) 45 (1985), 398–406.
- 2. B. Amberg, S. Franciosi and F. de Giovanni, Soluble groups which are the product of a nilpotent and a polycyclic subgroup, Proceedings of the Singapore Group Theory Conference (1987), 277–239.
- 3. H. Heineken, *Produkte abelscher Gruppen und ihre Fittinggruppe*, Arch. Math. (Basel) **48** (1987), 185–192.
 - 4. N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400-401.
- 5. J. C. Lennox and J. E. Roseblade, Soluble products of polycyclic groups, Math. Z. 170 (1980), 153-154.
 - 6. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972.
 - 7. J. S. Wilson, On products of soluble groups of finite rank, Comment. Math. Helv. 60 (1985), 337–353.
- 8. J. S. Wilson, Soluble products of minimax groups and nearly surjective derivations, J. Pure Appl. Algebra 53 (1988), 297–318.
- 9. D. I. Zaicev, Factorizations of polycyclic groups, Math. Notes **29** (1981), 247–252, Mat. Zametki **29** (1981), 481–490.

Fachbereich Mathematik Universität Mainz Saarstraße 21 D – 6500 Mainz West Germany

Istituto di Matematica Facoltà di Scienze Università di Salerno I – 84100 Salerno Italy

Dipartimento di Matematica Università di Napoli Via Mezzocannone 8 I – 80134 Napoli Italy