
Proceedings of the Edinburgh Mathematical Society (2014) 57, 575–587
DOI:10.1017/S0013091513000709

UNIFORM BANDS

JUSTIN ALBERT AND FRANCIS PASTIJN

Department of Mathematics, Statistics and Computer Science,
Marquette University, Milwaukee, WI 53233, USA

(justin.albert@marquette.edu; francis.pastijn@marquette.edu)

(Received 16 March 2012)

Abstract A semigroup B in which every element is an idempotent can be embedded into such a
semigroup B′, where all the local submonoids are isomorphic, and in such a way that B and B′ satisfy
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1. Introduction

We follow the notation and terminology of [2,3,13,14,25]. In the following, we recall
the relevant facts.

A band B is a semigroup in which each element is an idempotent. The class of all bands
forms a variety B of semigroups. A subvariety of B is also an equational class, that is,
consists of all the bands that satisfy a given set of equational identities. The lattice L(B)
of subvarieties of B is countable and completely distributive; we refer the reader to [25]
for further references and an explicit description of the lower part of L(B). A semigroup S

is said to be regular if for every a ∈ S there exists a′ ∈ S such that aa′a = a, and a
regular semigroup S is said to be an orthodox semigroup if the set E(S) of idempotents
of S forms a subsemigroup of S. An orthodox semigroup S is called fundamental if the
equality on S is the only congruence on S that separates the elements of E(S). An
inverse semigroup S is an orthodox semigroup for which the set E(S) of idempotents is
a semilattice. A semigroup S is called bisimple if S × S is Green’s D-relation on S. In
particular, a bisimple semigroup is simple, that is, has no non-trivial ideals.

If B is a band, then we define the so-called natural partial order � on B, for e, f ∈ B, by
f � e if ef = f = fe. Given e ∈ B, the set eBe = {ege | g ∈ B} forms a subsemigroup of
B, and eBe = {f ∈ B | f � e}. Such a subsemigroup eBe of B is called a local submonoid
of B, because e is the identity element of the band eBe. We define the equivalence relation
UB on B, for e, g ∈ B, by eUBg if eBe and gBg are isomorphic (as bands). A partial
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isomorphism of B is an isomorphism eBe �→ gBg for e, g ∈ B with eUBg. The band B is
said to be uniform if UB = B ×B, that is, if all local submonoids are isomorphic. If there
exists an automorphism of B that maps e ∈ B to g ∈ B, then the restriction to eBe of
this automorphism is a partial isomorphism of eBe onto gBg. So, if the band B has a
transitive automorphism group, it is, in particular, uniform. A band is uniform if and
only if it is the band of idempotents of some bisimple orthodox semigroup (see [8–11]
and [23, Chapter 6]).

Every semigroup can be embedded into a bisimple semigroup [28] (see also [3, § 8.6]),
and every inverse semigroup can be embedded into a bisimple inverse semigroup [29]. In
fact, every inverse semigroup can be embedded into a bisimple inverse semigroup that
has no non-trivial congruences [16]. In particular, every semilattice can be embedded
into a uniform semilattice, and every fundamental inverse semigroup can be embedded
into a bisimple fundamental inverse semigroup. As the abstract states, we generalize the
latter results for orthodox semigroups: we show that every orthodox semigroup S can be
embedded into a bisimple orthodox semigroup S′ such that the bands E(S) and E(S′)
generate the same band variety. Following the results of [20], we obtain an embedding
of any semilattice into a uniform semilattice that preserves several structural properties.
The technique of embedding presented there is an inspiration for the construction that
follows.

2. An embedding of bands

Let B be a band. We denote by B0 the band B with an extra zero adjoined: 0 /∈ B, and
a0 = 0a = 0 for every a ∈ B0. N = {0, 1, . . . } is the set of natural numbers and Z

+ is
the set of positive integers.

The power (B0)N×B consists of all the mappings α : N × B → B0 endowed with the
pointwise multiplication, which we denote by ‘·’; for any α1, α2 ∈ (B0)N×B , α1 · α2 ∈
(B0)N×B is such that, for any (i, e) ∈ N × B,

(i, e)(α1 · α2) = ((i, e)α1)((i, e)α2)

is the product of (i, e)α1 and (i, e)α2 in B0. We let B1 be the set of all α ∈ (B0)N×B

satisfying the following conditions:

(1) (i) (0, e)α = (0, g)α for all e, g ∈ B,
(ii) (i, e)α � e in B0 for all e ∈ B, i ∈ Z

+,
(iii) (i, e)α �= e for only finitely many (i, e) ∈ Z

+ × B.

It is easy to see that (B0)N×B is a band, and that B1 is a subband of (B0)N×B .
For every e ∈ B0, we let εe ∈ B1 be defined by

(0, g)εe = e for every g ∈ B,

(i, g)εe = g for every (i, g) ∈ Z
+ × B.

}
(2.1)

Recall that a subset A of B1 is said to be a filter of B1 if

α ∈ A, β ∈ B1, α � β in (B1,�) ⇒ β ∈ A.
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Lemma 2.1.

(i) The mapping

ι1 : B �→ B1

e → εe (2.2)

is an embedding of bands.

(ii) For every e ∈ B0, εeB1εe consists of the α ∈ (B0)N×B such that

(a) (0, e)α = (0, g)α � e in B0 for every g ∈ B,

(b) (i, g)α � g for every (i, g) ∈ Z
+ × B,

(c) (i, g)α �= g for only finitely many (i, g) ∈ Z
+ × B,

(iii) Bι1 is a filter of B1.

Proof. The proof follows a routine verification. We provide some details concern-
ing (iii). Therefore, let e ∈ B, let α ∈ B1, and suppose that εe � α in B1. Let
(0, e)α = (0, g)α = f for all g ∈ B. Then, e = (0, e)εe � (0, e)α = f in B0, whence f ∈ B.
Furthermore, for every (i, g) ∈ Z

+ × B, g = (i, g)εe � (i, g)α, whereas D(i,g)α � Dg in
B0/D. It follows that (i, g)α = g for every (i, g) ∈ Z

+ × B. Thus, α = εf ∈ Bι1. �

Lemma 2.2.

(i) For every e ∈ B, let the mapping ϕe : εeB1εe → ε0B1ε0 be given, for α ∈ εeB1εe,
by

(0, g)(αϕe) = 0 for every g ∈ B,

(i, e)(αϕe) = (i − 1, e)α for every i ∈ Z
+,

(i, g)(αϕe) = (i, g)α for every i ∈ Z
+ and g �= e in B.

Then, ϕe is a partial isomorphism that maps εeB1εe isomorphically onto ε0B1ε0.

(ii) Let θ : eBe �→ gBg be a partial isomorphism of B. The partial isomorphism
ι−1
1 θι1 : εe(Bι1)εe �→ εg(Bι1)εg of Bι1 can then be extended to a partial isomor-

phism θ1 : εeB1εe �→ εgB1εg.

(iii) (Bι1) × (Bι1) ⊆ UB1 .

Proof. (i) Using Lemma 2.1 (ii), one routinely verifies that for every α ∈ εeB1εe we
have that αϕe ∈ ε0B1ε0. We prove that ϕe is one-to-one. If α1, α2 ∈ εeB1εe and (i, e)α1 �=
(i, e)α2 for some i ∈ N, then (i + 1, e)(α, ϕe) �= (i + 1, e)(α2ϕe), and if (i, g)α1 �= (i, g)α2

for some i ∈ Z
+ and g �= e in B, then (i, g)(α1ϕe) �= (i, g)(α2ϕe). We next prove that

ϕe is onto. Therefore, let β ∈ ε0B1ε0. Define α ∈ (B0)N×B by

(0, g)α = (1, e)β for every g ∈ B,

(i, e)α = (i + 1, e)β for every i ∈ N,

(i, g)α = (i, g)β for every i ∈ Z
+ and g �= e in B.

https://doi.org/10.1017/S0013091513000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000709


578 J. Albert and F. Pastijn

One verifies that α ∈ εeB1εe and αϕe = β. We conclude that ϕe is a bijection of εeB1εe

onto ε0B1ε0.
In order to prove (i) it suffices to prove that ϕe is a band homomorphism. Therefore,

let α1, α2 ∈ εeB1εe and calculate (α1 · α2)ϕe and (α1ϕe) · (α2ϕe): for any g ∈ B,

(0, g)((α1 · α2)ϕe) = 0

= 00

= (0, g)((α1ϕe) · (α2ϕe));

for any i ∈ Z
+,

(i, e)((α1 · α2)ϕe) = (i − 1, e)(α1 · α2)

= (i, e)((α1ϕe) · (α2ϕe));

and, for every i ∈ Z
+ and g �= e in B,

(i, g)((α1 · α2)ϕe) = (i, g)(α1 · α2)

= (i, g)((α1ϕe) · (α2ϕe)).

Therefore, (α1 ·α2)ϕe = (α1ϕe)·(α2ϕe), and we conclude that ϕe is a partial isomorphism
of B1.

(ii) For the partial isomorphism θ : eBe �→ gBg of B, define θ1 : εeB1εe �→ εgB1εg, for
α ∈ εeB1εe, as follows: αθ1 is given by

(0, g)(αθ1) = ((0, g)α)θ for every g ∈ B,

(i, g)(αθ1) = (i, g)α for every i ∈ Z
+, g ∈ B.

}
(2.3)

Using Lemma 2.1 (ii), one routinely verifies that θ1 is a partial isomorphism of B1. Fur-
thermore, if εf ∈ εeB1εe, that is, f ∈ eBe, then

(0, g)(εfθ1) = ((0, g)εf )θ = fθ for every g ∈ B,

(i, g)(εfθ1) = (i, g)εf = g for every i ∈ Z
+, g ∈ B;

thus, εfθ1 = εfθ. Therefore, θ1 extends ι−1
1 θι1.

(iii) From (i) it follows that εeUB1ε0 for every e ∈ B. Therefore, (Bι1) × (Bι1) ⊆ UB1 .
�

For any band B, we let TB be the set of partial isomorphisms of B. We consider the
sequence of bands

B = B0, B1, . . . , Bj , Bj+1, . . . , j < ω, (2.4)

and the embeddings ιj+1 : Bj → Bj+1, where, for every j < ω, Bj+1 is obtained from Bj

in the same way as B1 was obtained from B, as in the foregoing discussion, and the
embedding ιj+1 is defined along the same lines as ι1 : B → B1, which was given by (2.2).
We thus obtain a direct family of bands Bj , j < ω, and we let B′ be the direct limit
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of this direct family (in the sense of [7, § 21]). For notational convenience, we identify
Bj with Bjιj+1 for every j < ω. When doing so, we have that B′ =

⋃
j<ωBj is a band

and the Bj , j < ω, form a chain of subbands of B′. In the following we also consider the
sequence of sets

TB = TB0
, TB1

, . . . , TBj
, TBj+1

, . . . , j < ω, (2.5)

of partial isomorphisms of the respective bands in (2.4). For any j < ω, θj ∈ TBj
, we

denote by θj+1 ∈ TBj+1
the partial isomorphism obtained from θj in the same way as

θ1 was obtained from θ in (2.3). In view of the identification of Bj with Bjιj+1 mentioned
in the preceding paragraph, we have θj ⊆ θj+1 by Lemma 2.2 (ii).

If K is an algebraic class of bands that is closed under adding an extra zero, subdirect
powers, direct limits (see [7, §§ 20,21]), and B ∈ K, then the band B′ constructed from B

as described above also belongs to K. This is, in particular, the case if K is a variety of
bands that contains the variety of semilattices.

Theorem 2.3. Every band B can be embedded into a uniform band B′ such that B

and B′ generate the same band variety.

Proof. If B is a rectangular band, we take B = B′ and the result follows. We hence-
forth assume that B is not a rectangular band. The variety K generated by B then
contains the variety of all semilattices. Let B′ be constructed from B as described in this
section. Since B is a subband of B′, it follows from the remark made in the preceding
paragraph that B and B′ generate the same band variety K.

Let e, g ∈ B′. There exists j < ω such that e, g ∈ Bj−1. By Lemma 2.2 (iii) there exists
a θj ∈ TBj

that maps eBje isomorphically onto gBjg. Consider the sequence of partial
isomorphisms

θj ⊆ θj+1 ⊆ · · · ⊆ θj+k ⊆ θj+k+1 ⊆ · · · , k < ω, (2.6)

where, for each k < ω, θj+k ∈ TBj+k
and θj+k+1 is obtained from θj+k as θ1 was obtained

from θ in (2.3). Set θ′
j =

⋃
k<ωθj+k. Then, θ′

j : eB′e → gB′g is a partial isomorphism
of B′, whence eUB′g. We conclude that B′ is uniform. �

We conclude this section with some additional properties that are satisfied by the
embedding of the band B into the band B′, as in Theorem 2.3.

Theorem 2.4. Let B and B′ be bands, as in Theorem 2.3. The following then hold.

(i) If B is not a rectangular band, then B′ is countably infinite if B is finite, and,
otherwise, B and B′ have the same cardinality.

(ii) B is a filter of B′.

(iii) Every endomorphism γ of B can be extended to an endomorphism γ′ of B′ such
that EndB �→ EndB′, γ → γ′ is an embedding of endomorphism monoids that
induces an embedding AutB �→ AutB′ of automorphism groups.
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(iv) Every congruence ρ on B is the restriction to B of a congruence ρ′ on B′ such
that Con B �→ Con B′, ρ → ρ′ embeds the congruence lattice of B as a complete
sublattice of the congruence lattice of B′.

Proof. (i) This property is guaranteed by § 2 (1) (iii).

(ii) This property follows from Lemma 2.1 (iii).

(iii) In the following we adopt the notation of Lemma 2.1. For γ ∈ EndB, let
ι−1
1 γι1 : εe → εeγ be the corresponding endomorphism in Bι1. This endomorphism of Bι1

can be extended to the endomorphism γ1 of B1, where, for every α ∈ B1, αγ1 is given by

(0, g)(αγ1) = ((0, g)α)γ for every g ∈ B such that (0, g)α �= 0,

(i, g)(αγ1) = (i, g)α otherwise.

It should be clear that EndB �→ EndB1, γ → γ1 is an embedding of endomorphism
monoids. If we adopt the convention that B is identified with its isomorphic image Bι1,
then γ ⊆ γ1 for every γ ∈ EndB. We note that if γ ∈ AutB, then γ1 ∈ AutB1; thus,
AutB �→ AutB1, γ → γ1 is an embedding of automorphism groups.

We now consider the sequence (2.4) of bands Bj , j < ω, whose direct limit is B′, and
the corresponding sequence

EndB = EndB0, EndB1, . . . ,EndBj , EndBj+1, . . . , j < ω,

of endomorphism monoids. For any j < ω and γ ∈ EndB, we construct the γj ∈ EndBj ,
j < ω, inductively using

γ0 = γ,

and, for any j < ω, γj+1 is constructed from γj as γ1 is constructed from γ.

We thus obtain a sequence of endomorphisms

γ = γ0 ⊆ γ1 ⊆ · · · ⊆ γj ⊆ γj+1 ⊆ · · · , j < ω,

and we set γ′ =
⋃

j<ωγj . One verifies that γ′ ∈ EndB′, and EndB �→ EndB′ is an
embedding of endomorphism monoids.

(iv) The proof of (iv) follows the same lines as the proof of (iii). We only indicate
here how to construct ρ1 ∈ Con B1 from a given ρ ∈ Con B. For α1, α2 ∈ B1 we set
(α1, α2) ∈ ρ1 if and only if

((0, g)α1, (0, g)α2) ∈ ρ for every g ∈ B with (0, g)α1 �= 0 �= (0, g)α2,

(i, g)α1 = (i, g)α2 otherwise.

�

Following our procedure for constructing the uniform band B′ from the band B, one
can set up a faithful functor from the category of bands to the category of uniform bands
in a straightforward way. We refrain from exploring this line of investigation here.
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3. An embedding of orthodox semigroups

For any band B, we adopt the notation of § 2: B1 is the band constructed from B as
in § 2 (1), and we once more adopt the convention that in the sequence of bands (2.4) we
have B = B0 and Bj ⊆ Bj+1 for every j < ω, and B′ =

⋃
j<ωBj . Corresponding to the

sequence (2.4) is the sequence (2.5) of sets of partial isomorphisms of the respective bands
of (2.4). For every j < ω, θj ∈ TBj

, let θj+k ∈ TBj+k
, k < ω, as in the sequence (2.6), and

as in the proof of Theorem 2.3 we set θ′
j =

⋃
k<ωθj+k ∈ TB′ , a partial isomorphism of

B′ =
⋃

k<ωBk. In particular, any θ = θ0 ∈ TB = TB0
extends to a partial isomorphism

θ′ = ∪θj ∈ TB′ .
We recall some facts of [9]. We prefer to use the notation and basic results of [23,

Chapter 6]; in this paper we use the more conventional notation TB instead of the
notation ΦB that was used in [23].

For any e, g ∈ Bj , j < ω,

πj(e, g) : egeBjege �→ gegBjgeg

d → gdg (3.1)

is a partial isomorphism of Bj .

Lemma 3.1. Let e, g ∈ Bj and πj(e, g) ∈ TBj
as in (3.1). For any k < ω, define

πj,k(e, g), k < ω, inductively using that πj,k+1(e, g) is obtained from πj.k(e, g) as θ1 ∈ TB1

is obtained from θ ∈ TB in (2.3). Then, π′(e, g) =
⋃

k<ωπj,k(e, g) ∈ TB′ , where

π′(e, g) : egeB′ege �→ gegB′geg

d → gdg.

Proof. The proof easily follows from an inductive argument and the details of (2.3).
�

Let j < ω and σj , θj ∈ TBj
, where

σj : eBje �→ fBjf, θj : gBjg �→ hBjh (3.2)

for some e, f, g, h ∈ Bj . We defined a product ◦ on TBj
by

σj ◦ θj = σjπ
′(f, g)θj = σjπj(f, g)θj , (3.3)

where in the right-hand side of (3.3) juxtaposition denotes a composition of partial one-
to-one transformations.

With the notation introduced above, we have the following lemma.

Lemma 3.2. For any j, k < ω and θj ∈ TBj
, let θj,k ∈ TBj+k

be inductively defined
using

θj,0 = θj ,

θj,k+1 ∈ TBj+k+1
is obtained from θj,k ∈ TBj+k

as θ1 is obtained from θ as in (2.3).
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Then,

τ j,k : TBj
�→ TBj+k

θj → θj,k (3.4)

is an embedding of (TBj
, ◦) into (TBj+k

, ◦).

Proof. The proof follows from Lemma 3.1, the details of (2.3) and the definition (3.3).
�

Lemma 3.3. With the notation of Lemma 3.2, for j < ω, θj ∈ TBj
, θ′

j =
⋃

k<ωθj,k.
Then,

τ ′
j : TBj

�→ TB′

θj → θ′
j (3.5)

is an embedding of (TBj
, ◦) into (TB′ , ◦), where the product ◦ is defined on TB′ as

follows: for σ′, θ′ ∈ TB′ , with

σ′ : eB′e �→ fB′f, θ′ : gB′g �→ hB′h for some e, f, g, h ∈ B′,

σ′ ◦ θ′ = σ′π′(f, g)θ′. (3.6)

Proof. The proof follows from Lemma 3.1 and a direct verification. �

We note here that the algebras (TBj+k
, ◦) and (TB′ , ◦) mentioned in Lemmas 3.2

and 3.3 are in fact orthodox semigroups (see [23, Theorem 4.3]). From Lemmas 3.2
and 3.3 we then have the following corollary.

Corollary 3.4. For any j < ω, the direct limit of the direct system of orthodox
semigroups (TBj+k

, ◦), k < ω, given by (3.4), is an orthodox subsemigroup of (TB′ , ◦),
and the mapping (3.5) embeds each orthodox semigroup (TBj

, ◦) isomorphically into the
orthodox semigroup (TB′ , ◦).

For any j < ω and σj , θj ∈ TBj
as in (3.2) we set

σjκjθj ⇐⇒ eRg, fLh in Bj and πj(e, g)θj = σjπj(f, h) (3.7)

(see [23, (1.7)]). Similarly, for any σ′, θ′ ∈ TB′ as in (3.3), we set

σ′κ′θ′ ⇐⇒ eRg, fLh in B′ and π′(e, g)θ′ = σ′π′(f, h). (3.8)

Again, juxtaposition in the right-hand sides of (3.7) and (3.8) denotes a composition of
partial one-to-one transformations. By [23, Theorem 4.1], the κj , j < ω, and κ′ defined
above are congruence relations whose idempotent classes form rectangular bands, and so
the canonical homomorphisms

κ�
j : TBj

→ TBj
/κj = TBj

, j < ω,

κ′� : TB′ → TB′/κ′ = TB′

}
(3.9)

https://doi.org/10.1017/S0013091513000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000709


Uniform bands 583

are homomorphisms of orthodox semigroups. As in [23], for each j < ω, we call TBj
the

augmented hull of Bj and TBj
= TBj

/κj the hull of Bj . Similarly, TB′ is the augmented
hull of B′ and TB′ = TB′/κ′ is the hull of B′.

For j < ω and σj ∈ TBj
, use the notation σ̄j = σjκ

�
j , and for σ′ ∈ TB′ use σ̄′ = σ′κ′�.

From [23, Theorem 1.5] it then follows that, for j < ω,

Bj �→ E(TBj ), e → πj(e, e), (3.10)

and also
B′ �→ E(TB′), e → π′(e, e) (3.11)

are isomorphisms of bands. Here, we use the conventional notation, where E(S) denotes
the set of idempotents of the semigroup S. Note that, for any j < ω, and e ∈ Bj , πj(e, e)
is the identity transformation on eBje, whereas, for every e ∈ B′, π′(e, e) is the identity
transformation on eB′e.

Using Lemmas 3.1, 3.2, 3.3 and the notation used therein, and the definitions of κj ,
j < ω, and κ′ in (3.7), (3.8), we obtain, in sequence, the following.

Lemma 3.5. For any j, k < ω,

(i) for every σj , θj ∈ TBj
,

σj,kκj+kθj,k ⇐⇒ σj,k+1κj+k+1θj,k+1,

(ii) for every σj , θj ∈ TBj
,

σjκjθj ⇐⇒ σ′
jκ

′θ′
j ,

(iii)

TBj

κ�
j

��

τj,k �� TBj+k

κ�
j+k

��
TBj τj+k

�� TBj+k

θj

τj,k ��

κ�
j

��

θj,k

κ�
j+k

��
θ̄j τj,k

�� θ̄j,k

(3.12)

and

TBj

κ�
j

��

τ ′
j �� TB′

κ
′�

��
TBj

τ ′
j

�� TB′

θj

τ ′
j ��

κ�
j

��

θ′
j

κ
′�

��
θ̄j

τ ′
j

�� θ̄′
j

(3.13)

are commuting diagrams.

We therefore have the following corollary.

Corollary 3.6. For any j < ω, the direct system of orthodox semigroups TBj+k
,

k < ω, given by (3.12) is an orthodox subsemigroup of TB′ , and the mapping τ ′
j given

by (3.13) embeds TBj isomorphically into TB′ .
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We mention the following intermediate result for clarity.

Proposition 3.7. Let B be a band that is not a rectangular band and let S be any
fundamental orthodox semigroup such that E(S) = B is the band of idempotents of S.
Let B′ be the band constructed from B as in Theorem 2.3. Then, S can be embedded into
the orthodox semigroup TB′ that is bisimple and fundamental, where B and B′ ∼= E(TB′)
generate the same band variety.

Proof. We set B = B0 as in (2.4). Following Corollary 3.6, with j = 0, TB can be
embedded into TB′ . Since B = B0 ∼= E(TB) and B′ ∼= E(TB′) via (3.10) and (3.11), we
have that E(TB) and E(TB′) generate the same band variety by Theorem 2.3. By [23,
Theorem 1.5], there exists an idempotent separating homomorphism of S into TB that
induces the isomorphism (3.10) of bands (for j = 0). This homomorphism is one-to-one,
since S is assumed to be fundamental. Thus, S embeds isomorphically into TB′ . The
orthodox semigroup TB′ is bisimple and fundamental by [23, Lemmas 1.8 and 6.4]. �

The proof of the following theorem refers to the primary references, but it may be
useful to instead consult the survey paper [21], or [24].

Theorem 3.8. Let S be an orthodox semigroup. Then, S can be embedded into
an orthodox semigroup S′ that is bisimple and such that the bands E(S) and E(S′)
of idempotents of S and S′ generate the same band variety. Moreover, if S is not a
rectangular group, then S′ can be chosen to be fundamental.

Proof. If S is a rectangular group, then take S′ = S. We henceforth assume that
S is not a rectangular group, that is, the variety of bands generated by E(S) contains
the variety of all semilattices. By Proposition 3.7 it suffices to embed the given orthodox
semigroup S into a fundamental orthodox semigroup S0 whose band B = E(S0) generates
the same band variety as E(S). The following device will do.

We let Y be the least inverse congruence on the orthodox semigroup S as described
in [14, § 6.2]. We next embed S/Y into a fundamental inverse semigroup I: this can,
for instance, be done using the Vagner–Preston representation that embeds S/Y isomor-
phically into an appropriate symmetric inverse semigroup (see [14, Chapter 5, Theo-
rem 5.1.7 and Exercise 22]). We may as well assume that S and I are disjoint, and we
let ϕ : S → I be the homomorphism that results from the composition of the canonical
homomorphism Y� and the embedding of S/Y into I. We let S0 be the strong composi-
tion (P�lonka sum) of S and I using ϕ (see [25, § I.8.7] and [26,27]): S0 = S ∪ I and the
multiplication on S0 extends those given on S and I, and, for s ∈ S, i ∈ I, si = (sϕ)i and
is = i(sϕ) as in I. The band B = E(S0) of idempotents of S0 is the strong composition
of the band E(S) and the semilattice E(I) using the band homomorphism ϕ|E(S). Since
we assumed that the variety generated by E(S) contains the variety of all semilattices,
it follows from [25, Lemma I.8.8] or [26] that E(S) and B = E(S0) generate the same
band variety.

It remains to show that S0 is a fundamental orthodox semigroup. Let µ be the greatest
idempotent separating congruence on S0. By [4] it suffices to show that if a ∈ S0, a �= a2,
belongs to a maximal subgroup of S0 that has e ∈ E(S0) as its identity element, then
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a cannot be µ-related to e. This is surely the case if e ∈ E(I), since I is fundamental.
Otherwise, a, e ∈ S, and we let a−1 ∈ S be the inverse of a in the maximal subgroup
of S that contains a and e, and a �= e. From the description of Y in [14, § 6.2] it
follows that ϕ isomorphically embeds the maximal subgroup of S containing a, a−1 and
e = aa−1 = a−1a into the maximal subgroup of I that has identity element eϕ. In
particular, eϕ �= aϕ, where aϕ and a−1ϕ = (aϕ)−1 are mutually inverse elements in the
maximal subgroup containing eϕ as its identity element. Since I is fundamental, there
exists f � eϕ � e in B = E(S0) such that f �= (a−1ϕ)f(aϕ) = a−1fa, and, therefore, a is
not µ-related to e, as required (see the description of µ in [12, § 4] or [23, (1.58)]). �

4. Final remarks

Many of the results obtained so far find their analogues in other settings. We only give
an outline of the required proofs. Let S be a regular semigroup, let E(S) be its set of
idempotents, and define a partial operation ◦ on E(S) as follows: for e, f ∈ E(S), f ◦ e is
defined if and only if {e, f}∩{ef, fe} �= ∅, and if this the case, then f ◦ e = fe. Here, the
products ef and fe are as in the given regular semigroup S. As in [17] we call (E(S), ◦)
the (regular) biordered set of S.

There are at least two natural settings where we can extend the partial operation ◦ on
E(S) to a binary operation ∧ on E(S) as follows.

(1) If S is a regular semigroup whose idempotents generate a completely regular semi-
group, then, for e, f ∈ E(S), f ∧ e = (fe)0 is the identity of the maximal subgroup
of S that contains fe.

(2) If, for every e ∈ E(S), eSe is an inverse semigroup, then f ∧ e is the unique inverse
of ef that belongs to fSe (see [1, § 2], [22, § 5], [23, § 4.1] and [18]).

In (1) we call S a solid regular semigroup and (E(S),∧) a regular solid idempotent algebra,
and in (2) we call S a locally inverse semigroup and (E(S),∧) a pseudo-semilattice. It was
shown that the classes of regular solid idempotent algebras and of pseudo-semilattices
each form a variety [1,18]. The lattice of varieties of pseudo-semilattices was investigated
extensively in [19]. The variety of bands is a subvariety of the variety of regular solid
idempotent algebras; unlike the variety of all bands, the latter variety has a lattice of
subvarieties that is of the power of the continuum (see the final remarks of [22, § 5]).

If (B,∧) is a binary algebra as in (1) or (2), and S is a regular semigroup that has B

as its biordered set, then, for every e ∈ B,

(e ∧ B) ∧ e = {(e ∧ f) ∧ e | f ∈ B}
= e ∧ (B ∧ e)

= {e ∧ (f ∧ e) | f ∈ B}
= E(eSe)

= {f ∈ B | f � e}
= {f ∈ B | e ∧ f = f = f ∧ e}
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is a subalgebra of (B,∧), which we denote by e ∧ B ∧ e. We call (B,∧) uniform if, for
every e, g ∈ B, we have that e ∧ B ∧ e ∼= g ∧ B ∧ g. Following the procedure of § 2 step
by step, we obtain the following analogue of Theorem 2.3.

Theorem 4.1. Every regular solid idempotent algebra (pseudo-semilattice) (B,∧) can
be embedded into a regular solid idempotent algebra (pseudo-semilattice) (B′,∧) that is
uniform, and such that B and B′ generate the same variety.

The analogue of Theorem 2.4 also holds true.
For the binary idempotent algebras (B,∧) considered above, again let TB be the set

of partial isomorphisms of B, that is, isomorphisms of the form e∧B ∧ e → g ∧B ∧ g for
e, g ∈ B, and, in analogy with (3.3), define a product ◦ on TB as follows: for σ, θ ∈ TB ,
where σ : e ∧ B ∧ e → f ∧ B ∧ f and θ : g ∧ B ∧ g → h ∧ B ∧ h,

σ ◦ θ = σπ(f ∧ (g ∧ f), g ∧ f)π(g ∧ f, (g ∧ f) ∧ g)θ. (4.1)

In analogy with (3.7), then define the (congruence) relation κ on TB and set TB = TB/κ.
Then, TB is a fundamental regular semigroup and the analogue of (3.10) yields an iso-
morphism of binary algebras: TB is a solid regular (locally inverse) semigroup if and
only if B is a regular solid idempotent algebra (pseudo-semilattice); moreover, TB is
bisimple if and only if B is uniform (use [17, Proposition 3.6 and Theorems 4.12, 5.2],
and [23, § 4.1], or [12]).

Following the same reasoning that leads to Proposition 3.7, we can then prove the
following.

Proposition 4.2. Every solid regular (locally inverse) semigroup S that is fundamen-
tal can be embedded into a solid regular (locally inverse) semigroup S′ that is funda-
mental and bisimple, such that (E(S),∧) and (E(S′),∧) generate the same variety.

Thus, for instance, from [5,6], [15] or [30] it follows that the free completely regular
semigroup on a countably infinite set of generators is fundamental and can therefore be
embedded into a solid regular semigroup that is bisimple and fundamental. In order to
prove the analogue of Theorem 3.8, one needs to prove that every solid regular (locally
inverse) semigroup S can be embedded into such a fundamental regular semigroup S′

such that (E(S),∧) and (E(S′),∧) generate the same band variety. In other words, the
device used in the proof of Theorem 3.8 needs to be modified. We do not elaborate any
further on this here.
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