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Abstract
Schubert Vanishing is a problem of deciding whether Schubert coefficients are zero. Until this work it was open
whether this problem is in the polynomial hierarchy PH. We prove this problem is in AM ∩ coAM assuming the
Generalized Riemann Hypothesis (GRH), that is, relatively low in PH. Our approach uses Purbhoo’s criterion [57] to
construct explicit polynomial systems for the problem. The result follows from a reduction to Parametric Hilbert’s
Nullstellensatz, recently analyzed in [2]. We extend our results to all classical types.
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1. Introduction

1.1. Foreword

The Schubert vanishing problem asks whether Schubert structure constants (Schubert coefficients) are
zero. This is one of the oldest problems in enumerative geometry, going back to Schubert’s original work
in the 1870s. Fundamentally, it is about the existence of certain configurations of complex lines, planes,
etc., with given dimensions of intersections; see, for example, [31]. Motivated in part by Hilbert’s 15th
Problem aiming to make Schubert’s work rigorous (see [30]), the area of Schubert calculus has exploded
and developed rich connections with representation theory and algebraic combinatorics (see [3, 34]).

Despite a large body of numerical work, see, for example, [25, 24, 42], the complexity analysis of
the problem has been entirely missing, see [11, p. 41]. In this paper we give the first such analysis,
placing the Schubert vanishing problem in the complexity class AM ∩ coAM assuming the GRH (Main
Theorem 1.1), that is, relatively low in the polynomial hierarchy PH. Until now, it was not known
whether the problem is in PH. This result has a number of combinatorial and complexity implications,
notably that Schubert vanishing is unlikely to be NP-hard (Corollary 1.5).

The proof is entirely algebraic and uses concise reductions of the Schubert vanishing problem and
its negation to instances of Hilbert’s Nullstellensatz (HN) over function fields. From this point, the
complexity theoretic heavy lifting was done by Koiran [37, 38] and Ait El Manssour et al. [2], who
showed that HN is in AM assuming the GRH. The surprising part is that we have two reductions rather
than just one, suggesting that there is no Murphy’s law (universality theorem) for the Schubert vanishing,
cf. [46, 63].

Our own motivation comes from the problem of finding a combinatorial interpretation for the Schu-
bert coefficients, one of the most celebrated open problems in algebraic combinatorics [61, Problem 11].
In the complexity language, having a combinatorial interpretation implies that Schubert positivity (non-
vanishing) is in the complexity class NP, see [48, §10]. Our results imply this conclusion, modulo GRH
and standard derandomization assumptions (see also §4.4).

Finally, we note that Schubert vanishing is of interest in its own right, independent of geometric
considerations, in part because Schubert positivity (nonvanishing) is asymptotically rare (see §4.3).
Additionally, positivity of Schubert coefficients is the main assumption in the generalized Horn in-
equalities, see, for example, [4, 7, 8]. In his 2022 ICM paper, Knutson emphasized the importance of
the Schubert vanishing problem as follows: “For applications (including real-world engineering appli-
cations) it is more important to know that [Schubert] structure constant is positive, than it is to know its
actual value” [34, §1.4].

1.2. Schubert coefficients

We start with a general setup, see, for example, [3] for the background and §2.1 for standard notation.
Let G be a complex reductive Lie group. Take B ⊂ G and B− ⊂ G to be the Borel subgroup and opposite
Borel subgroup, respectively. The torus subgroup is defined as T = B ∩ B− . The Weyl group is defined
as the normalizer W � 𝑁G (T)/T. The Bruhat decomposition states that

G =
⊔
𝑤 ∈W

B− �𝑤 B,

where �𝑤 is the preimage of w in the normalizer 𝑁G (T).
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The generalized flag variety is defined as G/B. Recall that G/B has finitely many orbits under the left
action of B− . These are called Schubert cells and denoted Ω𝑤 . Schubert cells are indexed by the Weyl
group elements 𝑤 ∈ W .

The Schubert varieties 𝑋𝑤 are the Zariski closures of Schubert cells Ω𝑤 . The Schubert classes
{𝜎𝑤 }𝑤 ∈W are the Poincaré duals of Schubert varieties. These form a Z-linear basis of the cohomology
ring 𝐻∗(G/B). The Schubert coefficients 𝑐𝑤𝑢,𝑣 are defined as structure constants:

𝜎𝑢 � 𝜎𝑣 =
∑
𝑤 ∈W

𝑐𝑤𝑢,𝑣 𝜎𝑤 . (1.1)

Thus 𝑐𝑤𝑢,𝑣 = [𝜎id]𝜎𝑢 � 𝜎𝑣 � 𝜎𝑤◦𝑤 , where 𝑤◦ is the long word in W , see §2.3. Generalizing, we take

𝑐(𝑢1, 𝑢2, . . . , 𝑢𝑘 ) := [𝜎id] 𝜎𝑢1 � 𝜎𝑢2 � · · · � 𝜎𝑢𝑘 , (1.2)

where 𝑘 ≥ 3. In particular, we have 𝑐𝑤𝑢,𝑣 = 𝑐(𝑢, 𝑣, 𝑤◦𝑤). By commutativity of 𝐻∗(G/B), Schubert
coefficients 𝑐(𝑢1, . . . , 𝑢𝑘 ) exhibit 𝑆𝑘 -symmetry.

By Kleiman transversality [29], the coefficients 𝑐(𝑢1, . . . , 𝑢𝑘 ) count the number of points in the
intersection of generically translated Schubert varieties:

𝑐(𝑢1, . . . , 𝑢𝑘 ) = #
{
𝑋𝑢1

(
𝐹 (1)
•

)
∩ · · · ∩ 𝑋𝑢𝑘

(
𝐹 (𝑘)
•

) }
, (1.3)

where 𝑋𝑢𝑖
(
𝐹 (𝑖)
•

)
is the Schubert variety 𝑋𝑢𝑖 translated by a generic flag 𝐹 (𝑖)

• . In particular, we have
𝑐(𝑢1, . . . , 𝑢𝑘 ) ∈ N. The Schubert vanishing problem is a decision problem

SchubertVanishing :=
{
𝑐(𝑢1, . . . , 𝑢𝑘 ) =

? 0
}
,

where 𝑢1, . . . , 𝑢𝑘 ∈ W . We consider the problem only for classical types 𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, and use
the notation SchubertVanishing(𝑌 ) to denote the Schubert vanishing problem in type Y.1 These
correspond to considering G ∈ {SL𝑛 (C),SO2𝑛+1(C),Sp2𝑛 (C),SO2𝑛 (C)}, respectively.

1.3. Main results

Recall the complexity class AM of decision problems whose “yes” answers can be decided in polynomial
time by an Arthur–Merlin protocol with two messages, see, for example, [6, 20]. Heuristically, one should
think of the class AM as a (nonobvious) probabilistic extension of the class NP. The complexity class
coAM is the complement of languages in AM, that is, the decision problems whose “no” answers can be
decided in polynomial time by an Arthur–Merlin protocol with two messages. See §2.4 for connections
to other complexity classes.
Theorem 1.1 (Main theorem). SchubertVanishing(𝑌 ) is in AM ∩ coAM assuming the GRH, for all
𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.

Here the GRH stands for the Generalized Riemann Hypothesis, that all nontrivial zeros of L-functions
𝐿(𝑠, 𝜒𝑘 ) have real part 1

2 . In fact, tracing back the references shows that a weaker assumption, the
Extended Riemann Hypothesis (ERH) suffices. We stick with the GRH as it is better known, and refer
to [14, §6] for definitions and relationships between these hypotheses.

To get some idea of the result, recall the graph isomorphism problem which is naturally in NP ⊆ AM.
One of the first and most celebrated examples of the interactive proof is the AM protocol for graph
nonisomorphism, see, for example, [20, §9.1.3]. Heuristically, this means that a prover can convince
a verifier that two given graphs are not isomorphic using a probabilistic argument, if the prover has
unlimited power, but the verifier can perform only poly-time computations verifying prover’s claims.

1For nonclassical types 𝐸6, 𝐸7, 𝐸8, 𝐹4 and 𝐺2 , there is only a finite number of Schubert coefficients, so the problem is
uninteresting from the computational complexity point of view.
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In particular, this shows that GraphIsomorphism in AM ∩ coAM. Famously, this was used in [13] to
conclude that the problem is unlikely to be NP-complete, cf. Corollary 1.5.

There is extensive literature in algebraic combinatorics with necessary and sufficient conditions
for the vanishing of Schubert coefficients. We postpone discussion of the prior work, as well as the
implications of the main theorem, until later in this section.

1.4. Hilbert’s Nullstellensatz

Let 𝑅 = C[𝑥1, . . . , 𝑥𝑠] for some 𝑠 > 0. Hilbert’s weak Nullstellensatz states that a polynomial system

𝑓1 = . . . = 𝑓𝑚 = 0 where 𝑓𝑖 ∈ 𝑅 (1.4)

has no solutions over C if and only if there exist (𝑔1, . . . , 𝑔𝑚) ∈ 𝑅
𝑚, such that

𝑚∑
𝑖=1

𝑓𝑖 𝑔𝑖 = 1.

Now let 𝑓1, . . . , 𝑓𝑚 ∈ Z[𝑥1, . . . , 𝑥𝑠]. The decision problem HN (Hilbert’s Nullstellensatz) asks if the
polynomial system (1.4) has a solution over C.2 Here, the size of the polynomial system is the sum of
the degrees of the polynomials 𝑓𝑖 added to the sum of bit-lengths of the coefficients in the 𝑓𝑖 .

The original proof of Hilbert’s Nullstellensatz does not imply that HN is decidable. This follows
from [45] by Mayr and Meyer, who showed that HN is in EXPSPACE and is also NP-hard. Major
improvements by Brownawell [15] and Kollár [39] showed that one can take 𝑔𝑖 of single exponential
size (effective Nullstellensatz), which can be used to show that HN is in PSPACE. In a surprising
breakthrough, Koiran showed that HN is in the polynomial hierarchy:

Theorem 1.2 [37, Thm 2]. HN is in AM assuming the GRH.

For the proof, Koiran needs existence of primes in certain intervals and with modular conditions, thus
the GRH assumption. For the proof of Theorem 1.1, we need the following strengthening of Theorem 1.2
to finite algebraic extensions. Let

𝑓1, . . . , 𝑓𝑚 ∈ Z(𝑦1, . . . , 𝑦𝑘 ) [𝑥1, . . . , 𝑥𝑠] .

The decision problem HNP (Parametric Hilbert’s Nullstellensatz) asks if the polynomial system (1.4)
has a solution over C(𝑦1, . . . , 𝑦𝑘 ). Most recently, Ait El Manssour, Balaji, Nosan, Shirmohammadi, and
Worrell extended Theorem 1.2 to HNP :

Theorem 1.3 [2, theorem 1]. HNP is in AM assuming the GRH.

In the proof, the authors substantially simplified Koiran’s original approach in [37, 38], avoiding the
use of semi-algebraic geometry. We refer the reader to a [2] for an extensive background of HNP and
other related work.

1.5. Proof outline

We prove Theorem 1.1 by showing that Schubert vanishing can be viewed as an instance of the Parametric
Hilbert’s Nullstellensatz. We then show that the same holds for Schubert nonvanishing. More precisely,
we prove the following:

Lemma 1.4 (Main lemma). Both SchubertVanishing(𝑌 ) and ¬SchubertVanishing(𝑌 ) reduce to
HNP, for all 𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.

2By the Nullstellensatz, this is equivalent to asking if there is a solution over Q.
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Here ¬SchubertVanishing :=
{
𝑐(𝑢1, . . . , 𝑢𝑘 ) >

? 0
}
, where 𝑢1, . . . , 𝑢𝑘 ∈ W . The lemma, com-

bined with Theorem 1.3 immediately implies Theorem 1.1. For the proof of the Lemma 1.4, we give
an explicit construction of two polynomial systems (1.4) with polynomially many parameters, one sys-
tem for each part of the lemma. For both systems, we start with Purbhoo’s criterion (Lemma 3.1), and
restate it as a lifted formulation, giving reductions to HNP.

Purbhoo’s criterion directly connects ¬SchubertVanishing to a particular sum of vector spaces
being full-dimensional. We construct generators for this vector space and formulate a pair of polynomial
systems to determine if these generators form a basis or not. We note that Purbhoo’s criterion is stated
in terms of generic group elements. However, such generic elements need not necessarily have succinct
(polynomial size) representations. To bypass this issue, we describe explicit constructions of generic
elements in terms of formal parameters. The resulting equations have polynomial coefficients in these
parameters.

1.6. Prior work

The literature on the vanishing of Schubert coefficients and its various extensions is too extensive to be
fully reviewed. Below are some highlights that we believe are most relevant. Although many of these
conditions extend to larger k and all types, we restrict our presentation to the case 𝑘 = 3 and type A,
which is the best studied.

(1) First, recall a large number of sufficient conditions for the vanishing of Schubert coefficients
𝑐𝑤𝑢,𝑣 . These conditions are scattered across the literature and include:3
◦ the number of inversion condition inv(𝑢) + inv(𝑣) ≠ inv(𝑤) [41],
◦ the number of descents condition des(𝑤) > des(𝑢) + des(𝑣) [41],
◦ strong Bruhat order condition 𝑢 � 𝑤, see, for example, [59, §5.1],
◦ Knutson’s descent cycling condition Des(𝑢) ∩ Des(𝑣) ∩ Des(𝑤𝑤◦) ≠ ∅ [32],
◦ Billey–Vakil’s permutation array condition [11, Thm 5.1] (see also [5, Prop. 9.7]),
◦ St. Dizier–Yong’s condition on certain fillings of Rothe diagrams [59, Thm A], and
◦ Hardt–Wallach’s condition on empty rows in Rothe diagrams [23, Cor. 5.12].

The first three of these follow directly from the Lascoux–Schützenberger definition of Schubert
polynomials, see §4.2, while the other conditions are more technical. All of these can be verified in
poly-time; this is immediate in all cases except for the strong Bruhat order condition which needs the
Ehresmann criterion [44, Prop. 2.1.11], and the St. Dizier–Yong condition where this is a part of their
main theorem.

For Grassmannian permutations (permutations with one descent), Schubert coefficients are the
Littlewood–Richardson (LR) coefficients, see, for example, [43, 44], which are extensively studied in
algebraic combinatorics, see, for example, [60, Ch. 7]. In this case, the vanishing problem is in P as a
corollary of the Knutson–Tao saturation theorem [18, 47].

There are several other classes of permutations, where the Schubert coefficients have a known com-
binatorial interpretation. In such cases, the combinatorial interpretation can be interpreted as sufficient
conditions for nonvanishing. Notable examples include:
◦ Purbhoo’s root game conditions [56, 57], and
◦ Knutson and Zinn-Justin’s tiling conditions [35, 36].

We refer to [59, §5] and [49, §1.6] for technical details, comparisons, and further background on all
these conditions.

(2) Partly motivated by numerical applications, there have also been efforts to give a description of
an algebraic system for various Schubert problems. Notably, in [11, Thm 5.4], Billey and Vakil give an
algebraic system with exactly 𝑐𝑤𝑢,𝑣 solutions for generic values of certain variables. They also describe

3Below we assume the reader is familiar with the algebraic combinatorics terminology. To avoid cluttering, we postpone the
definitions until §2.3.
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the system of conditions for these variables being generic under the assumption that the set of solutions
is 0-dimensional [11, Cor. 5.5]. The authors do not give a complexity analysis for this system; see [49,
§8.1] for further details and a complexity discussion.

In [24], Hein and Sottile introduced an algebraic system giving a practical algorithm for computing
Schubert coefficients. Their system had additional variables compared to the Billey–Vakil system and
allowed polynomial equations to have smaller (polynomial) size. In the first draft [49] of this paper, we
used the Hein–Sottile system (in type A), which we modified and extended to other types. We eventually
shifted our approach in favor of an algebraic system given by Purbhoo’s criterion. This characterization
is amenable to a more uniform approach and is a better fit with Hilbert’s Nullstellensatz, as this criterion
characterizes the vanishing problem in particular. We refer to §4.1 for an overview of our earlier preprints
in the evolution of this paper.

(3) Finally, there is very little known about the computational complexity of Schubert vanishing. It
follows from existing literature that SchubertVanishing ∈ PSPACE, but even that bound was never
explicitly written. In type A and for 𝑘 = 3, this was observed by Morales as a consequence of the
Postnikov–Stanley formula [55, Cor. 17.13], see [48, §10] for details.4 In combinatorial terminology,
this formula shows 𝑐𝑤𝑢,𝑣 has a signed combinatorial interpretation derived from the (usual) combinatorial
interpretation for the Schubert–Kostka numbers (see §4.2) in terms of pipe dreams.

For general 𝑘 ≥ 4, the result follows by taking convolutions. For other classical types, one can
follow the approach above and combine the pipe dream construction in [58] with the effective Möbius
inversion in [51, §2.2]. We omit the details which are straightforward, but require a separate explanation
in each type. Another way to see that Schubert vanishing is in PSPACE it to use the recursive, but
type-independent Billey’s formula [9, Eq. (5.5)].

1.7. Implications

From the computational complexity point of view, Main Theorem 1.1 shows that SchubertVanishing
is in Σp

2 ∩Πp
2 assuming the GRH, that is, relatively low in the polynomial hierarchy PH. Inclusion in PH

was out of reach prior to this paper.
Similarly, it has been conjectured for a while that computing Schubert coefficients is computationally

hard, see, for example, an extensive discussion in [11, §5.2] and [49, §1.4]. Notably, Adve, Robichaux,
and Yong asked whether SchubertVanishing is NP-hard [1, Question 4.3]. In the opposite direction,
the authors conjectured that SchubertPositivity := ¬SchubertVanishing is NP-hard [49, Conj.
1.6]. The following result resolves in the negative both the question and the conjecture under standard
assumptions:
Corollary 1.5. SchubertVanishing is not NP-hard, assuming the GRH and PH ≠ Σp

2, that is,
the polynomial hierarchy does not collapse to its second level. Similarly, SchubertPositivity is not
NP-hard, under the same assumptions.

The corollary follows immediately from the Main Theorem 1.1 and a result of Boppana, Håstad and
Zachos [13, Thm 2.3]. In particular, the corollary implies that the vanishing of Schubert coefficients is
quite different from the vanishing of Kronecker coefficients which is known to be coNP-hard [27]. See
also [54, §5.2] for further details and references.

In algebraic combinatorics, a major open problem is whether Schubert coefficients have a combi-
natorial interpretation [61, Problem 11]. In the language of computational complexity this is asking
whether this counting problem is in #P, the counting analogue of NP. See a detailed discussion in [48,
§10]. This would imply that SchubertVanishing is in coNP. In the combinatorial language, this is
saying that positivity of Schubert coefficients problem

{
𝑐𝑤𝑢,𝑣 >

? 0
}

has a positive rule [50].
The special cases mentioned above suggest that both Schubert vanishing and Schubert nonvanishing

might have a positive rule, that is, that SchubertVanishing ∈ NP∩coNP. Until recently this conclusion

4In fact, Morales’s argument gives a little more, that SchubertVanishing ∈ C=P. On the other hand, Tarui’s theorem gives
that C=P � PH unless PH collapses, see a discussion in [28].
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would seem fantastical and out of reach. Now, it was shown by Gutfreund, Shaltiel, and Ta-Shma [21],
that if EXP requires exponential time even for AM protocols (we call this assumption GST), then
AM ∩ coAM = NP ∩ coNP. In a combinatorial language, this says:

Corollary 1.6. Both Schubert vanishing and Schubert nonvanishing have a positive rule, assuming GST
and GRH.

It is worth comparing this result with other problems where a combinatorial interpretation
(#P formula) was recently refuted. These include squared 𝑆𝑛-characters [28], Stanley’s inequality for
linear extensions [16], and the Stanley–Yan matroid inequality [17]. In all these cases, the vanishing
problem is not in PH (unless PH collapses), implying nonexistence of a combinatorial interpretation.
Theorem 1.1 shows that a different approach is needed for Schubert coefficients.

2. Definitions and notation

2.1. Standard notation

We use N = {0, 1, 2, . . .} and [𝑛] = {1, . . . , 𝑛}. Unless stated otherwise, the underlying field is always
C. We use 𝑒1, . . . , 𝑒𝑛 to denote the standard basis in C𝑛, and 0 to denote the zero vector. We use bold
symbols such as 𝒙 and 𝜶 to denote sets and vectors of variables, and bars such as −→𝑥 and −→𝛼 to denote
complex vectors.

Recall the following standard notation for almost simple Lie groups, see [26]. We have the special
linear group SL𝑛 (C), the odd special orthogonal group SO2𝑛+1 (C), the symplectic group Sp2𝑛 (C), and
the even special orthogonal group SO2𝑛 (C). These groups correspond to root systems 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and
𝐷𝑛, and are called groups of type A, B, C, and D, respectively.

To distinguish the types, we use subscripts in Schubert coefficients, for example, 𝑐 〈𝐴〉 (𝑢, 𝑣, 𝑤). We
omit the dependence on the type when it is clear from the context. We use bullets to denote flags:
𝐹• = {𝐹0 ⊂ 𝐹1 ⊂ . . . ⊂ 𝐹𝑛 = 𝑉} is a complete flag in V if dim 𝐹𝑖 = 𝑖.

2.2. Computational notation

For a polynomial 𝑔 ∈ Z[𝑥1, . . . , 𝑥𝑛], let deg(𝑔) denote the degree of g, and let 𝑠(𝑔) denote the sum of
bit-lengths of coefficients in g. The size of the polynomial g is defined as

𝜙(𝑔) := deg(𝑔) + 𝑠(𝑔).

For a collection of polynomials
−→
𝑓 = ( 𝑓1, . . . , 𝑓𝑚) as in (1.4), the size is defined as

𝜙
(−→
𝑓
)

:=
𝑚∑
𝑖=1

deg( 𝑓𝑖) +

𝑚∑
𝑖=1
𝑠( 𝑓𝑖).

For a matrix M with polynomial entries, the size 𝜙(𝑀) is the sum of sizes of these polynomials.

2.3. Algebraic combinatorics background

In type A, the Weyl group is W � 𝑆𝑛 and the length function is given by the number of inversions
inv(𝑤) := #{(𝑖, 𝑗) : 𝑤(𝑖) > 𝑖, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. The longest element is 𝑤◦ = (𝑛, 𝑛 − 1, . . . , 1).
A permutation 𝑤 ∈ 𝑆𝑛 is said to have a descent at i, if 𝑤(𝑖) > 𝑤(𝑖 + 1). Denote by Des(𝑤) the set of
descents of w, and by des(𝜎) := |Des(𝜎) | the number of descents. The Rothe diagram is defined as

R(𝑤) :=
{(
𝑤( 𝑗), 𝑖

)
: 𝑖 < 𝑗 , 𝑤(𝑖) > 𝑤( 𝑗)

}
⊂ N2,

and note that |R(𝑤) | = inv(𝑤).
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In types 𝐵/𝐶, we have W � 𝑆𝑛 � Z
𝑛
2 , and the elements are represented as signed permutations, for

example, (4,−3, 5,−1, 2) ∈ W𝐶5 . In type D, we have W � 𝑆𝑛 � Z
𝑛−1
2 , and the elements are represented

as signed permutations with an even number of negative signs, as in the example above. See [12] for
analogues of inversions and descents in other types, and note that the first four conditions in §1.6 extend
verbatim.

2.4. Complexity background

As we mentioned in the introduction, the paper can be completely understood without the use of
complexity theory, since Main Theorem 1.1 easily follows from the (algebraic) Main Lemma 1.4.
Still, for the purposes of motivation, we assume the reader is familiar with basic complexity theory and
relationships between standard complexity classes: P, BPP, NP, Σp

𝑚, Πp
𝑚, PH, PSPACE and EXPSPACE.

We refer to [6, 20] for the background.
Let us elaborate on the class AM and its complement coAM, due to their prominence in the paper.

One can view complexity problems as interactive proofs, with quantifiers describing communications
between a prover and verifier. When we have a BPP verifier, that is, when the verifier (Arthur) has powers
to flip coins and the prover (Merlin) has unlimited computational powers. Such communication is called
the Arthur–Merlin protocol. The number of quantifiers becomes the number of messages between the
prover and the verifier.

The complexity class AM is a class of decision problems that can be decided in polynomial time by
an Arthur–Merlin protocol with two messages, see, for example, [6, §8.2]. Recall the inclusions

NP ⊆ ∃·BPP ⊆ AM ⊆ Πp
2 ⊆ PH.

Famously, graph isomorphism is in coAM, since graph nonisomorphism can be established by a simple
interactive protocol (see, e.g., [6, Thm 8.13]). Other problems in AM∩ coAM include code equivalence,
ring isomorphism, permutation group isomorphism and tensor isomorphism; see the references in
[52, §1.5.1].

3. Proof of Main Lemma 1.4

3.1. Purbhoo’s criterion

Fix 𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷} and let G = G𝑌 be a semisimple algebraic group of type Y. In each case, G is a
matrix group lying in an ambient vector space V. Let N denote the subgroup of unipotent matrices, so
we have

N ⊂ B ⊂ G ⊂ 𝑉.

Let 𝔫 denote the Lie algebra of N. We think of 𝔫 as a subspace of V. Finally, for 𝑤 ∈ W , let
𝑍𝑤 := 𝔫 ∩ (𝑤B−𝑤

−1).
It is well-known and follows from [10], that

𝑐 〈𝐵〉 (𝑢1, . . . , 𝑢𝑘 ) = 2𝑎 𝑐 〈𝐶 〉 (𝑢1, . . . , 𝑢𝑘 ), (3.1)

where

𝑎 = 𝜁 (𝑤◦𝑢𝑘 ) − 𝜁 (𝑢1) − . . . − 𝜁 (𝑢𝑘−1)

and 𝜁 (𝜋) denotes the number of sign changes in the signed permutation 𝜋 ∈ W . This shows the vanishing
problems in types B and C are equivalent. Thus for simplicity, we consider only types A, B, and D.
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Table 1. Positive roots and corresponding matrix entries..

G Φ+ 𝑈 (G)

SL𝑛 {𝑒𝑖 − 𝑒 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}
SO2𝑛+1 {𝑒𝑖 ± 𝑒 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∪ {𝑒𝑖 : 𝑖 ∈ [𝑛] } {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 2𝑛 + 1 − 𝑖 }
SO2𝑛 {𝑒𝑖 ± 𝑒 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 𝑖 }

Lemma 3.1 (Purbhoo’s criterion [57, Cor. 2.6]). For generic 𝜌1, . . . , 𝜌𝑘 ∈ N ⊂ G, we have:

𝑐(𝑢1, . . . , 𝑢𝑘 ) > 0 ⇐⇒ 𝜌1𝑅𝑢1𝜌
−1
1 + . . . + 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 = 𝜌1𝑅𝑢1𝜌

−1
1 ⊕ . . . ⊕ 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 .

Generalizing the number of inversions condition in §1.6(1), the dimension condition says that

𝑐(𝑢1, . . . , 𝑢𝑘 ) = 0 if inv(𝑢1) + · · · + inv(𝑢𝑘 ) ≠ dim(𝔫). (3.2)

Thus it suffices to restrict to the case inv(𝑢1) + . . . + inv(𝑢𝑘 ) = dim(𝔫). In that setting,

𝑐(𝑢1, . . . , 𝑢𝑘 ) > 0 ⇐⇒ 𝜌1𝑅𝑢1𝜌
−1
1 + . . . + 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 = 𝔫.

Using Lemma 3.1, it suffices to determine the dimension of the vector space 𝐻 := 𝜌1𝑅𝑢1𝜌
−1
1 + . . . +

𝜌𝑘𝑅𝑢𝑘 𝜌
−1
𝑘 for generic 𝜌𝑖 . In §3.3, we describe how to construct these 𝜌𝑖 . In §3.2, we describe how to

construct bases for these 𝑅𝑢𝑖 . In §3.4, we combine these constructions to obtain bases for each summand
𝜌𝑖𝑅𝑢𝑖 𝜌

−1
𝑖 . From these we obtain vectors 𝜋 𝑗 which generate H.

In §3.5, we prove Lemma 1.4 in two parts. We construct a system of equations to test whether these
𝜋 𝑗 are linearly dependent. By Lemma 1.4 and the dimension condition, if 𝜋 𝑗 are linearly dependent,
the corresponding coefficient vanishes. Next we form a square matrix M with columns 𝜋 𝑗 and test if M
is invertible. By Lemma 1.4 and the dimension condition (3.2), if M is nonsingular, the corresponding
coefficient is positive.

Our equations are stated in terms of formal parameters to ensure generic choices are made. Thus in
each case we test satisfiability of the systems over the appropriate function field.

3.2. Root systems

In each type, the Weyl group W is generated by reflections 𝑟𝛾 , where 𝛾 are roots in a root system Φ.
The root system Φ is partitioned in terms of its positive and negative roots: Φ = Φ+ � Φ−. In Table 1,
we recall Φ+, where 𝑒𝑖 denotes the i-th elementary basis vector in C𝑛.

For ease of notation, define the integer 𝑁 (G), where

𝑁 (G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛 if G = SL𝑛 (C),
2𝑛 + 1 if G = SO2𝑛+1(C),

2𝑛 if G = SO2𝑛 (C).

To each 𝛾 ∈ Φ+ , we wish to associate a particular 𝑚 ×𝑚 matrix, where 𝑚 = 𝑁 (G). Define the subset
𝑈 (G) ⊂ [𝑚] × [𝑚] as in Table 1. We construct a bijection 𝜙 : 𝑈 (G) → Φ+ as follows.

(A) For SL𝑛 take 𝜙(𝑖, 𝑗) := 𝑒𝑖 − 𝑒 𝑗 .
(B) For SO2𝑛+1 take

𝜙(𝑖, 𝑗) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑒𝑖 + 𝑒 𝑗 if 𝑗 ≤ 𝑛
𝑒𝑖 − 𝑒2𝑛+2− 𝑗 if 𝑛 + 1 < 𝑗
𝑒𝑖 if 𝑗 = 𝑛 + 1
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(D) For SO2𝑛 take

𝜙(𝑖, 𝑗) :=

{
𝑒𝑖 + 𝑒 𝑗 if 𝑗 ≤ 𝑛
𝑒𝑖 − 𝑒2𝑛+1− 𝑗 if 𝑛 < 𝑗

Thus for every positive root 𝛾 ∈ Φ+ we define E′
𝛾 to be the 𝑚 ×𝑚 matrix with a 1 in position 𝜙−1(𝛾)

and 0 elsewhere. For SL𝑛 let E𝛾 := E′
𝛾 . For SO2𝑛+1 and SO2𝑛 , let E𝛾 := E′

𝛾 − D𝑚(E′
𝛾)
𝑇D𝑚 , where D𝑚

is the antidiagonal matrix.

3.3. Generic unipotent subgroup elements

Let 𝑚 := 𝑁 (G). We now describe how to construct an upper unitriangular 𝑚 × 𝑚 matrix K = (𝜅𝑖 𝑗 )
which lies in N ⊂ B ⊂ G. Define:

𝜅𝑖 𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛼𝑖 𝑗 if 𝑖 < 𝑗 and (𝑖, 𝑗) ∈ 𝑈 (G) ,

𝑧𝑖 𝑗 if 𝑖 < 𝑗 and (𝑖, 𝑗) ∉ 𝑈 (G) ,

1 if 𝑖 = 𝑗 ,
0 if 𝑖 > 𝑗 .

Here we treat 𝛼𝑖 𝑗 as parameters and 𝑧𝑖 𝑗 as variables.
Note we have no additional dependencies placed on 𝜅𝑖 𝑗 to ensure that 𝜅 ∈ G for G = SL𝑛 (C). For

G = SO2𝑛+1 (C) and G = SO2𝑛 (C), let D𝑚 be the antidiagonal matrix. To ensure 𝜅 ∈ G, we need

K𝑇 · D𝑚 · K = D𝑚 and det(K) = 1.

Clearly, det(K) = 1 is already satisfied. Then we need only to impose K𝑇 · D𝑚 · K = D𝑚 .

3.4. Main construction

Let 𝑚 = 𝑁 (G). In light of Lemma 3.1, we consider the vector space

𝐻 = 𝜌1𝑅𝑢1𝜌
−1
1 + . . . + 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 .

Let 𝑑 := dim G/B and note that dim 𝔫 = |𝑈 (G) | = 𝑑 ≤
(𝑚

2
)
= 𝑂 (𝑚2). By the dimension condition, we

can assume

inv(𝑢1) + . . . + inv(𝑢𝑘 ) = 𝑑. (3.3)

Further, we can assume that inv(𝑢𝑖) ≥ 1 for all 𝑖 ∈ [𝑘], so we have 𝑘 ≤ 𝑑.
Recall that for 𝑤 ∈ W , we have 𝑍𝑤 = 𝔫∩(𝑤B−𝑤

−1). Equivalently, 𝑍𝑤 is the subspace of 𝔫 generated
by basis elements E𝛾 for 𝛾 ∈ Φ+(𝑤), where

Φ+(𝑤) :=
{
𝛽 ∈ Φ+ : 𝑤−1𝛽 ∉ Φ+

}
.

Thus for 𝑖 ∈ [𝑘], we construct bases for the 𝑅𝑢𝑖 as follows:

𝑆𝑢𝑖 :=
{
𝑥𝛾,𝑖 E𝛾 : 𝛾 ∈ Φ+(𝑢𝑖)

}
.

Since inv(𝑢𝑖) = |Φ+(𝑢𝑖) | for 𝑖 ∈ [𝑘] and we assumed (3.3), the collection ∪𝑖∈[𝑘 ]𝑆𝑢𝑖 has 𝑑 = 𝑂 (𝑚2)
elements. Let 𝒙 :=

{
𝑥𝛾,𝑖

}
be the set of those variables appearing in the collection. We have:
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𝑘∑
𝑖=1

inv(𝑢𝑖) =
𝑘∑
𝑖=1

dim(𝑅𝑢𝑖 ) =
𝑘∑
𝑖=1



𝑆𝑢𝑖 

 = 𝑑. (3.4)

We now construct generic matrices 𝜌1, . . . , 𝜌𝑘 ∈ N according to §3.3 above, in terms of formal
parameters 𝛼 (𝑖)

𝑗ℓ and variables 𝑧 (𝑖)𝑗ℓ . Define 𝜶 :=
{
𝛼 (𝑖)
𝑗ℓ

}
and 𝒙 :=

{
𝑧 (𝑖)𝑗ℓ

}
to be the sets of parameters and

variables, respectively, appearing in some 𝜌𝑖 , where 𝑖 ∈ [𝑘]. Then

|𝜶 | = |𝒛 | ≤ 𝑘 · 𝑚2 ≤ 𝑑 · 𝑚2 = 𝑂 (𝑚4).

By the construction in §3.3, each matrix 𝜌𝑖 is an upper triangular 𝑚×𝑚 matrix with linear entries. Thus
it has size 𝑂 (𝑚2), where the size is defined in §2.2.

Now for each 𝑖 ∈ [𝑘], form the upper unitriangular matrix 𝜌𝑖 whose ( 𝑗 , ℓ) entry for 𝑗 < ℓ is the
variable 𝑦 (𝑖)𝑗ℓ . Define the set of variables 𝒚 :=

{
𝑦 (𝑖)𝑗ℓ : 𝑖 ∈ [𝑘], 1 ≤ 𝑗 < ℓ ≤ 𝑚

}
. For all 𝑖 ∈ [𝑘], construct

bases for 𝜌𝑖𝑅𝑢𝑖 𝜌𝑖 as follows:

𝑇𝑢𝑖 := 𝜌𝑖 𝑆𝑢𝑖 𝜌𝑖 =
{
𝜌𝑖 · 𝑔 · 𝜌𝑖 : 𝑔 ∈ 𝑆𝑢𝑖

}
.

By (3.4), we have |𝑇𝑢1 | + . . . + |𝑇𝑢𝑘 | = 𝑑.
Consider the map 𝜏 on 𝑚×𝑚 matrices defined by restricting to entries in positions𝑈 (G). Recall that

for G = SL𝑛, we have 𝔫 is the set of strictly upper triangular matrices. For G = SO2𝑛+1 or G = SO2𝑛,
we have 𝔫 is the set of strictly upper triangular matrices which are skew symmetric with respect to
reflection about the main antidiagonal. By the definition of 𝔫, every 𝑚 × 𝑚 matrix in 𝔫 is determined
by its entries in positions𝑈 (G). Thus, dim(𝑇𝑢𝑖 ) = dim

(
𝜏(𝑇𝑢𝑖 )

)
for each 𝑖 ∈ [𝑘]. Let

𝑇 :=
⋃
𝑖∈[𝑘 ]

𝜏(𝑇𝑢𝑖 ) ,

and write 𝑇 = {𝜋𝑖 : 𝑖 ∈ [𝑑]}. Since |𝑈 (G) | = 𝑑, we may view each 𝜋𝑖 ∈ 𝑇 as a d-vector.

3.5. Proof of Main Lemma 1.4

As mentioned above, by the dimension condition (3.2), we can assume that (3.3) holds, and that
inv(𝑢𝑖) ≥ 1 for all 𝑖 ∈ [𝑘]. Define 𝜌𝑖 for all 𝑖 ∈ [𝑘], and let 𝑇 =

{
𝜋𝑖 : 𝑖 ∈ [𝑑]

}
as in §3.4 above. We

prove the two parts of the lemma separately.

First part of the lemma. For the vanishing result, we analyze the negation of the condition in Lemma 3.1:

𝜌1𝑅𝑢1𝜌
−1
1 + . . . + 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 � 𝔫. (3.5)

Note that (3.5) holds if and only if T is linearly dependent for 𝜌𝑖 = 𝜌−1
𝑖 , with 𝜌𝑖 ∈ N for each 𝑖 ∈ [𝑘].

We introduce two new sets of variables: 𝒒 = {𝑞𝑖 : 𝑖 ∈ [𝑑]} and 𝒔 = {𝑠𝑖 : 𝑖 ∈ [𝑑]}. Consider a
polynomial system T (𝑢1, . . . , 𝑢𝑘 ) defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜌𝑖 · 𝜌𝑖 = Id𝑚 for 𝑖 ∈ [𝑘],

𝜌𝑇𝑖 · D𝑚 · 𝜌𝑖 = D𝑚 for 𝑖 ∈ [𝑘], if G = SO𝑚 ,
𝑑∑
𝑖=1
𝑞𝑖 · 𝜋𝑖 = 0 ,

𝑑∑
𝑖=1
𝑞𝑖 · 𝑠𝑖 = 1.
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Here T (𝑢1, . . . , 𝑢𝑘 ) uses variables 𝒙 ∪ 𝒚 ∪ 𝒙 ∪ 𝒒 ∪ 𝒔 and parameters 𝜶. Note that entries in 𝜋𝑖 ∈ 𝑇
are cubic monomials. Thus the whole system T (𝑢1, . . . , 𝑢𝑘 ) has size 𝑂 (𝑚5). See Table 4 for details
regarding the size computations.

Now, the proper containment in (3.5) holds if and only if T (𝑢1, . . . , 𝑢𝑘 ) is satisfiable over C(𝜶). We
note the following statements are equivalent since the parameters 𝛼 are algebraically independent:

1. T (𝑢1, . . . , 𝑢𝑘 ) has a solution over C(𝜶),
2. 𝑋 ×Spec(C[𝜶]) Spec (C(𝜶)) ≠ ∅,
3. 𝑋 ×Spec(C[𝜶]) Spec( C(𝜶)) ≠ ∅,
4. the general fiber of X →Spec(C[𝜶]) is nonempty, and
5. T (𝑢1, . . . , 𝑢𝑘 ) has a solution over C for a generic choice of evaluations −→𝛼 of 𝜶.

The equivalence of (i) and (ii), (ii) and (iii), and (iv) and (v) are straightforward. The equivalence of
(iii) and (iv) follows from [62, Lemma 37.24.1] and [62, Lemma 37.24.2]).

Therefore, by Lemma 3.1 and (3.1), the problem SchubertVanishing(𝑌 ) reduces to HNP for every
type 𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷}. �

Second part of the lemma. To prove the nonvanishing result, we analyze the condition in Lemma 3.1:

𝜌1𝑅𝑢1𝜌
−1
1 + . . . + 𝜌𝑘𝑅𝑢𝑘 𝜌

−1
𝑘 = 𝔫. (3.6)

Let M be the 𝑑 × 𝑑 matrix formed by the vectors in T. Then (3.6) holds if and only if M is invertible for
𝜌𝑖 = 𝜌−1

𝑖 with 𝜌𝑖 ∈ N for each 𝑖 ∈ [𝑘].
Let 𝑀 = (𝑡𝑖 𝑗 ) be a 𝑑 × 𝑑 matrix of variables. Define the set of variables 𝒕 = {𝑡𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑑]}. Let

S (𝑢1, . . . , 𝑢𝑘 ) be the system defined as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑖 · 𝜌𝑖 = Id𝑚 for 𝑖 ∈ [𝑘],

𝜌𝑇𝑖 · D𝑚 · 𝜌𝑖 = D𝑚 for 𝑖 ∈ [𝑘], if G = SO𝑁 ,

𝑀 · 𝑀 = Id𝑑 .

Here the system S (𝑢1, . . . , 𝑢𝑘 ) uses variables 𝒙 ∪ 𝒚 ∪ 𝒙 ∪ 𝒕 and parameters 𝜶. Note that entries in M
are cubic monomials. Thus the whole system S (𝑢1, . . . , 𝑢𝑘 ) has size 𝑂 (𝑚6). See Table 4 for details
regarding the size computations.

Now, the equality in (3.6) holds if and only if the system S (𝑢1, . . . , 𝑢𝑘 ) is satisfiable over C(𝜶). As in
the previous part, since the parameters in𝜶 are algebraically independent, the systemS (𝑢1, . . . , 𝑢𝑘 ) has a
solution overC(𝜶) if and only ifS (𝑢1, . . . , 𝑢𝑘 ) has a solution overC for a generic choice of evaluations−→𝛼
of 𝜶. Therefore, just as in the first part, by Lemma 3.1 and (3.1), the problem ¬SchubertVanishing(𝑌 )
reduces to HNP, for every type 𝑌 ∈ {𝐴, 𝐵, 𝐶, 𝐷}. �

4. Final remarks

4.1. Evolution of this paper

This paper grew out of a series of unpublished preprints and research announcements of the authors
(aimed at somewhat different audiences), where we successively strengthened the results while we
simultaneously streamlined and simplified the proofs. Below is a brief description of these preprints.
This paper is the definitive version that we do not plan to modify.

The original preprint [49], v1, proved only the coAM inclusion in the Main Theorem 1.1 and
only for types 𝐴, 𝐵, 𝐶. The proof was technical, employed the Hein–Sottile algebraic system, and
did not cover type D. The presentation was aimed at complexity theorists and included results in the
Blum–Shub–Smale (nonstandard) models of computing that were established using Purbhoo’s criterion:
SchubertPositivity is in NPC ∩ PR . The latter results are included in the STOC’25 extended abstract
based on [49], but are omitted in the current version of the paper.
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In v2 of the same preprint [49], we added an extensive description of the prior combinatorial work on
the subject. We also added a new Appendix C (joint with David Speyer) with a different algebraic system
based on the Cayley transform. This proved the coAM inclusion for all types, in particular for type D.

In a companion paper [50] aimed at algebraic combinatorialists, we gave an extensive epistemological
and theological discussion on the delicate subject of proving combinatorial results under standard
assumptions from other areas. This paper is a short announcement with no new proofs.

Finally, the most recent preprint [52] gives a proof of Main Theorem 1.1 based on a technical new
tool (Determinant Lemma 2.2). Here we are using Purbhoo’s criterion to prove that Schubert vanishing
is in AM for all types. We also use this Determinant Lemma to resolve the type D case that was omitted
in [49]. These tools proved crucial in our forthcoming paper [53], where we extend parts of Main
Theorem 1.1 to enriched cohomology theories.

In this paper we are able to obtain a simple proof of both parts of Main Theorem 1.1, avoiding
technicalities of the earlier preprints. Let us emphasize that this paper is the first version where we are
able to take the intersection of k Schubert varieties, for all 𝑘 ≥ 3. While for many applications it is
useful to have larger k, until now we were unable to give an algebraic system simple enough to prove
the reduction to HNP for nonconstant k.

4.2. Schubert polynomials

A combinatorial approach to Schubert coefficients is given by Schubert polynomials𝔖𝑤 ∈ N[𝑥1, 𝑥2, . . .]
indexed by permutations𝑤 ∈ 𝑆𝑛 . They were introduced by Lascoux and Schützenberger [41], building on
the earlier works by Demazure (1974) and Bernstein–Gelfand–Gelfand (1973). In type A, the translation
is given by Borel’s ring isomorphism:

Φ : 𝐻∗(G/B) −→ Z[𝑥1, . . . , 𝑥𝑛]/〈𝑒𝑖 (𝑥1, . . . , 𝑥𝑛) : 𝑖 ∈ [𝑛]〉 ,

where 𝑒𝑖 are elementary symmetric polynomials. Schubert polynomials are polynomial representatives
of Schubert classes: 𝔖𝑤 := Φ(𝜎𝑤 ). Then Schubert coefficients can be defined as multiplication con-
stants:

𝔖𝑢 ·𝔖𝑣 =
∑
𝑤 ∈𝑆∞

𝑐𝑤𝑢,𝑣𝔖𝑤 .

In this notation, the Schubert–Kostka numbers mentioned in §1.6 are the coefficients [𝒙𝛼]𝔖𝑢 . We
refer to [43, 44] for introductory surveys, [33, 34] for overviews of recent results, and to [48, §10]
for computational complexity aspects. Let us mention that Schubert polynomials play a central role in
algebraic combinatorics, but do not appear in the proof of Main Theorem 1.1.

4.3. Vanishing is exponentially likely

It is easy to see that asymptotically, Schubert coefficients are almost always zero. Indeed, for 𝑘 = 3 in
type A, we have P[𝑐𝑤𝑢,𝑣 > 0] < 𝑐−𝑛 for some 𝑐 > 1, where the probability is over uniform permutations
𝑢, 𝑣, 𝑤 ∈ 𝑆𝑛 . Recall the sufficient conditions for vanishing given in §1.6, and take their complements.
The result follows from the number of inversions necessary condition inv(𝑢) + inv(𝑣) = inv(𝑤) and the
asymptotic normality of the inv statistics on 𝑆𝑛 , see, for example, [19, §X.6].

Alternatively, Knutson’s descent cycling necessary condition states that we must have Des(𝑢) ∩
Des(𝑣) ∩ Des(𝑤𝑤◦) = ∅. Since distant descents are given by mutually independent fair coin flips,
this condition also gives an exponential decay for the probability P[𝑐𝑤𝑢,𝑣 > 0], even if we condition
on the number of inversions equality. Finally, the strong Bruhat order necessary condition 𝑢 � 𝑤 was
studied asymptotically in [22]. Although only polynomial upper bounds are known, exponential decay
is likely again.
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4.4. Combinatorial interpretations

When it comes to finding combinatorial interpretations for Schubert coefficients, there are two ways to
think of our results. On the one hand, as we mentioned in §1.7, these are the first positive results obtained
in full generality, suggesting that both Schubert vanishing and Schubert positivity have a positive rule,
under standard assumptions. On the other hand, the AM protocols of this paper are far removed from
the type of positive rule that people are interested in, see quotes in [52, Appendix B] and an extensive
discussion in [50].

We should emphasize that the complexity of counting solutions of algebraic systems (1.4) remains
a major open problem, so our approach cannot be extended to the problem of computing Schubert
coefficients. Furthermore, in contrast with the Billey–Vakil and Hein–Sottile algebraic systems (see
§1.6), Purbhoo’s criterion applies only to the vanishing of Schubert coefficients.

4.5. Unconditional approaches

It is an interesting question whether the GRH assumption in Theorem 1.1 can be weakened or completely
removed. In fact, Koiran’s proof of Theorem 1.2 uses only an effective version of the Chebotarev density
theorem given in [40]. The latter assumes the GRH or a slightly weaker assumption ERH mentioned in
the introduction. Despite recent advances in the area, it seems unlikely that the GRH assumption can be
removed from Theorem 1.3 which we crucially employ.

A. Size Charts

We recall the values of 𝑁 (G) and𝑈 (G), as defined in §3.2, for each G.
Now we describe the size computations for the systems T (𝑢1, . . . , 𝑢𝑘 ) and S (𝑢1, . . . , 𝑢𝑘 ) in Main

Lemma 1.4 for each group G. In these systems, we assumed 𝑘 ≤ |𝑈 (G) |, so 𝑘 = 𝑂 (𝑛2) in each case.
Additionally, note that 𝑚 = 𝑂 (𝑛).

Table 2. Indices and Number of Positive Roots.

G 𝑁 (G) |𝑈 (G) |

SL𝑛 n
(𝑛

2
)

SO2𝑛+1 2𝑛 + 1 𝑛2

SO2𝑛 2𝑛 𝑛(𝑛 − 1)

Table 3. Parameter and Variable Size Analysis for T (𝑢1 , . . . , 𝑢𝑘 ) and S (𝑢1 , . . . , 𝑢𝑘 ) .

𝜶 𝒙 𝒚 𝒛 𝒒 𝒔 𝒕

G = SL𝑛 𝑘 ·
(𝑛

2
) (𝑛

2
)

𝑘 ·
(𝑛

2
)

0
(𝑛

2
) (𝑛

2
) (𝑛

2
)2

G = SO2𝑛+1 𝑘 · 𝑛2 (2𝑛+1
2

)
𝑘 ·

(2𝑛+1
2

)
𝑘 · (𝑛2 + 𝑛)

(2𝑛+1
2

) (2𝑛+1
2

) (2𝑛+1
2

)2

G = SO2𝑛 𝑘 · (𝑛2 − 𝑛)
(2𝑛

2
)

𝑘 ·
(2𝑛

2
)

𝑘 · 𝑛2 (2𝑛
2
) (2𝑛

2
) (2𝑛

2
)2

Table 4. Equation Size Analysis for T (𝑢1 , . . . , 𝑢𝑘 ) and S (𝑢1 , . . . , 𝑢𝑘 ) .

Equations Sizes

𝜌𝑖 · 𝜌𝑖 = Id𝑚 for 𝑖 ∈ [𝑘 ] 𝑘
(
2
(𝑚

2
)
+
( (𝑚−1

2
)
𝑚 +𝑚(𝑚 + 1)

) )
= 𝑂 (𝑘𝑚3)

𝜌𝑇𝑖 · D𝑚 · 𝜌𝑖 = D𝑚 for 𝑖 ∈ [𝑘 ] 𝑘
(
2
(𝑚−1

2
)
+𝑚

(𝑚−1
2
) )

= 𝑂 (𝑘𝑚3)∑𝑑
𝑖=1 𝑞𝑖 · 𝜋𝑖 = 0 4 + 𝑑2 = 𝑂 (𝑑2)∑𝑑
𝑖=1 𝑞𝑖 · 𝑠𝑖 = 1 3 + 𝑑 = 𝑂 (𝑑)

𝑀 · 𝑀 = Id𝑑 4𝑑2 + (𝑑2 − 𝑑)𝑑 + 𝑑 (𝑑 + 1) = 𝑂 (𝑑3)
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First we give the sizes of the variables and parameters used in the systems. In Table 3, the size
measures the cardinality of the set.

Then we describe the sizes of the equations in the systems. In Table 4, the size is defined as in §2.2.
Below 𝑚 = 𝑁 (G) and 𝑑 = 𝑈 (G).

Note that for G = SL𝑛, the equations in the second line in Table 4 are not used.
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