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ON A CLASSIFICATION OF THE FUNCTION
FIELDS OF ALGEBRAIC TORI

SHIZUO ENDO AND TAKEHIKO MIYATA

Let II be a finite group and denote by M, the class of all (finitely
generated Z-free) II-modules. In the previous paper [3] we defined an
equivalence relation in M; and constructed the abelian semigroup 7'(II)
by giving an addition to the set of all equivalence classes in M;. The
investigation of the semigroup T(/I) seems interesting and important,
because this gives a classification of the function fields of algebraic tori
defined over a field & which split over a Galois extension of & with group
1.

The purpose of this paper is to obtain information on the structure
of the semigroup T'(I).

We will recall the definitions given in [2] and [3]. A I/-module is
called a permutation //-module if it can be expressed as a direct sum of
{ZII|I1,} where each II; is a subgroup of /I. Further a II-module M is
called a quasi-permutation II-module if there exists an exact sequence
0->M-—-S—8—0 where S and S’ are permutation //-modules. The
dual module Hom, (M,Z) of a II-module M is denoted by M*. The
augmentation ideal of ZII is denoted by I, and the dual module I} of I,
is called the Chevalley’s module of II ([1], [2]).

Let k be a field. Let K be a Galois extension of k with group = I
and let M be a II-module with a Z-free basis {u,, u,, - -+, u,}. Define the
action on the rational function field K(X,,X,, ---,X,) with »n variables
X,X,, ---,X, over K by putting, for each sl and 1 < 1< n, oX;) =
1%, X7%¥ when o-u; = > 7., myu;, m;;eZ, and denote by K(M) K(X,, X,,
-+, X,) with this action of 7. It is well known ([7]) that there is a
duality between the category of all algebraic tori defined over k& which
split over K and the category of all //-modules. In fact, if T is an
algebraic torus defined over k& which splits over K, then the character
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group X(T) of T can be regarded as a I/-module, and conversely, if M
is a I7-module, then there is an algebraic torus T defined over k which
splits over K such that X(T) = M as II-modules. It should be noted that
the function field of an algebraic torus T defined over %k which splits
over K can be identified with the invariant subfield K(X(T))" of K(X(T)).

For II-modules M and N we define a relation M —(;—N if, for any
Galois extension K of k with group = II, there exist variables X, X,, ---,
X, and Y,,Y,,---,Y, such that K(M)*(X,,X,, ---,X,) is k-isomorphic to
to K(N)*(Y,,Y,,---,Y,). Then this is evidently an equivalence relation
in M;. Let T(II) be the set of all equivalence classes in M, and denote
by [M] the equivalence class containing M e M. Define an addition in
TUD) by [M]+IN1=[M®N] for M,Ne M,;. This makes T(II) an
abelian semigroup with unit element [0]. It is noted that, by the Swan’s
theorem ([12] and [8], (1.2)), a II-module M is a quasi-permutation II-
module if and only if [M] =[0] (G.e., M - 0). The subgroup of TUI)
consisting of all invertible elements in T(7) is denoted by T?(II).

As in [3] denote by C(ZII) the projective class group of ZII and
define CUZII) = {[A]—-[ZH]e C(ZI)|U is a quasi-permutation, projective
ideal of ZII}. Then C%ZII) is a subgroup of C(ZII) and the factor group
C(ZII)]CYZII) can be regarded as a subgroup of T9(Il). Let Q2,; be a
maximal order in QII containing ZII and denote by C(2,,) the projec-
tive class group of 2,;. It has been shown in [3] and [4] that, for a
fairly extensive clags of finite groups I7, C(ZII)]C«(ZII) = C(2,;). In such
cases, the group C(2.;) can also be regarded as a subgroup of T9(/I).
Further denote by G(ZII) the Grothendieck group of ZII. Let Bi(ZII)
be the subgroup of G(ZII) generated by all the images of permutation
II-modules in G(ZII) and define Sw(ll) = G(ZII)/Bs(ZII). Then there
exist natural homomorphisms 6, : T(IT) — Sw(Il) and w,: C(2 ;) — G(ZII).

Our main results in this paper are the following:

[I1 The following statements on a finite group II are equivalent:
1) Ewvery Sylow subgroup of II is cyclic.

@ TUhH = TD), i.e., TUI) ts a group.

3 UxleTUD.

[II1 The following statements on a finite group Il are equivalent:
1) I is a cyclic group or a direct product of a cyclic group of order
n and o group with generators p,t and relations p* = 7* =1 and t7'pr
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= p™' where d =1, k = 3, and both n and k are odd integers such that
(n, k) =1.
Q) I% is a quasi-permutation I[-module, t.e., I
(8) The order of [I¥] in T(I) is finite.

0.

(x)

(III1 If II is a finite p-group, then T(I]) = C(ZII)/CUZID).

[IV] The following statements on o finite group Il are equivalent:

) I is (i) a cyclic group, (ii) a dihedral group of order 2p° where
p is an odd prime and ¢ = 1, (iii) a direct product of a cyclic group of
order q7 and a dihedral group of order 2p° where f,c =1, p and q are
odd primes and p is a primitive g’ (q — 1)-th root of wunity modulo q’,
or (iv) a generalized quaternion group of order 4p° where p is an odd
prime congruent to 3 modulo 4 and ¢ = 1.

@ TUD = CZIDH|CUZID) = C(Qzp)-

B) TUID is a finite group.

[V] The following statements on a finite group II are equivalent:

1) TUD = CRyp) and og: C(Q 45 — G(ZII) 1is a monomorphism.

Q) TUD =TUD and 0,: TUII) — Sw(Il) is an isomorphism.

3) The dual module of o quasi-permutation II-module is always o
quasi-permutation II-module.

@ If 0-M —-M-—M'—0 is an exact sequence of II-modules and
any two of M', M, M" are quasi-permutation II-modules, then the third
one is a quasi-permutation II-module.

[II] is a supplement to [2], (1.9) and [13], Cor. to Th. 7. [III], [IV]
and [V] can be regarded as generalizations of the results in [3], §5.

§1. Let Il be a finite group. Let M; be the class of all /I-modules,
let I; be the class of all projective (left) ideals of ZII and let S, be the
class of all permutation //-modules. Further define:

H;={MecM;|HUlI'M) =0 for every subgroup II’ of II};
Dy ={MeM;|M®M =S for some M'e M; and SeS;};
Ly={MeM;|MDOS =ADS for some Acl; and S,S ¢S}

Then it is easily seen that

Si
S L C Dy CH, S M.

I, &
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LEMMA 1.1. For every M c M, there exists an exact sequence

0 N S M 0
of II-modules with Ne Hy and SeSjy.

Proof. We can construct an epimorphism ¢:S— M, SeS; such
that, for every subgroup I’ of 11, ¢/S™ : S — M™" is an epimorphism. If
we put N = Kery, we have an exact sequence 0 - N —S—M — 0.
From this we get the exact sequence

S’
0—0s N7 5 gm #1570

Since ¢/S™ is an epimorphism and H'(II’, S) = 0, it follows that H'(II’, N)
= 0, and therefore N c H.

M™ H\(II')N) — HI’,S) .

LEMMA 1.2 ([6]). A II-module M 1is contained in D, if and only
if any exact sequence 0 - N — L — M — 0 of II-modules with N ec Hp
splits.

Proof. The only if part is obvious and the if part follows directly
from (1.1).

Let M,N e M. Define a relation M ?N if, for every Galois ex-
tension K of k£ with group = II, K(M)? is k-isomorphic to K(N)Z. It is
evident that if M = N then M - N.

LEMMA 1.3 ([81,[6]). Let 0N —- L —- M — 0 be an exact sequence
of II-modules with M e D,. Then L TN ® M.

Proof. See [8], (1.2.2) or [6], (1.4).

LEMMA 1.4. Let M be a II-module. Then Me D, if and only if
M e Dy, for every Sylow subgroup II’ of II.

Proof. The only if parf is obvious. Suppose that M e D, for every
Sylow subgroup /I’ of 7II. By (1.1) there exists an exact sequence 0 —
N—-S—-M-—0 of II-modules with NeH,; and SeS;. According to
(1.2) this sequence is II’-split for every II’. Then this is also I7-split,
as is well known, and therefore M@ N = S. Thus Me D,.

For » = 1 we denote by 9,(X) the n-th cyclotomic polynomial and
by ¢. the primitive n-th root of unity.
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THEOREM 1.5. The following statements on a finite group II are

equivalent :
(1) Ewvery Sylow subgroup of II is cyclic.
(2 Hp = Dy.

@) TUD =T, i.e., TUI) is a group.
@ UEleTUD.

Proof. To show (1) = (2) we may assume by (1.4) that I is a cyclic
p-group. Let I = {(¢> and |/I| = p’. By induction on ¢ we will prove
that H; = D,. Let MeH, and put M'={ue M|@,{0)u = 0} and M" =
M/M’'. Then we have an exact sequence 0 - M — M — M" — 0 of II-
modules. For every subgroup I’ of II we have H(II',M’) = H'II', M)
= 0, because M'"" = 0. Since M ¢ H, it follows from this that M" ¢ H.
Here M” can be regarded as a 17/{¢”"*>-module. Therefore by induction
we have M"” e Dy,0t-1, & Dy, hence M” @ N = S for some N e My, ot
and Se Sy, »-1y. Thus we get an exact sequence 0 - M > M AN — S
— 0. On the other hand, M’ can be considered as a Z[{,]-module. Since
Il is a cyclic p-group, we can find an exact sequence 0 - M — T —
T"®UA— 0 of II-modules where T,T' ¢ S, and A eI,. Forming the push-
out of M - M@ N we get the exact sequence 0 - MEN->TPHS —

l
T

T"®UA—-0. Since M @ N ¢ Hy, this sequence splits, hence ¥ENRAP T’
=T®S. Consequently we have M e D,, which proves that H, = D,.
Next suppose that H; = D,. Let MeM,. Then by (1.1) there exists
an exact sequence 0 - L — S — M* — 0 of II-modules with Le H, and
SeS;. Dualizing this we get an exact sequence 0 - M — S — L* — 0.
By assumption we have Le D; and so L* ¢ D,. Hence we have, by (1.3),
M® L* -0 which shows that [M]e T9(I). Thus T(I) = T(II). This
proves (2) = (8). The implication (3) = (4) is obvious. Finally suppose
that [I%]e T*(JZI). Then I+ @ N - 0 for some N e M. Therefore there
exists an exact sequence 0 - S’ - S —» I, ® N* - 0 with S,S’ ¢ S,;. From
this we get the exact sequence

0 — H'(Il,1,) ® H'(II, N*) —> H¥II, §) .

However H'(II,I1;) = Z/|II|Z. Therefore H*II,S’) contains an element
of order |II|. Then we easily see that every Sylow subgroup of I7 is
cyclic, which completes the proof of (4) = (1).

https://doi.org/10.1017/50027763000016408 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016408

90 SHIZUO ENDO AND TAKEHIKO MIYATA

We return to the general situation.

LEMMA 1.6. Let M be a II-module such that [Mle T9(II). Then
there exists L e Dy such that L-—(—;— M.

Proof. There is a I[I-module M’ such that M & M’ - 0. By virtue
of (1.1) there exist exact sequences

0O— M —S—N—790

0—> M —>8 — >N —>0

of II-modules where S,S ¢S, and N*, N*c H,. Since M &® M’ —0,
we also have an exact sequence 0 - MO M - T > T'— 0 with T,T' ¢ S;.

Forming the pushout of M ® M’ - S D S’, we get the exact sequence

l
T

0— T —HSEeSDPT"—>NDON —>0.

Because N*, N*c H;, we have NON' @ T=SP®S DT and so N,N’ e D,,.
From this we get the exact sequence

0O— M—SENPT—SHESPT — 0.
Then from (1.3) it follows that M - N’. Thus L = N’ is as desired.

PROPOSITION 1.7. Let II be a finite group. Then the group T(II)
18 finitely generated.

Proof. By (1.6) each element of T9(II) has a representative in Dj.
Then, according to [5], (5.8), T?(I) is finitely generated.

The authors do not know whether, for any finite group 77, the semi-

group T(II) is finitely generated or not.

§2. In this section we will study the Chevalley’s module I} more
precisely. The torsion part of an abelian group A will be denoted by

t(4).

LEMMA 2.1. Let II be a finite group such that (I%)™ - 0 for some
n>0. Then:

1 JEH)™ 0 for every subgroup II' of II;

)

@ TFe)™
Proof. Let I’ be a subgroup of I with [[I:II'] =m. Then it is

o 0 for every normal subgroup II' of II.
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easily seen that I, = I,, @ ZII’™ " as II’-modules and therefore we have
If = It @ ZI'™ . This shows that (I%)™ o 0. Next suppose that
II’ is a normal subgroup of /I with [/I:II'l = m. Then we have I%.
= ZI I [(Senm oll’) and  ZI[IT ® gy 1§ = ZIT[IT' [0 Fopreym oI1).-
Therefore ZI/II' Qup 15U ZI]II' ®,p I%) = I},;.. Since IH™ m 0,
there exists an exact sequence 0 — (I¥)™ - S — S -0 with S,S ¢S;.
Tensoring this with ZII/II’ over ZII, we get the exact sequence

(n)

(zn/n' ® 1;';) s zmmw Q8 —> 2| Q' —> 0.

Then Im ¢ = (ZI/II' ®, I5[HZI 1T’ ®,; [£)™ = (I%,,)™. This shows
that (I%,,.)™ —— 0.

)

LEMMA 2.2. Let II be o finite group whose Sylow subgroups are
cyclic. Let 0N —>L— M — 0 be an exact sequence of II-modules and
suppose that H'UII',N) = 0 for every subgroup II' of II. Then L—m——
M®N.

Proof. We can construct an exact sequence 0 - N - F -V — 0 of
IT-modules where F is ZII-free. Since every Sylow subgroup of I7 is
cyclic, we have Ve H, and therefore (1.5) shows that Ve D,. Forming
the pushout of N — L, we get the exact sequence

!
F

O—L—F®PM—V —0.

By (1.3) we have FTNGBV and F@MT—L@ V. Thus LTM@N.

Let IT be a finite group whose Sylow subgroups are cyclic. Then
II is expressible as a semidirect product of a cyclic normal subgroup
{o) of order ¢ and a cyclic subgroup <{zr) of order m such that (¢/,m) =1
and for every prime ¢|m a ¢-Sylow subgroup of II is not contained in
the centralizer C(¢) of ¢. Let ¢ = 4(I) and m = m(I) and define
(D) = [Im (=) — Aut ().

THEOREM 2.3. The following statements on a finite group II are
equivalent :

@) II is a cyclic group or a direct product of a cyclic group of order
n and o group with generators p, v and relations p* =** = I and t~'pr = p~!
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where d =1, k=3 and both n and k are odd integers such that (n,k)
=1.
) I% is a quasi-permutation Il-module, i.e., I%
(8) The order of [I%] in T(I) is finite.

0.

(1)

Proof. By (1.5) we may assume that I/ is a finite group whose Sylow
subgroups are cyclic. It should be remarked that the statement (1) is
equivalent to the following one:

@) D) =1 or 2.

The implication (2) = (3) is evident. Hence we only need to prove (3)
= @) and ) = (2).

First suppose that (/1) = m(l) =2,4 or q and ¢(I) =p° c=1
where p and ¢ are distinet odd primes. Let 4 = ZII/(®,.(0)) = Z{tJ[p].
Then A is isomorphic to the trivial crossed product of Z[Z,.] and {z> and
so it is a hereditary order in QI7/(9,.(s)). Further let R = Z[{,.] and P =
(pe — 1). Then P is a prime ideal of R and both R and B can be regarded
as A-modules. According to a result in [9] we have A= RPRD - - - PR
as A-modules. It is easily seen that all of 4, 4*, B and R* are quasi-
permutation I7-modules. Therefore, when (/I) =2, we have EBTJ— 0
and P* e 0. However, when #(/I) =4 or ¢q, we have *@ = 0 for
any j > 0. In fact, if ®*¥ - 0, then there is an exact sequence 0 —
S — S — PP -0 with S, SeS,;. Tensoring this with 4 over ZII and
eliminating the torsion parts, we get

A(u) (_B R(v) @ SBZ(W) @ §B(j) ~ A(u’) G_) R(v’) @ §B2(w') When ?:(H) — 4
and
A(u) (_D R(‘o) @ §B(j) ~ A(u’) (_B R(v') When ’l:(ﬂ) _ q s

where wu,v,w,u,v’,w’ are non negative integers. This contradicts the
Rosen’s result ([9)). Now the /I-module @,.0)I, has a free basis

{2,0)(0" — 1), Dyel0)(0°7° — 1), Dpel0)(2? — D}ocacpe-1,0<8<mem

and 9,.)1; = Iy, ,pc-1, as I[I-modules. Therefore 4®,; I, is torsion-free
and we have an exact sequence

0—Ipype-y~—>Ip——> ARXI;—>0.
zZlr

It is easily seen that B, A) = 0 for every subgroup II’ of II. Since
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4 is hereditary, we have AeJr, (4 RzrI)*) = 0 for every subgroup 11’
of II. Then, according to (2.2), we have I% 5 Do @ (A @z I)*.
Tensoring the exact sequence 0 — I, — ZII — Z — 0 with A over ZII, we
get the exact sequence

0—ARI;—> A—>R/B—>0.
zn

Forming further the pullback of 4 — R/RB, we see that (UQ,;[;) DR

1
R
= AP gB Since A* e 0 and R* e 0, (/1 ®zn I]z)* o s/B*‘ Thus we
have
I}kl"'m—l;l;/(ap‘"b@%* ......... (a) .

B)=(1): Suppose that i«(/lI) > 2. To show that I/ does not satisfy
(3) we may suppose by (2.1) that ¢(/I) = m(ll) =4 or q and 4(II) =p
where p and g are distinct odd primes. In this case the group 17/{c>
is cyclic and so If,,y = I, - 0. By virtue of (a) we have I% o L*.
However R*¢ -0 for any j > 0. Therefore the order of [I%] in T(II)
is not finite. This completes the proof of (3) = (1).

(1) = (2): Suppose that «(II) =1 or 2. If «I) =1, then I} = I,
- 0. Hence we suppose that ¢(/I) = 2. Let ¢’ be the generator of a
cyclic group of order n and let p = o’pr*. Then (g is the normal sub-
group of II of order b = nk2¢-'. Let p be a prime divisor of k. Let
kE=pF, (p,kK)=1, and let b’ = b/p° = nk/2?~'. Further let F(X) =
[Trior Pper(X) and G(X) = F(X)/P,(X), and let I'=ZI/(F(w), I'y=
ZII|(G(w) and I', = ZII/(®,{(w). Since any of F(1),G(1) and @,.(1) is
not 0, we see that t(I" @, I;) =ty Qzp I) = t(I', Rz I;) = 0. Hence,
tensoring the exact sequence 0 — I', —» ' — I'y — 0 with I; over ZII, we
get the exact sequence

0—IQRXI;— IR — T QRQI;—>0.
zn zin zn

Because G(1) = +1, we can show that I'y®,; Z = 0. Therefore, tensor-
ing the exact sequence 0 — I, — ZIl - Z — 0 with I’y over ZII, we see
that I'y®,, I, = I'y. Let HX) = X* — 1/G(X) and [V = ZII|(H(y)). Then
there is an exact sequence 0 — IV — ZII — I'y— 0. Forming the pullback
of I'Qypl,— I, we get the exact sequence

!
zl
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0—>r'—»(rl®1,,)@zn-_>r®1,,—>o ----- ®) .
zZn zn

The group I1/{p?*> is dihedral and of order 2p° and there is a natural
epimorphism ZII/{u**y — I',. It is seen that I, ®,; Iy = I'y @ z1/¢u0% Ljcuncy
Therefore, as shown in the proof of (a), (I'; @z I)* = 0. On the other
hand, there exists the following commutative diagram with exact rows
and columns:

00— K — Iy —> T Quuply—0

0—> ZI W%y —> ZIT —> r —>0

00— Z —> Z —> Z|pZ -—0

v

0 0 0
Then K = I ,»». Thus we have the exact sequence

0—>In/<,,b/p>———>IH-—>F§IH—_—>O ........ © .

Now it is easily shown that FI“(]]’,Z’) = 0 for every subgroup II’ of II.
From the exact sequence 0 —» I"® I, - I — Z/pZ — 0 we get the exact
sequence

a-ar, r 2> A-ar, z)p%) — FI"(II’, re 1,,) 0.
zn

By a direct computation we can show that ¢ is an epimorphism. Hence,
for every subgroup II’ of II,A°II',T @, 1) = 0, and so AUI',(I' ® ;. 1,)*)
= 0. From (2.2) and (b) it follows that (I" ®,, I)* — 0, because I"*
- 0 and (I", ®,; I)* - 0. Furthermore, applying (2.2) to (c), we
have I} - I%,0my. Accordingly we can show by induction on k that
I —— I, om. Since II/{y?*y is cyclic, this concludes that IF% 0.

L)

Thus the proof of (1) = (2) is completed.

-(v)
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§3. We first give

ProPoOSITION 3.1. The following statements on a finite group II are
equivalent :

1) D=L,

@2 T = CZIH/CcY«ZI).

Proof. This is an immediate consequence of (1.6).

THEOREM 3.2. Let I be a finite p-group. Then T9(II) = C(ZII)|CY(ZII).

Proof. By (3.1) it suffices to show that D, = L,. If M e D, there
are M'eD; and SeS; such that M® M’ = S. Since II is a p-group,
for every subgroup /I’ of II,Z,/1/II’ is an indecomposable Z,l/-module.
It is well known that the Krull-Schmidt theorem holds for finitely gener-
ated Z,/I-modules. Hence there exists T € S, such that T, = M, as Z,II-
modules. This implies that 7" and M have the same genus. Then there
is Ael; such that M D ZII = TP® U. This proves that Mc L.

We did not succeed in determining all finite groups /I such that
T(Il) = C(ZID)/CYZII). It is shown that a finite nilpotent group I7 is
a p-group if and only if, for any M e M, such that M ® S = S for some
S’,Se Sy, there is T ¢S, whose genus is the same as that of M. Hence
our method used in the proof of (3.2) can not be applied to nilpotent
groups.

However we can determine all finite groups II such that T(I) =
C(ZI)c«z).

THEOREM 3.3. The following statements on a finite group II are
equivalent :

Q) I is () a cyclic group, (ii) a dihedral group of order 2p° where
p is an odd prime and ¢ = 1, (iii) a direct product of a cyclic group of
order q/ and a dihedral group of order 2p° where f,c =1, p and q are
odd primes and p is a primitive ¢'~'(q — 1)-th root of wunity modulo g/,
or (iv) a generalized quaternion group of order 4p° where ¢ =1 and p is
an odd prime congruent to 3 modulo 4.

2) TUh = CZIh|Ccu(zIl) = C(2zp).

B) TWI) is a finite group.

Proof. 1t can easily be seen that the statement (1) is equivalent to
the following one:

https://doi.org/10.1017/50027763000016408 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016408

96 SHIZUO ENDO AND TAKEHIKO MIYATA

1) I is (i) a cyclic group or (i) a direct product of a cyclic group
of order n and a group with generators p,t and relations p?** = t** =1
and t7lpt = p~' where ¢,d =1, p is an odd prime which is a prime in
Z[La] and 2p,n) = 1.

The implication (2) = (3) is obvious. Hence it suffices to prove (1’)
= (2) and (3) = (1)).

1) = @): It follows directly from [4], (38.6) that C(ZII)/C«ZII]) =
C(2z1). Therefore, by (1.5) and (3.1), it suffices to show that D, = L,.
In case (i) ¢ = 4(II) = |II| and m = m(l]) =1, while, in case (ii), ¢ =
LT = np®, m =m(Il) = 2? and i(lI) =2. Let ¢ be an element of I7 of order
4. In case (i) we define ¢ = ¢ and b = 4. On the other hand, in case (ii’),
we define p = o7* and b = ¢2¢7'. Then <{ux> is the normal subgroup of
II of order b. Now, by induction on b, we will prove that D, = L,.
For every b’|b, let ¥,(X) = X® —1/X* — 1. Then we can construct
the following exact sequences:

00— ZII| W) — ZI| (" (w) —> ZI | (p* — 1) —> 0,

0 — ZIT| @ (W) —> ZII| (W) —> ZI ] (1> — 1) —> 0 ,
00— ZII|F®(w) —> ZII | (x" () —> ZII|(** — 1) —> 0,

0 —> ZIT | (T4 () —> ZIT| (34 2(w) —> ZIT| (=2 — 1) —> 0 ,
0 —> ZIT (@ () —> ZIT | (x*2(w) —> ZI | (@om=1 — 1) —> 0,

where, for 1 <4 <2t —1, b;||b and, for 1 <7 <t — 1, TF9X)[T,,,_(X),
TPX) ¥, (X)), yP(X) =TPX)(X" — 1) = TYP(X)(X %+ — 1), yO(X) =
X® —1 and ¥P(X) = 9,(X). Let MeD,. Then, for any b’|b, M/(y* —
1M € Dy, For any ¥'(X)|X® — 1 we define My = M /¥ ()M [t(M |V (wM).
Tensoring the above exact sequences with M over ZII, we get the exact
sequences :

0— My —> M —> M/(p* — DM —> 0,
0__)Mwu) —>Mx(1) -—>M/(p’” —_ 1)M-———)O ,
0———>Mw(z) ———>Mxm "——)M/(ﬂba — l)M‘_)O ’

------------

0 e Mgr (t—1 M =1 ]‘4’/(/1bm_n o l)M — 0 )

x

https://doi.org/10.1017/50027763000016408 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016408

FUNCTION FIELDS OF ALGEBRAIC TORI 97
0 —> My, —> M- —> M /(P> — DM —> 0 .

Since M/(x* — 1)M € Dy e, applying (1.3) repeatedly, we get
MD @ M| (g — DM) === M,, ® 69 M| (- — M) .

By induction on b we have M/(p** — 1)M € Ly, © Ly for each 1 <7 <
2t — 1. Accordingly we only need to show that M, —— = A for some
Aecl;. In case () ZI/(Dy(w) = ZI,], and therefore there exist A e I,
and k& = 0 such that M, ® ZII = Z[(,]® @ UA. Hence M,, —— = A. In case
(ii") we put 4 = ZII/(®s()). Then /1—‘— 0. If d=1, 4 is isomorphic
to the trivial crossed product of Z[{,] and <(z>. Let R = Z[{,] and L =
;e — 1). Then both R and % can regarded as 4-modules. By assumption
B is the unique prime ideal of R ramified over Z[{,1C Z[{,]”. There-
fore 4= R®P as A-modules and any ambiguous ideal of R has the
same genus as that of R or B. Hence there exist A eI, and u,v =0
such that M,, @ ZIl = R @ PV @Y. Since B ——0 and B—— 0, this
implies that M,, e A If d=2, 4/Cpe — DA = ZpZ[X]]/(@re(X)) and
80 A/, — 14 is a field because p is a prime in Z[{,;.]. Therefore 4
is a maximal order in Q4 and Q4 is a division ring. Then we have
M, @ ZII = A ® % for some Ael; and u = 0 and so M,,—— = . Thus
the proof of (1) = (2) is completed.

3= @): Assume that II does not satisfy the condition (1’). We
will prove that T(II) is not a finite group. If I has a noncyclic Sylow
subgroup, this follows from (1.5). Hence we may assume that every
Sylow subgroup of II is eyelic. If i(ZI) > 2, it follows from (2.3) that
T() is not finite. Therefore we may further assume that «(/l) < 2. If
T(I) is a finite group, then, for any normal subgroup I’ of II, T(II/II')
is a finite group. Hence we only need to show that T(I) is not finite,
in each of the following cases:

(a) I is a group with generators o,z and relations ¢??* = 72 = | and
76t = ¢7! where p, and p, are distinct odd primes.

(b) II is a group with generators o,r and relations ¢"? = ¢** = I,
d=1, 76"t = ¢ " and oPr = 7¢®? where p is an odd prime which is not
a prime in Z[{,.] and 2p,n) = 1.

We define y = ¢ and b = p,p, in case (a) and g = or® and b = np2¢!
in case (b). Let 4 = ZII/(®,(r)). If II has the type (a) or the type (b),
d = 1, then 4 is isomorphic to the trivial crossed product of Z[,] and <{z).
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Further let R = Z[{,]. Then 4 —— 0 and R —— 0. There is an ambigu-
ous ideal £ of R such that 4 = RG—)Q Then we also have Q———O
If TeSy AT = R® @ Q™ for some u, v = 0. In each case we can ﬁnd
an ambiguous ideal © of R whose genus is different from those of R
and ©. Now we can see that (&%) e 0 for every 7> 0. In fact,
if (@)W - 0, there is an exact sequence 0 - S — S — &P -0 of
IT-modules with S/, S e S,;. Tensoring this with 4 over ZII and eliminating
the torsion parts, we get @9 @ AS’ = AS and so &Y D R™ G Q™ = R®"
@ Q" for some u,v,u,v’ = 0, which is a contradiction. Thus T(I) is
not a finite group. Finally suppose that II has the type (b) and d = 2.
Since p is not a prime in Z[{,.,.], 4 is a non-maximal hereditary order in
Q4. There is an ideal £ of 4 whose genus is different from that of 4
such that QQ = Q4. It is easily seen that, if II’ is a proper subgroup of
II, then A-ZII|II’ = 0. Hence we can show that (Q*) - 0 for every >0,
and so T(II) is not a finite group. This completes the proof of (3) = (1').

§4. Let I' be a ring with unit element. We denote by G(I") the
Grothendieck group of the category of finitely generated I'-modules. Let
II be a finite group. Then there is a natural epimorphism y;: G(ZII)
— G(QII). There is also a natural homomorphism w,: C(2,,) — G(ZII).
It was shown in [11] that the sequence C(2,;) —%> G(ZIT) %> G(QIT)
— 0 is exact.

Let K be an algebraic number field and let B be the ring of all
algebraic integers in K. Let X be a central simple K-algebra. We denote
the completion of K at a valuation » of K by K,. It is said that an
archimedian valuation v of K is ramified in ¥ if K, ®, Y is isomorphic
to a full matrix algebra over the quaternion field. Denote by I, the
group of all fractional ideals in K and define P; = {aR e Ix|v(ax) > 0 at
every archimedian valuation v ramified in X}. Let 2 be a maximal R-
order in Y. It was proved in [10] that C(2) = I/P%.

Suppose that II is a finite group whose Sylow subgroups are cyeclic.
Let 3 be a simple component of QII. Let K; be the center of 3 and
let R, be the ring of all algebraic integers in K;. Define II; = Ker (I/
— %) and let I, = (05> be the maximal normal cyclic subgroup of II/II ;.
Further put ay = |II;||/1;|and by = |1;]. We have X = QII/Il;/(®,,(05))
and so X' can be expressed as a crossed product of Q((,,) and I1/11;/{os).

LEMMA 4.1. Let II be a finite group whose Sylow subgroups are
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cyclic.
Q) If, for each simple component X of QII, every prime divisor of
as in Ry is contained in P, then wg: C(Q2,5) — G(ZII) is a monomorphism.
@) If wy: C(Q2zp) — G(ZII) is a monomorphism, then, for each simple
component X of QII, every prime divisor of by in R; is contained in P%.

Proof. (1) It suffices to prove that, for any exact sequence 0 — M’
— M — M" — 0 of II-modules, 2,;M ® Q,, = Q,u:M @ Q,;M" ® Q. Let
3 be any simple component of QII, and let 4 and 2 be the images of
ZIl and 2, under the projection QIT — 3, respectively. Now we will
show that QM ® Q = QM' @ QM” ® 2. Taking the cohomology as II;-
modules, we have the exact sequence:

0— Mms — M7s s yrms s prar, )

This yields the exact sequences.

0 Mz Mn= L 0

0—L—>M'": —>X —>50

where L=Im f, X=Img and |II;|X =0. Let 0-N —->N—->Y -0
be an exact sequence where N’, N are II/Il;-modules and a%Y = 0 for
some 8 > 0. Then a$02N C ON’. Since C(2) = I,/Ps and every prime
divisor of a; in K is contained in P}, we have QN @ Q = QN' D Q. Let
Uy =>.enyc. For any Il-module N ¥;N € N72 and |II;|N"* C ¥;N,
and so N2 @ Q = QU ,N® 2. As is easily seen, QU ;N = ON. Thus
OND R = QN7 D 2. Applying these to (x), we get QM D Q2 = QM7 P 2,
QMO =QM PR and PM"PR=2M"": PR =RLD L. Hence we only
need to prove that QM7 PR =QM'":DRLDP L. Therefore it suffices to
prove, under the assumption that I7; = {I}, that QM SR = 2M' ®L2M" D L.
To simplify our notation we write ¢ =o;, b = by, K = K; and R = R;.
If IT is cyclic, then 4 = £. On the other hand, if I7 is not cyclic, then 4
is a crossed product of Z[¢,] and II/{s> and therefore, for every prime
ideal p of R which does not contain b, 4, = 2, Since |II|2,,; C ZII,
we can find £ > 0 such that b2 C 4. Let N be a II-module and define
N?% = {ue N|Dy(o)u = 0}. Then N% C AN and bAN C N%, and therefore
OND Q = OQN» D 2. Returning to the sequence 0 - M’ - M — M" — 0,
we get the exact sequence:

0 —> M —> M®» —> M"» —> U —> 0
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of A-modules where bU = 0. This can be separated into two short exact
sequences :

0 M M® > L 0,

0 > L M U 0.

Since b2 C 4 and bU =0, QM D Q = QM D QLD Q = QM'» D QM"%
®02. However QM @ Q= QM*»D 2, QM D Q= QM'>» P 2 and 2M" @ 2
= QM D 2. Thus QM D Q2 = QM ® Q2M" @ Q.

(2) Let X be a simple component of QI and let p be a prime divisor
of by in R;. In order to show that pe P, we may assume that II; =
{I}, and hence we can use the notation as in the proof of (1). There is
an exact sequence

0 N Q X 0

of ©2-modules where X is a simple 2-module such that pX = 0. Since
C() = Ix/P%, we only need to prove that N® 2 =020®D 2. Let p be a
rational prime such that pZ =9 N Z and let b = p°b’, p\b’. Further
let 2" = QII/(9,.(0)) and let A’ and 2’ be the images of ZII and 2., under
the projection QII — 3’, respectively. Then A = ZII/(@,(0)). Since
9,.(Ly) € p, X can be regarded as a A-module. We see that 4, = 2, and
so X can be regarded as a £2’-module. Therefore there is an exact
sequence

0 N’ Qv — X 0,t>0

of 2’-modules. Forming the pullback 2 — X we get PO N = NP Q2'®,

1
Q/(t)

Since w;: C(2,,) — G(ZII) is a monomorphism, the natural epimorphism
G(Qzn) — G(ZII) is an isomorphism ([11], (5.4)). Then G(2) ® G(2’) is the
direct summand of G(2;;) and so G(Q) N G') =0 in G(2,,. Hence
the fact that PO N = N@ 2'“ implies that NO Q2 =2@® L2 and NV
= 2¢+*v Thus the proof of (2) is completed.

We denote by Bg(ZII) the subgroup of G(ZII) generated by all the
images of permutation I7-modules in G(ZII) and define Sw{l) =
G(ZII)|By(ZII). Then there exists a natural homomorphism 4;: To(I)
— Sw(II). We will denote the image of a II-module L in G(ZII) (resp.
Sw(D) by <L) (resp. {L}).
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THEOREM 4.2. The following statements on a finite group II are
equivalent :

). II is one of the following groups: (i) a cyclic group of order n
where for every m|n any prime ideal of Z[Z,] containing n is principal.
(ii) o dihedral group of order 2p° where ¢ =1 and p is an odd prime.
(iil) a direct product of a cyclic group of order q' and a dihedral group
of order 2p¢ where f,c=1, p and q are odd primes, p is a primitive
Q' q — 1)-th root of unity modulo q’, for every 1< f/ < f any prime
ideal of Z[C,s] containing 2 is principal and for every 1< f' < f and
every 1<c¢ <c any prime ideal of Z[lyr,lpe + (5ol containing q s
principal. (v) a generalized quaternion group of order 4p° where ¢ =1,
» is an odd prime congruent to 3 modulo 4 and for every 1 < ¢’ < ¢ any
prime ideal of ZI,. + (;»] containing 2 is generated by o totally positive
element.

2) TUD = C(Rzp) ond oy: C(Q,) — GZII) is a monomorphism.

@) TUD = TUI) and 0,: T(II) — Sw(Il) is an isomorphism.

(4) The dual module of a quasi-permutation Il-module is always a
quasi-permutation II-module.

®B) If 0-M —-M-—>M'’'"—-0 is an exact sequence of II-modules and
any two of M',M,M"” are quasi-permutation II-modules, then the third
one 18 o quasi-permutation II-module.

Proof. From (3.3) and (4.1) it follows immediately that (1) and (2)
are equivalent. The implications (8) = (5) = (4) are obvious. Hence we
only need to prove (1) = (3), (3) = (2) and (1) = (3).

1) = @): We suppose that I7 satisfies (1). Then by (1.5) and (3.3)
we have T(I) = T'(Il) = C(2,,). Let [A] — [2,,]e C(Q,,) such that
0,1 — [22) =0, ie., (A = (Rzz). We will show that AP Q,, =
2.0 ® 2z There exist S,,S;e€8; such that <A DS = (2,, D S).
Hence we have exact sequences

00— L/ —ABS,®L—L"—0,
00— L — 02,8, L—L"—0

with L/, L,L"” ¢ M;. Therefore, by virtue of (4.1), we have
AD 2218 = 227 D 2448,

Let 2 be a simple component of QII and let 4 and 2 be the images of
ZII and £2,; under the projection QI — X, respectively. Now it suffices
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to show that QAP L =L ® L. If 3 is a division ring, then 028, = 28,
= Q® for some t >0 so that QU D L = 2D L. On the other hand, if ¥
is not a division ring, then A is the trivial crossed product of Z[{,p.]
and a cyclic group <{z) of order 2 where 0 < f/ < f and 1 < ¢/, because
Il is one of the groups as in (1). Let R = Z[{ype] and B = (e — 1).
Then P is a prime ideal of . Both R and f can be regarded as 4-
modules and 4 = R® P as A-modules. Further we see that AS, = A%
@ R® and A4S, = A% @ R® for some u,, v,, U,, v, = 0. Consider the exact
sequence 0 >R — R - R/P — 0. Since p-(R/P) =0, we get QR = OR
and so Q= QRQRP P = LR P LK. Hence we have 028, = QR™**® and
08, = QR™*v_  Therefore QU @ QR0 = QP QR+, Thus we can
conclude that Q% = 0.

3) = (2): Suppose that T(I) = T(II) and 6,: T(II) — Sw(II) is an
isomorphism. Since Sw(II) is a finite group, T(/I) is so. Then by (3.3)
we have T(II) = C(2;,). Considering the commutative diagram

CQ,n) 2> G(ZID)

|

T = Sw(Il) ,

we see that w,: C(2;,) — G(ZII) is a monomorphism.

(4) = (8): Suppose that IT satisfies (4). Then we have by (1.5) T(I)
= T9(II). Let [M]e T{I) such that 6,([M]) = (M) = 0. Then there exist
S, Se S, such that <M @S> =<S>. Hence we have exact sequences

0O— L —MpSPL—L"—0,

00— L —S®L—L"—>0

with L',L,L" ¢ M. Here we may assume by (1.5) that L’TO and
L = 0. By assumption L’* e 0 and therefore there exists an exact
sequence 0 > L/ - T —T"'— 0 with T,7"¢S,;. Forming the pushout of
L' - S® L, we get the following commutative diagram with exact rows

|
T

and columns:
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0 0

00— L/ — S®OL—L"—>0

QO— T — N —L"—0

By assumption we have L* - 0. Then by (1.3) N* - 0, and again
by assumption N 5 0. Therefore we see by (1.3) that L - 0. Similar-
ly, forming the pushout of L/ - M P S @ L, we can show that M P L

|
T

o 0. Consequently we have M —— M @L—— 0. This proves that
Op: TUI) — Sw(I) is an 1somorphlsm

Let II = <o) be a cyclic group of order n and let L be a I/I-module.
For every m|n we define L°» = {ue L|®,(c)u = 0}.

COROLLARY 4.3. Let II be a cyclic group of order n. If II satisfies
the conditions in (4.2), then it satisfies the following condition:

6) A II-module M is a quasi-permutation II-module if and only if,
for every m|n, M’ is a free Z[{,l-module.

Proof. It has been shown in the proof of (4.2) that if L is a II-
module then for every m|n L°» = Z[{,]L. Hence the only if part follows
immediately from (4.1). Let M be a II-module such that for every m|n
Mo is Z[C,]-free. By (1.5) and (3.3) there is a projective ideal ¥ of ZII
such that M ® U - 0. Then M’ @ A~ is Z[{,l-free, hence A’ is so.
Therefore by [3], (2.5) A SO 0. Thus MT 0.

(4.2) and (4.3) show that the conjecture given in [3], p. 416 is true.
It should be noted that the converse to (4.3) is not true ([3]).
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