Closed Ideals in Some Algebras of Analytic Functions

Brahim Bouya

Abstract. We obtain a complete description of closed ideals of the algebra $\mathcal{D} \cap \text{lip}_{\alpha}$, $0 < \alpha \leq \frac{1}{2}$, where \mathcal{D} is the Dirichlet space and lip_{α} is the algebra of analytic functions satisfying the Lipschitz condition of order α .

1 Introduction

The Dirichlet space $\mathcal D$ consists of the complex-valued analytic functions f on the unit disk $\mathbb D$ with finite Dirichlet integral

$$D(f) := \int_{\mathbb{D}} |f'(z)|^2 dA(z) < +\infty,$$

where $dA(z) = \frac{1}{\pi} r dr dt$ denotes the normalized area measure on \mathbb{D} . Equipped with the pointwise algebraic operations and the norm

$$||f||_{\mathcal{D}}^2 := \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})|^2 dt + D(f) = \sum_{n=0}^{\infty} (1+n)|\hat{f}(n)|^2,$$

 ${\mathbb D}$ becomes a Hilbert space. For $0<\alpha\leq 1$, let ${\rm lip}_\alpha$ be the algebra of analytic functions f on ${\mathbb D}$ that are continuous on $\overline{{\mathbb D}}$ satisfing the Lipschitz condition of order α on $\overline{{\mathbb D}}$:

$$|f(z) - f(w)| = o(|z - w|^{\alpha})$$
 $(|z - w| \to 0).$

Note that this condition is equivalent to

$$|f'(z)| = o((1-|z|)^{\alpha-1})$$
 $(|z| \to 1^-).$

Then, \lim_{α} is a Banach algebra when equipped with the norm

$$||f||_{\alpha} := ||f||_{\infty} + \sup\{(1 - |z|)^{1 - \alpha} |f'(z)| : z \in \mathbb{D}\}.$$

Here $||f||_{\infty} := \sup_{z \in \mathbb{D}} |f(z)|$. Unlike the case when $0 < \alpha \le 1/2$, the inclusion $\lim_{\alpha} \subset \mathcal{D}$ always holds provided that $1/2 < \alpha \le 1$. In what follows, let $0 < \alpha \le 1/2$

Received by the editors June 16, 2006.

This work was partially supported by the Action Integrée Franco-Marocaine No. MA/03/64.

AMS subject classification: Primary: 46E20; secondary: 30H05, 47A15.

[©] Canadian Mathematical Society 2009.

and define $A_{\alpha} := \mathcal{D} \cap \text{lip}_{\alpha}$. It is easy to check that A_{α} is a commutative Banach algebra when it is endowed with the pointwise algebraic operations and the norm

$$||f||_{\mathcal{A}_{\alpha}} := ||f||_{\alpha} + D^{1/2}(f) \qquad (f \in \mathcal{A}_{\alpha}).$$

In order to describe the closed ideals in subalgebras of the disc algebra $A(\mathbb{D})$, it is natural to make use of Nevanlinna's factorization theory. For $f \in A(\mathbb{D})$ there is a canonical factorization $f = C_f U_f O_f$, where C_f is a constant, U_f an inner function that is $|U_f| = 1$ a.e on \mathbb{T} and O_f the outer function given by

$$O_f(z) = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|f(e^{i\theta})|d\theta\right\}.$$

Denote by $\mathcal{H}^{\infty}(\mathbb{D})$ the algebra of bounded analytic functions. Note that A_{α} has the so-called F-property: if $f \in \mathcal{A}_{\alpha}$ and U is an inner function such that $f/U \in \mathcal{H}^{\infty}(\mathbb{D})$, then $f/U \in \mathcal{A}_{\alpha}$ and $\|f/U\|_{\mathcal{A}_{\alpha}} \leq C_{\alpha}\|f\|_{\mathcal{A}_{\alpha}}$, where C_{α} is independent of f (see [1,9]). Korenblum [6] has described the closed ideals of the algebra H_1^2 of analytic functions f such that $f' \in H^2$, where H^2 is the Hardy space. This result has been extended to some other Banach algebras of analytic functions, by Matheson for $\lim_{\alpha \to \infty} \{f\}$ and by Shamoyan for the algebra $\mathcal{A}_{\alpha}^{(n)}$ of analytic functions f on \mathbb{D} such that

$$|f^{(n)}(\zeta_1) - f^{(n)}(\zeta_2)| = o(\omega(|\zeta_1 - \zeta_2|)) \text{ as } |\zeta_1 - \zeta_2| \to 0,$$

where n is a nonnegative integer and ω is an arbitrary nonnegative nondecreasing subadditive function on $(0, +\infty)$ [8]. Shirokov [9, 10] has given a complete description of closed ideals for Besov algebras $AB_{p,q}^s$ of analytic functions and particularly for the case s > 1/2 and p = q = 2

$$AB_{2,2}^s = \left\{ f \in A(\mathbb{D}) : \sum_{n>0} |\widehat{f}(n)|^2 (1+n)^{2s} < \infty \right\}.$$

Note that in the case of $AB_{2,2}^{1/2} = A(\mathbb{D}) \cap \mathcal{D}$ the problem of description of closed ideals appears to be much more difficult (see [2,4]). The purpose of this paper is to describe the structure of the closed ideals of the Banach algebras \mathcal{A}_{α} . More precisely we prove that these ideals are standard in the sense of the Beurling–Rudin characterization of the closed ideals in the disc algebra [5].

Theorem 1.1 If \Im is a closed ideal of A_{α} , then

$$\mathbb{I}=\left\{\,f\in\mathcal{A}_\alpha:f_{\mid E_{_{\mathbb{J}}}}=0\text{ and }f/U_{_{\mathbb{J}}}\in\mathcal{H}^\infty(\mathbb{D})\right\},$$

where $E_{_{\mathbb{J}}} := \{z \in \mathbb{T} : f(z) = 0, \ \forall f \in \mathbb{J}\}$ and $U_{_{\mathbb{J}}}$ is the greatest common divisor of the inner parts of the non-zero functions in \mathbb{J} .

Such characterization of closed ideals can be reduced further to a problem of approximation of outer functions using the Beurling-Carleman-Domar resolvent

method. Define $d(\xi, E)$ to be the distance from $\xi \in \mathbb{T}$ to the set $E \subset \mathbb{T}$. Suppose that I is a closed ideal in \mathcal{A}_{α} such that $U_{\alpha} = 1$. We have $Z_{\alpha} = E_{\alpha}$, where

$$Z_{\mathfrak{I}} := \{ z \in \overline{\mathbb{D}} : f(z) = 0, \forall f \in \mathfrak{I} \}.$$

Next, for $f \in \mathcal{A}_{\alpha}$ such that

$$|f(\xi)| \le Cd(\xi, E_{\tau})^{M_{\alpha}} \qquad (\xi \in \mathbb{T}),$$

where M_{α} is a positive constant depending only on A_{α} , we have $f \in \mathcal{I}$ (see Section 3 for more precisions). Now, to prove Theorem 1.1 we need Theorem 1.2 below, which states that every function in $A_{\alpha} \setminus \{0\}$ can be approximated in A_{α} by functions with boundary zeros of arbitrary high order.

Theorem 1.2 Let f be a function in $A_{\alpha} \setminus \{0\}$ and let M > 0. There exists a sequence of functions $\{g_n\}_{n=1}^{\infty} \subset A(\mathbb{D})$ such that:

- (i) For all $n \in \mathbb{N}$, we have $f_n = fg_n \in \mathcal{A}_{\alpha}$ and $\lim_{n \to \infty} ||f_n f||_{\mathcal{A}_{\alpha}} = 0$. (ii) $|g_n(\xi)| \le C_n d^M(\xi, E_f)$ $(\xi \in \mathbb{T})$, where $E_f := \{\xi \in \mathbb{T} : f(\xi) = 0\}$.

To prove this theorem, we give a refinement of the classical Korenblum approximation theory [6–10].

2 Main Result on Approximation of Functions in A_{α}

We begin by fixing some notations. Let $f \in A_{\alpha}$ and let $\{\gamma_n := (a_n, b_n)\}_{n>0}$ be the countable collection of the (disjoint open) arcs of $\mathbb{T} \setminus E_f$. Without loss of the generality, we can suppose that the arc lengths of γ_n are less than 1/2. In what follows, we denote by Γ the union of a family of arcs γ_n . Define

$$f_{\Gamma}(z) := \exp \left\{ \frac{1}{2\pi} \int_{\Gamma} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log |f(e^{i\theta})| d\theta \right\} .$$

The difficult part in the proof of Theorem 1.2 is to establish the following.

Theorem 2.1 Let $f \in A_{\alpha} \setminus \{0\}$ be an outer function such that $||f||_{A_{\alpha}} \leq 1$, and let $N \geq 1$ and $\rho > 1$. Then we have $f^{\rho} f_{\Gamma}^{N} \in \mathcal{A}_{\alpha}$ and

(2.1)
$$\sup_{\Gamma} \|f^{\rho} f_{\Gamma}^{N}\|_{\mathcal{A}_{\alpha}} \leq C_{N,\rho},$$

where $C_{N,\rho}$ is a positive constant independent of Γ .

Remark 2.2 For a set $S \subset A(\mathbb{D})$, we denote by co(S) the convex hull of S consisting of the intersection of all convex sets that contain S. Set $\Gamma_n = \bigcup_{m>n} \gamma_m$, and let f be as in Theorem 2.1. It is clear that the sequence $(f^{\rho}f_{\Gamma_n}^N)_n$ converges uniformly on compact subsets of $\mathbb D$ to f^{ρ} . We use (2.1) to deduce, by the Hilbertian structure of \mathcal{D} , that there is a sequence $h_n \in co(\{f^{\rho}f_{\Gamma_m}^N\}_{m=n}^{\infty})$ converging to f^{ρ} in \mathcal{D} . Also, by [7, Section 4], we obtain that h_n converges to f^{ρ} in \lim_{α} for sufficiently large N. (In fact, we can prove that this result remains true for every $N \geq 1$.) Therefore, $||h_n - f^{\rho}||_{\mathcal{A}_{\alpha}} \to 0$, as $n \to \infty$.

Define $\mathcal{J}(F)$ to be the closed ideal of all functions in \mathcal{A}_{α} that vanish on $F \subset \overline{\mathbb{D}}$. In the proof of Theorem 1.2, we need the following classical lemma. (See for instance [7, Lemma 4] and [6, Lemma 24]).

Lemma 2.3 Let $f \in A_{\alpha}$ and E' be a finite subset of \mathbb{T} such that $f_{|E'} = 0$. Let M > 0be given. For every $\varepsilon > 0$ there is an outer function F in $\mathfrak{J}(E')$ such that

- (i) $||Ff f||_{\mathcal{A}_{\alpha}} \le \varepsilon$, (ii) $|F(\xi)| \le Cd^{M}(\xi, E')$

Proof of Theorem 1.2 Now, we can deduce the proof of Theorem 1.2 by using Theorem 2.1 and Lemma 2.3. Indeed, let f be a function in $A_{\alpha} \setminus \{0\}$ such that $||f||_{A_{\alpha}} \leq 1$, and let $\epsilon > 0$. For $m \ge 1$ we have

$$(fO_f^{\frac{1}{m}} - f)' = (O_f^{\frac{1}{m}} - 1)f' + \frac{1}{m}U_fO_f^{\frac{1}{m}}O_f'.$$

The F-property of A_{α} implies that $O_f \in A_{\alpha}$. Then, there exists $\eta_0 \in \mathbb{N}$ such that

$$||fO_f^{\frac{1}{m}} - f||_{\mathcal{A}_\alpha} < \epsilon/3 \qquad (m \ge \eta_0).$$

Set $\Gamma_n = \bigcup_{p>n} \gamma_p$ and $N \geq M/\alpha$ for a given M > 0. By Remark 2.2 applied to O_f (with $\rho = 1 + \frac{1}{m}$), there is a sequence $k_{n,m} \in co(\{f_{r_n}^N\}_{p=n}^{\infty})$ such that

$$\|O_f^{1+\frac{1}{m}}k_{n,m}-O_f^{1+\frac{1}{m}}\|_{\mathcal{A}_{\alpha}}<\frac{1}{m} \qquad (n\in\mathbb{N},\ m\geq 1).$$

It is clear that

$$\|O_f^{\frac{1}{m}}f_{r_n}^N-O_f^{\frac{1}{m}}\|_{\infty}\longrightarrow 0 \qquad (n\longrightarrow +\infty).$$

Then for every $m \ge 1$ we get

$$\|O_f^{\frac{1}{m}}k_{n,m}-O_f^{\frac{1}{m}}\|_{\infty}\longrightarrow 0 \qquad (n\longrightarrow +\infty).$$

So, there is a sequence $k_m \in co(\{f_{\Gamma_p}^N\}_{p=m}^\infty)$ such that

$$\begin{cases} \|O_f^{1+\frac{1}{m}}k_m - O_f^{1+\frac{1}{m}}\|_{\mathcal{A}_{\alpha}} \leq \frac{1}{m} & (m \geq 1), \\ \|O_f^{\frac{1}{m}}k_m - O_f^{\frac{1}{m}}\|_{\infty} \leq \frac{1}{m} & (m \geq 1). \end{cases}$$

We have

$$(fO_f^{\frac{1}{m}}k_m - fO_f^{\frac{1}{m}})' = (f' - U_fO_f')(O_f^{\frac{1}{m}}k_m - O_f^{\frac{1}{m}}) + U_f(O_f^{1+\frac{1}{m}}k_m - O_f^{1+\frac{1}{m}})'.$$

Since $||O_f||_{\mathcal{A}_{\alpha}} \leq C_{\alpha} ||f||_{\mathcal{A}_{\alpha}} \leq C_{\alpha}$, we obtain

$$\begin{split} \|fO_{f}^{\frac{1}{m}}k_{m} - fO_{f}^{\frac{1}{m}}\|_{\mathcal{A}_{\alpha}} \\ &= \|fO_{f}^{\frac{1}{m}}k_{m} - fO_{f}^{\frac{1}{m}}\|_{\infty} + \sup_{z \in \mathbb{D}} \{(1 - |z|)^{1 - \alpha} | (fO_{f}^{\frac{1}{m}}k_{m} - fO_{f}^{\frac{1}{m}})'(z)| \} \\ &+ D^{1/2} (fO_{f}^{\frac{1}{m}}k_{m} - fO_{f}^{\frac{1}{m}}) \\ &\leq \|fO_{f}^{\frac{1}{m}}k_{m} - fO_{f}^{\frac{1}{m}}\|_{\infty} + C_{\alpha}\|f\|_{\alpha}\|O_{f}^{\frac{1}{m}}k_{m} - O_{f}^{\frac{1}{m}}\|_{\infty} \\ &+ \sup_{z \in \mathbb{D}} \{(1 - |z|)^{1 - \alpha} | (O_{f}^{1 + \frac{1}{m}}k_{m} - O_{f}^{1 + \frac{1}{m}})'(z)| \} \\ &+ C\|O_{f}^{\frac{1}{m}}k_{m} - O_{f}^{\frac{1}{m}}\|_{\infty} D^{1/2}(f) + CD^{1/2}(O_{f}^{1 + \frac{1}{m}}k_{m} - O_{f}^{1 + \frac{1}{m}}) \\ &\leq C_{\alpha}\|O_{f}^{\frac{1}{m}}k_{m} - O_{f}^{\frac{1}{m}}\|_{\infty} + C\|O_{f}^{1 + \frac{1}{m}}k_{m} - O_{f}^{1 + \frac{1}{m}}\|_{\mathcal{A}_{\alpha}} \leq \frac{C_{\alpha}}{m}. \end{split}$$

Then, fix $\eta_1 \geq \eta_0$ such that

$$||fO_f^{\frac{1}{m}}k_m - fO_f^{\frac{1}{m}}||_{\mathcal{A}_{\alpha}} < \epsilon/3 \qquad (m \ge \eta_1).$$

We have $k_{m}=\sum_{i\leq j_{m}}c_{i}f_{\Gamma_{i}}^{N}$, where $\sum_{i\leq j_{m}}c_{i}=1$. Set $E'_{m}=\bigcup_{i< j_{m}}\partial\gamma_{i}$. Using Lemma 2.3, we obtain an outer function $F_{m}\in\mathcal{J}(E'_{m})$ such that $|F_{m}(\zeta)|\leq C_{m}d^{M}(\zeta,E'_{m})$ for $\zeta\in\mathbb{T}$ and

$$||fO_f^{\frac{1}{m}}k_mF_m - fO_f^{\frac{1}{m}}k_m||_{\mathcal{A}_{\alpha}} < \frac{1}{m}$$
 $(m \ge 1).$

Then fix $\eta_2 \ge \eta_1$ such that

$$||fO_f^{\frac{1}{m}}k_mF_m - fO_f^{\frac{1}{m}}k_m||_{\mathcal{A}_{\alpha}} < \epsilon/3 \qquad (m \ge \eta_2).$$

Consequently we obtain

$$||fO_{m}^{\frac{1}{m}}k_{m}F_{m}-f||_{\mathcal{A}_{\alpha}}<\epsilon \qquad (m\geq \eta_{2}).$$

It is not hard to see that

$$|O_f^{\frac{1}{m}}k_mF_m(\xi)| \le |k_mF_m(\xi)| \le C_md^M(\xi, E_f) \qquad (\xi \in \mathbb{T}).$$

Therefore $g_m = O_f^{\frac{1}{m}} k_m F_m$ is the desired sequence, which completes the proof of Theorem 1.2.

3 Beurling-Carleman-Domar Resolvent Method

Since $A_{\alpha} \subset \text{lip}_{\alpha}$, then for all $f \in A_{\alpha}$, E_f satisfies the Carleson condition

$$\int_{\mathbb{T}} \log \frac{1}{d(e^{it}, E_f)} dt < +\infty.$$

For $f \in \mathcal{A}_{\alpha}$, we denote by B_f the Blashke product with zeros $Z_f \setminus E_f$, where $Z_f := \{z \in \overline{\mathbb{D}} : f(z) = 0\}$. We begin with following lemma.

Lemma 3.1 Let \mathbb{J} be a closed ideal of A_{α} . Define $B_{\mathbb{J}}$ to be the Blashke product with zeros $Z_{\mathbb{J}} \setminus E_{\mathbb{J}}$. There is a function $f \in \mathbb{J}$ such that $B_f = B_{\mathbb{J}}$.

Proof Let $g \in \mathcal{I}$ and let B_n be the Blashke product with zeros $Z_g \cap \mathbb{D}_n$, where $\mathbb{D}_n := \{z \in \mathbb{D} : |z| < \frac{n-1}{n}, \ n \in \mathbb{N}\}$. Set $g_n = g/K_n$, where $K_n = B_n/I_n$ and I_n is the Blashke product with zeros $Z_{\mathcal{I}} \cap \mathbb{D}_n$. We have $g_n \in \mathcal{I}$ for every n. Indeed, fix $n \in \mathbb{N}$. It is permissible to assume that Z_{K_n} consists of a single point, say $Z_{K_n} = \{w\}$. Let $\pi : \mathcal{A}_\alpha \to \mathcal{A}_\alpha/\mathcal{I}$ be the canonical quotient map. First suppose $w \notin Z_{\mathcal{I}}$, then $\pi(K_n)$ is invertible in $\mathcal{A}_\alpha/\mathcal{I}$. It follows that $\pi(g_n) = \pi(g)\pi^{-1}(K_n) = 0$, hence $g_n \in \mathcal{I}$. If $w \in Z_{\mathcal{I}}$, we consider the following ideal $\mathcal{J}_w := \{f \in \mathcal{A}_\alpha : fI_n \in \mathcal{I}\}$. It is clear that \mathcal{J}_w is closed. Since $w \notin Z_{\mathcal{J}_w}$, it follows that K_n is invertible in the quotient algebra $\mathcal{A}_\alpha/\mathcal{J}_w$, and so $g/(I_nK_n) \in \mathcal{J}_w$. Hence $g_n \in \mathcal{I}$.

It is clear that g_n converges uniformly on compact subsets of \mathbb{D} to $f = (g/B_g)B_{\mathfrak{I}}$, and we have $B_f = B_{\mathfrak{I}}$. In the sequel we prove that $f \in \mathcal{I}$. If we obtain

$$|(g_n)'(z)| \le o\left(\frac{1}{(1-r)^{1-\alpha}}\right) \qquad (z \in \mathbb{D}),$$

uniformly with respect to n, then $\lim_{n\to+\infty}\|g_n-f\|_{\alpha}=0$ by [7, Lemma 1]. Indeed, by the Cauchy integral formula

$$(g_n)'(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g(\zeta)\overline{K_n(\zeta)}}{(\zeta - z)^2} d\zeta = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{(g(\zeta) - g(z/|z|))\overline{K_n(\zeta)}}{(\zeta - z)^2} d\zeta \qquad (z \in \mathbb{D}).$$

Then, for $z = re^{i\theta} \in \mathbb{D}$

$$|(g_n)'(z)| \leq \frac{\|K_n\|_{\infty}}{2\pi} \int_{\mathbb{T}} \frac{|g(\zeta) - g(z/|z|)|}{|\zeta - z|^2} |d\zeta| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|g(e^{i(t+\theta)}) - g(e^{i\theta})|}{1 - 2r\cos t + r^2} dt.$$

For all $\varepsilon > 0$, there is $\eta > 0$ such that if $|t| \leq \eta$, we have

$$|g(e^{i(t+\theta)}) - g(e^{i\theta})| \le \varepsilon |t|^{\alpha} \qquad (\theta \in [-\pi, +\pi]).$$

Then

$$\begin{split} & \int_{-\pi}^{\pi} \frac{|g(e^{i(t+\theta)}) - g(e^{i\theta})|}{1 - 2r\cos t + r^2} dt \\ & \leq \varepsilon \int_{|t| \leq \eta} \frac{|t|^{\alpha}}{(1 - r)^2 + 4rt^2/\pi^2} dt + \|g\|_{\alpha} \int_{|t| \geq \eta} \frac{|t|^{\alpha}}{(1 - r)^2 + 4rt^2/\pi^2} dt \\ & \leq \frac{\varepsilon}{r^{\frac{1+\alpha}{2}} (1 - r)^{1-\alpha}} \int_{0}^{+\infty} \frac{u^{\alpha}}{1 + (2u/\pi)^2} du + \frac{\|g\|_{\alpha}}{r^{\frac{1+\alpha}{2}} (1 - r)^{1-\alpha}} \int_{|u| \geq \frac{\eta\sqrt{r}}{1 - r}} \frac{u^{\alpha}}{1 + (2u/\pi)^2} du \\ & \leq \varepsilon O\Big(\frac{1}{(1 - r)^{1-\alpha}}\Big) + \|g\|_{\alpha} o\Big(\frac{1}{(1 - r)^{1-\alpha}}\Big). \end{split}$$

We obtain

$$\int_{-\pi}^{\pi} \frac{|g(e^{i(t+\theta)}) - g(e^{i\theta})|}{1 - 2r\cos t + r^2} dt \le ||g||_{\alpha} o\left(\frac{1}{(1-r)^{1-\alpha}}\right).$$

Consequently

$$|(g_n)'(z)| \leq ||g||_{\alpha} o\left(\frac{1}{(1-r)^{1-\alpha}}\right) \qquad (z \in \mathbb{D}).$$

By the F-property of \mathcal{A}_{α} , we have $\|g_n\| \leq C_{\alpha} \|g\|_{\mathcal{A}_{\alpha}}$. Using the Hilbertian structure of \mathcal{D} , we deduce that there is a sequence $h_n \in co(\{g_k\}_{k=n}^{\infty})$ converging to f in \mathcal{D} . It is clear that $h_n \in \mathcal{I}$ and $\lim_{n \to +\infty} \|h_n - f\|_{\alpha} = 0$. Then $\lim_{n \to +\infty} \|h_n - f\|_{\mathcal{A}_{\alpha}} = 0$. Thus $f \in \mathcal{I}$. This completes the proof of the lemma.

As a consequence of Theorem 1.2, we can prove Theorem 1.1 and deduce that each closed ideal of A_{α} is standard. For the sake of completeness, we sketch the proof here.

Proof of Theorem 1.1 Define γ on \mathbb{D} by $\gamma(z) = z$, and let $\pi \colon \mathcal{A}_{\alpha} \to \mathcal{A}_{\alpha}/\mathfrak{I}$ be the canonical quotient map. Also, let $f \in \mathcal{J}(E_{\mathfrak{I}})$ be such that $f/U_{\mathfrak{I}} \in \mathcal{H}^{\infty}(\mathbb{D})$ and $(f_n)_n$ be the sequence in Theorem 1.2 associated to f with $M \geq 3$. More exactly, we have $f_n = fg_n$, where $|g_n(\xi)| \leq d^3(\xi, E_f) \leq d^3(\xi, E_{\mathfrak{I}})$. Define

$$L_{\lambda}(f)(z) := \begin{cases} \frac{f(z) - f(\lambda)}{z - \lambda} & \text{if } z \neq \lambda, \\ f'(\lambda) & \text{if } z = \lambda. \end{cases}$$

Then

(3.1)
$$\pi(f)(\pi(\gamma) - \lambda)^{-1} = f(\lambda)(\pi(\gamma) - \lambda)^{-1} + \pi(L_{\lambda}(f)).$$

It is clear that $(\pi(\gamma)-\lambda)^{-1}$ is an analytic function on $\mathbb{C}\backslash Z_{\mathfrak{I}}$. Note that the multiplicity of the pole $z_0\in Z_{\mathfrak{I}}\cap\mathbb{D}$ of $(\pi(\gamma)-\lambda)^{-1}$ is equal to the multiplicity of the zero z_0 of $U_{\mathfrak{I}}$.

Since $U_{\mathfrak{I}}$ divides f, then according to (3.1) we can deduce that $\pi(f)(\pi(\gamma) - \lambda)^{-1}$ is an analytic function on $\mathbb{C} \setminus E_{\mathfrak{I}}$. Let $|\lambda| > 1$, we have

$$\|\pi(f)(\pi(\gamma) - \lambda)^{-1}\|_{\mathcal{A}_{\alpha}} \le \|f\|_{\mathcal{A}_{\alpha}} \sum_{n=0}^{\infty} \|\gamma^{n}\|_{\mathcal{A}_{\alpha}} |\lambda|^{-n-1} \le \|f\|_{\mathcal{A}_{\alpha}} \frac{C}{(|\lambda| - 1)^{3/2}}.$$

By Lemma 3.1, there is $g \in \mathcal{I}$ such that $B_g = B_g$. Let $k = f(g/B_g)$. Then $k = (f/B_g)g \in \mathcal{I}$, and for $|\lambda| < 1$, we have

$$k(\lambda)(\pi(\gamma) - \lambda)^{-1} = -\pi(L_{\lambda}(k)).$$

Therefore

$$\begin{split} \|\pi(f)(\pi(\gamma) - \lambda)^{-1}\|_{\mathcal{A}_{\alpha}} &\leq |f(\lambda)| \|(\pi(\gamma) - \lambda)^{-1}\|_{\mathcal{A}_{\alpha}} + \|\mathbf{L}_{\lambda}(f)\|_{\mathcal{A}_{\alpha}} \\ &\leq \frac{\|\mathbf{L}_{\lambda}(k)\|_{\mathcal{A}_{\alpha}}}{|g/B_{g}|(\lambda)} + \|\mathbf{L}_{\lambda}(f)\|_{\mathcal{A}_{\alpha}} \\ &\leq \frac{C(f, k)}{(1 - |\lambda|)|g/B_{g}|(\lambda)} \\ &\leq C(f, k)e^{\frac{C}{1 - |\lambda|}} \quad (|\lambda| < 1). \end{split}$$

We use [11, Lemmas 5.8 and 5.9] to deduce

$$\|\pi(f)(\pi(\gamma) - \xi)^{-1}\| \le \frac{C(f, k)}{d(\xi, E_{\sigma})^3} \qquad (1 \le |\xi| \le 2, \ \xi \notin E_{\sigma}).$$

Then, we obtain

$$\xi \mapsto |(g_n)(\xi)| \|\pi(f)(\pi(\gamma) - \xi)^{-1}\| \in L^{\infty}(\mathbb{T}).$$

With a simple calculation as in [3, Lemma 2.4], we can deduce that

$$\pi(f_n) = \frac{1}{2\pi i} \int_{\mathbb{T}} (g_n)(\xi) \pi(f) (\pi(\gamma) - \xi)^{-1} d\xi.$$

Denote $\mathfrak{I}^{\infty}_{U_{\mathfrak{I}}}(E_{\mathfrak{I}}):=\{h\in A(\mathbb{D}):h_{|E_{\mathfrak{I}}}=0 \text{ and } h/U_{\mathfrak{I}}\in A(\mathbb{D})\}$. From [5, p. 81], we know that $\mathfrak{I}^{\infty}_{U_{\mathfrak{I}}}(E_{\mathfrak{I}})$ has an approximate identity $(e_m)_{m\geq 1}\in \mathfrak{I}^{\infty}_{U_{\mathfrak{I}}}(E_{\mathfrak{I}})$ such that $\|e_m\|_{\infty}\leq 1$. \mathfrak{I} is dense in $\mathfrak{I}^{\infty}_{U_{\mathfrak{I}}}(E_{\mathfrak{I}})$ with respect to the sup norm $\|\cdot\|_{\infty}$, so there exists $(u_m)_{m\geq 1}\in \mathfrak{I}$ with $\|u_m\|_{\infty}\leq 1$ and $\lim_{m\to\infty}u_m(\xi)=1$ for $\xi\in \mathbb{T}\setminus E_{\mathfrak{I}}$. Therefore $\pi(f_n)=\pi(f_n-f_nu_m)\to 0$ as $m\to\infty$. Then $f_n\in \mathfrak{I}$ and $f\in \mathfrak{I}$.

4 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on a series of lemmas. In what follows, C_{ρ} will denote a positive number that depends only on ρ , not necessarily the same at each occurrence. For an open subset Δ of \mathbb{D} , we put

$$||f'||_{L^2(\Delta)}^2 := \int_{\Delta} |f'(z)|^2 dA(z).$$

We begin with the following key lemma.

Lemma 4.1 Let $f \in A_{\alpha}$ be such that $||f||_{A_{\alpha}} \leq 1$, and let $\rho > 1$ be given. Then

$$\int_{\gamma} \frac{|f(e^{it})|^{2\rho}}{d(e^{it})} dt \le C_{\rho} ||f'||_{L^2(\Delta_{\gamma})}^2,$$

where $a, b \in E_f$, $\gamma = (a, b) \subset \mathbb{T} \setminus E_f$, $d(z) := \min\{|z - a|, |z - b|\}$ and $\Delta_{\gamma} := \{z \in \mathbb{D} : z/|z| \in \gamma\}$.

Proof Let $e^{it} \in \gamma$ and define $z_t := (1 - d(e^{it}))e^{it}$. Since $|\gamma| < 1/2$, we obtain $|z_t| > 1/2$. We have

$$(4.1) |f(e^{it})|^{2\rho} \le 2^{2\rho-1} \Big(|f(e^{it}) - f(z_t)|^{2\rho} + |f(z_t)|^{2\rho} \Big).$$

By Hölder's inequality combined with the fact that $||f||_{\infty} \le ||f||_{\mathcal{A}_{\alpha}} \le 1$, we get

$$|f(e^{it}) - f(z_t)|^{2\rho} = |f(e^{it}) - f(z_t)|^{2\rho - 2}|f(e^{it}) - f(z_t)|^2$$

$$\leq 2^{2\rho - 2}(1 - |z_t|) \int_{|z_t|}^1 |f'(re^{it})|^2 dr$$

$$\leq 2^{2\rho - 1} d(e^{it}) \int_0^1 |f'(re^{it})|^2 r dr.$$

Hence

(4.2)
$$\int_{\gamma} \frac{|f(e^{it}) - f(z_t)|^{2\rho}}{d(e^{it})} dt \le 2^{2\rho - 1} \int_{\gamma} \int_{0}^{1} |f'(re^{it})|^{2} r dr dt$$
$$\le 2^{2\rho - 1} \pi ||f'||_{L^{2}(\Delta_{\gamma})}^{2}.$$

Since $d(e^{it}) \le 1/2$, we obtain $\frac{d(e^{it})}{\sqrt{2}} \le d(z_t) \le \sqrt{2}d(e^{it})$. Put $d(z_t) = |z_t - \xi|$ and note that either $\xi = a$ or $\xi = b$. Let

$$z_t(u) = (1 - u)z_t + u\xi$$
 $(0 < u < 1).$

With a simple calculation, we can prove that for all $e^{it} \in \gamma$ and for all $u, 0 \le u \le 1$, we have

$$|z_t(u)-w|>\frac{1}{2}(1-u)d(e^{it}) \qquad (w\in\partial\Delta_\gamma),$$

where $\partial \Delta_{\gamma}$ is the boundary of Δ_{γ} . Then $\mathbb{D}_{t,u} := \{z \in \mathbb{D} : |z - z_t(u)| \leq \frac{1}{2}(1 - u)d(e^{it})\} \subset \Delta_{\gamma}$, for all $e^{it} \in \gamma$ and for all $u, 0 \leq u \leq 1$. Since |f'(z)| is subharmonic on \mathbb{D} , it follows that

$$|f'(z_t(u))| \leq \frac{4}{\pi(1-u)^2 d^2(e^{it})} \int_{\mathbb{D}_{t,u}} |f'(z)| dA(z) \leq \frac{2}{\pi^{1/2}(1-u) d(e^{it})} ||f'||_{L^2(\Delta_{\gamma})}.$$

Set
$$\varepsilon_{\rho} = 2\alpha(\rho - 1)$$
. We have

$$\begin{split} |f^{\rho}(z_{t})|^{2} &= |f^{\rho}(z_{t}) - f^{\rho}(\xi)|^{2} \\ &= \rho^{2}|z_{t} - \xi|^{2}|\int_{0}^{1} f^{\rho - 1}(z_{t}(u))f'(z_{t}(u))du|^{2} \\ &\leq C_{\rho}d^{2}(e^{it})\left(\int_{0}^{1}|z_{t}(u) - \xi|^{\frac{\epsilon_{\rho}}{2}}|f'(z_{t}(u))|du\right)^{2} \\ &\leq C_{\rho}d^{\epsilon_{\rho}}(e^{it})\left(\int_{0}^{1} \frac{1}{(1 - u)^{1 - \frac{\epsilon_{\rho}}{2}}}du\right)^{2} ||f'||_{L^{2}(\Delta_{\gamma})}^{2} \\ &\leq C_{\rho}d^{\epsilon_{\rho}}(e^{it})||f'||_{L^{2}(\Delta_{\gamma})}^{2}. \end{split}$$

Hence

(4.3)
$$\int_{\gamma} \frac{|f(z_t)|^{2\rho}}{d(e^{it})} dt \le C_{\rho} ||f'||_{L^2(\Delta_{\gamma})}^2.$$

Therefore the result follows from (4.1), (4.2), and (4.3).

In the sequel we denote by f an outer function in \mathcal{A}_{α} such that $\|f\|_{\mathcal{A}_{\alpha}} \leq 1$, and we fix a constant ρ , $1 < \rho \leq 2$. By [7, Theorem B], we have $f^{\rho}f_{\Gamma}^{N} \in \text{lip}_{\alpha}$ and $\|f^{\rho}f_{\Gamma}^{N}\|_{\text{lip}_{\alpha}} \leq C_{N,\rho}$. To prove Theorem 2.1 we need to estimate the integral $\int_{\mathbb{D}} |(f^{\rho}f_{\Gamma}^{N})'|^{2}dA(z)$. Define

$$g_{\Gamma}(z) := rac{1}{\pi} \int\limits_{\Gamma} rac{e^{i heta}}{(e^{i heta}-z)^2} \log |f(e^{i heta})| d heta.$$

Clearly we have $f' = f(g_{\Gamma} + g_{\Gamma \setminus \Gamma})$ and $(f_{\Gamma}^N)' = N f_{\Gamma}^N g_{\Gamma}$, so

$$(4.4) f^{\rho}(f_{\Gamma}^{N})' = N f^{\rho} f_{\Gamma}^{N} g_{\Gamma}$$

$$= f^{\rho-1} N f' f_{\Gamma}^{N} - N f^{\rho} f_{\Gamma}^{N} g_{\Gamma \setminus \Gamma}.$$

Since $||f||_{\infty} \le 1$, it is obvious that $||f_{\Gamma}^N||_{\infty} \le 1$ and $||f^{\rho-1}||_{\infty} \le 1$. Hence, by (4.4) we get

$$\int_{\mathbb{D}}|(f^{\rho}f_{_{\Gamma}}^{N})'|^{2}dA(z)\leq\rho^{2}+N^{2}\int_{\mathbb{D}}|f^{\rho}(f_{_{\Gamma}})'|^{2}dA(z).$$

We fix $\gamma = (a, b) \subset \mathbb{T} \setminus E_f$ such that f(a) = f(b) = 0. Our purpose in what follows is to estimate the integral $\int_{\Delta_{\gamma}} |f^{\rho}(f_{\Gamma})'|^2 dA(z)$, which we can rewrite as

$$\int_{\Delta_{\gamma}} |f^{\rho}(f_{\Gamma})'|^2 dA(z) = \int_{\Delta_{\gamma}^1} + \int_{\Delta_{\gamma}^2},$$

where

$$\Delta_{\gamma}^{1} := \left\{ z \in \Delta_{\gamma} : d(z) < 2(1 - |z|) \right\}$$

$$\Delta_{\gamma}^2 := \left\{ z \in \Delta_{\gamma} : \ d(z) \ge 2(1 - |z|) \right\}.$$

4.1 The Integral on the Region Δ^1_{γ}

We begin with the following lemma.

Lemma 4.2

$$\int_{\Delta_{\gamma}} \frac{|f(z) - f(z/|z|)|^{2\rho}}{(1 - |z|)^2} dA(z) \le \frac{1}{2\alpha(\rho - 1)} ||f'||_{L^2(\Delta_{\gamma})}^2.$$

Proof Let $z = re^{it} \in \Delta_{\gamma}$ and put $\varepsilon_{\rho} = 2\alpha(\rho - 1)$. We have

$$\begin{split} r|f(re^{it}) - f(e^{it})|^{2\rho} &= r|f(re^{it}) - f(e^{it})|^{2\rho - 2}|f(re^{it}) - f(e^{it})|^2 \\ &\leq r(1 - r)^{1 + \varepsilon_\rho} \int_r^1 |f'(se^{it})|^2 ds \\ &\leq (1 - r)^{1 + \varepsilon_\rho} \int_0^1 |f'(se^{it})|^2 s ds. \end{split}$$

Therefore

$$\int_{\Delta_{\gamma}} \frac{|f(z) - f(z/|z|)|^{2\rho}}{(1 - |z|)^{2}} dA(z) = \int_{0}^{1} \left(\int_{\gamma} |f(re^{it}) - f(e^{it})|^{2\rho} \frac{rdt}{\pi} \right) \frac{dr}{(1 - r)^{2}}$$

$$\leq \|f'\|_{L^{2}(\Delta_{\gamma})}^{2} \int_{0}^{1} \frac{1}{(1 - r)^{1 - \varepsilon_{\rho}}} dr.$$

This completes the proof.

Now, we can state the following result.

Lemma 4.3

$$\int_{\Delta_{\gamma}^{1}} |f(z)|^{2\rho} |f_{\Gamma}'(z)|^{2} dA(z) \leq C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2}.$$

Proof By Cauchy's estimate, it follows that $|f'_{\Gamma}(re^{it})| \leq \frac{1}{1-r}$. Using Lemma 4.2, we get

$$(4.6) \int_{\Delta_{\gamma}^{1}} |f(z)|^{2\rho} |f_{\Gamma}'(z)|^{2} dA(z) \leq \int_{\Delta_{\gamma}^{1}} \frac{|f(z)|^{2\rho}}{(1-|z|)^{2}} dA(z)$$

$$\leq C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2} + 2^{2\rho-1} \int_{\Delta_{\gamma}^{1}} \frac{|f(z/|z|)|^{2\rho}}{(1-|z|)^{2}} dA(z).$$

Using Lemma 4.1, we obtain

(4.7)
$$\int_{\Delta_{\gamma}^{1}} \frac{|f(z/|z|)|^{2\rho}}{(1-|z|)^{2}} dA(z) = \frac{1}{\pi} \int_{\Delta_{\gamma}^{1}} \frac{|f(e^{it})|^{2\rho}}{(1-r)^{2}} r dr dt$$

$$\leq \frac{C}{\pi} \int_{\gamma} \frac{|f(e^{it})|^{2\rho}}{d(e^{it})} dt \leq C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2}.$$

The result of our lemma follows by combining the estimates (4.6) and (4.7).

4.2 The Integral on the Region Δ^2_{γ}

In this subsection, we estimate the integral $\int_{\Delta_{\gamma}^2} |f(z)|^{2\rho} |f'_{\Gamma}(z)|^2 dA(z)$. Before this, we make some remarks. For $z \in \mathbb{D}$ define

$$a_{\gamma}(z) := egin{cases} rac{1}{2\pi} \int_{\Gamma} rac{-\log|f(e^{i heta})|}{|e^{i heta}-z|^2} d heta & ext{if } \gamma
otin \Gamma, \ rac{1}{2\pi} \int_{\Gamma \setminus \Gamma} rac{-\log|f(e^{i heta})|}{|e^{i heta}-z|^2} d heta & ext{if } \gamma \subseteq \Gamma. \end{cases}$$

Using equation (4.4), it is easy to see that

$$|f(z)^{\rho}f_{\Gamma}'(z)|^{2} \leq 4 \left| f(z)^{\rho} \frac{1}{2\pi} \int_{\Gamma} \frac{-\log|f(e^{i\theta})|}{|e^{i\theta} - z|^{2}} d\theta \right|^{2}.$$

Using equation (4.5), it is clear that

$$|f(z)^{\rho} f_{\Gamma}'(z)|^{2} \leq 2|f'(z)|^{2} + 8 \left| f(z)^{\rho} \frac{1}{2\pi} \int_{\mathbb{T} \setminus \Gamma} \frac{-\log|f(e^{i\theta})|}{|e^{i\theta} - z|^{2}} d\theta \right|^{2}.$$

Then

$$(4.8) \qquad \int_{\Delta_{\gamma}^2} |f(z)|^{2\rho} |f_{\Gamma}'(z)|^2 dA(z) \leq 2\|f'\|_{L^2(\Delta_{\gamma})}^2 + 8 \int_{\Delta_{\gamma}^2} |f(z)|^{2\rho} a_{\gamma}^2(z) dA(z).$$

Since $\log |f| \in L^1(\mathbb{T})$, we have

(4.9)
$$a_{\gamma}(z) \leq \frac{C}{d^{2}(z)} \qquad (z \in \Delta_{\gamma}).$$

Given such inequality, it is not easy to estimate immediately the integral of the function $|f(z)|^{2\rho}a_{\gamma}^{2}(z)$ on the whole Δ_{γ}^{2} . In what follows, we give a partition of Δ_{γ}^{2} into three parts so that one can estimate the integral $\int |f(z)|^{2\rho}a_{\gamma}^{2}(z)dA(z)$ on each part. Let $z \in \Delta_{\gamma}^{2}$; three situations are possible:

$$(4.10) a_{\gamma}(z) \le 8 \frac{|\log(d(z))|}{d(z)},$$

$$(4.11) 8 \frac{|\log(d(z))|}{d(z)} < a_{\gamma}(z) < 8 \frac{|\log(d(z))|}{1-r},$$

$$(4.12) 8\frac{|\log(d(z))|}{1-r} \le a_{\gamma}(z).$$

We can now divide Δ^2_{γ} into the following three parts

$$\Delta_{\gamma}^{21}:=\left\{z\in\Delta_{\gamma}^{2}:z\text{ satisfying (4.10)}\right\},$$

$$\Delta_{\gamma}^{22} := \left\{ z \in \Delta_{\gamma}^2 : z \text{ satisfying (4.11)} \right\},$$

$$\Delta_{\gamma}^{23}:=\left\{z\in\Delta_{\gamma}^{2}:z\text{ satisfying (4.12)}\right\}.$$

4.2.1 The Integral on the Regions Δ_{γ}^{21} and Δ_{γ}^{23}

In this case we begin with the following.

Lemma 4.4

$$\int_{\Delta_{\infty}^{21}} |f(z)|^{2\rho} a_{\gamma}^{2}(z) dA(z) \le C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2}.$$

Proof Using Lemma 4.2, we get

$$\begin{split} \int_{\Delta_{\gamma}^{21}} |f(z)|^{2\rho} a_{\gamma}^{2}(z) dA(z) \\ & \leq 2^{\rho} \int_{\Delta_{\gamma}^{21}} |f(z)|^{\rho-1} |f(z) - f(z/|z|)|^{\rho+1} a_{\gamma}^{2}(z) dA(z) \\ & \qquad \qquad + 2^{\rho} \int_{\Delta_{\gamma}^{21}} |f(z)|^{\rho-1} |f(z/|z|)|^{\rho+1} a_{\gamma}^{2}(z) dA(z) \\ & \leq C_{\rho} \int_{\Delta_{\gamma}} \frac{|f(z) - f(z/|z|)|^{\rho+1}}{(1-|z|)^{2}} dA(z) + C_{\rho} \int_{\Delta_{\gamma}^{21}} \frac{|f(e^{it})|^{\rho+1}}{d^{2}(e^{it})} r dr dt \\ & \leq C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2} + C_{\rho} \int_{\Delta_{\gamma}^{21}} \frac{|f(e^{it})|^{\rho+1}}{d^{2}(e^{it})} dr dt = I_{2,1}. \end{split}$$

Let $e^{it} \in \gamma$ and denote by ζ_t the point of $\partial \Delta^2_{\gamma} \cap \mathbb{D}$ such that $\zeta_t/|\zeta_t| = e^{it}$. We have

$$|e^{it} - \zeta_t| = 1 - |\zeta_t| = \frac{d(\zeta_t)}{2} \le d(e^{it}).$$

Then

$$\begin{split} \int_{\Delta_{\gamma}^{21}} \frac{|f(e^{it})|^{\rho+1}}{d^{2}(e^{it})} dr dt &\leq \int_{\Delta_{\gamma}^{2}} \frac{|f(e^{it})|^{\rho+1}}{d^{2}(e^{it})} dr dt \\ &= \int_{\gamma} \frac{|f(e^{it})|^{\rho+1}}{d^{2}(e^{it})} \int_{|\zeta_{t}|}^{1} dr dt &\leq \int_{\gamma} \frac{|f(e^{it})|^{\rho+1}}{d(e^{it})} dt. \end{split}$$

Using Lemma 4.1, we get $I_{2,1} \leq C_{\rho} \|f'\|_{L^2(\Delta_{\gamma})}^2$. This proves the result.

Lemma 4.5

$$\int_{\Delta_{\gamma}^{23}}|f(z)|^{2\rho}a_{\gamma}^{2}(z)dA(z)\leq CA(\Delta_{\gamma}),$$

where $A(\Delta_{\gamma})$ is the area measure of Δ_{γ} .

Proof Set

$$\Lambda_{\gamma} := \begin{cases} \Gamma & \text{for } \gamma \nsubseteq \Gamma, \\ \mathbb{T} \setminus \Gamma & \text{for } \gamma \subseteq \Gamma. \end{cases}$$

Let $z \in \Delta^{23}_{\gamma}$. We have

$$|f(z)| = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{|e^{i\theta} - z|^2} \log|f(e^{i\theta})| d\theta\right\}$$

$$\leq \exp\left\{\frac{1}{2\pi} \int_{\Lambda_{\gamma}} \frac{1 - r}{|e^{i\theta} - z|^2} \log|f(e^{i\theta})| d\theta\right\}$$

$$= \exp\left\{-(1 - r)a_{\gamma}(z)\right\} \leq d^8(z).$$

Using (4.9), we obtain the result.

4.2.2 The Integral on the Region Δ_{γ}^{22}

Here, we will give an estimate of the following integral

$$\int_{\Delta_{\gamma}^{22}} |f(z)|^{2\rho} a_{\gamma}^2(z) dA(z).$$

Before doing this, we begin with some lemmas. The next one is essential for what follows. Note that a similar result is used by various authors: Korenblum [6], Matheson [7], Shamoyan [8], and Shirokov [9, 10].

Lemma 4.6 Let $z \in \Delta_{\gamma}^{22}$ and let $\mu_z = 1 - \frac{8|\log(d(z))|}{a_{\gamma}(z)}$. Then

$$(4.13) |f(\mu_z z)| \le d^2(z).$$

Proof Let $z \in \Delta_{\gamma}$ and let $\mu < 1$. We have

$$|f(\mu z)| = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{1 - (\mu r)^2}{|e^{i\theta} - \mu z|^2} \log|f(e^{i\theta})| d\theta\right\}$$

$$\leq \exp\left\{\frac{1}{2\pi} \int_{\Lambda_{\gamma}} \frac{1 - (\mu r)^2}{|e^{i\theta} - \mu z|^2} \log|f(e^{i\theta})| d\theta\right\}$$

$$\leq \exp\left\{-(1 - \mu r) \inf_{\theta \in \Lambda_{\gamma}} \left|\frac{e^{i\theta} - z}{e^{i\theta} - \mu z}\right|^2 a_{\gamma}(z)\right\}.$$

For $z\in\Delta_{\gamma}^{22}$, it is clear that $1-\mu_z\leq d(z)\leq |e^{i\theta}-z|$ for all $e^{i\theta}\in\Lambda_{\gamma}$. Then

$$\inf_{\theta \in \Lambda_{\gamma}} \left| \begin{array}{c} \frac{e^{i\theta} - z}{e^{i\theta} - \mu_z z} \right| \ge \frac{1}{2} \qquad (z \in \Delta_{\gamma}^{22}).$$

Thus

$$|f(\mu_z z)| \le \exp\left\{-\frac{1-\mu_z}{4}a_\gamma(z)\right\} \qquad (z \in \Delta_\gamma^{22}).$$

Then, we have

$$|f(\mu_z z)| \le \exp\left\{-\frac{1}{4}(1-\mu_z)a_\gamma(z)\right\} = d^2(z) \qquad (z \in \Delta_\gamma^{22}),$$

which yields (4.13).

For r < 1, define

$$\gamma_r := \{ z \in \mathbb{D} : |z| = r \text{ and } z/|z| \in \gamma \}.$$

Without loss of generality, we can suppose that $d(z) \leq \frac{1}{2}$, $z \in \Delta_{\gamma}^2$. We need the following.

Lemma 4.7 Let r < 1. Then

$$\int_{\gamma_r \cap \Delta_{\gamma}^{22}} |f(re^{it}) - f(\mu_{re^{it}} re^{it})|^{2\rho} a_{\gamma}^2(re^{it}) r dt \leq \frac{C_{\rho}}{(1-r)^{1-\varepsilon_{\rho}}} \|f'\|_{L^2(\Delta_{\gamma})}^2,$$

where $\varepsilon_{\rho} = \alpha(\rho - 1)$.

Proof Let $re^{it} \in \Delta_{\gamma}^{22}$. Then

$$|f(re^{it}) - f(\mu_{re^{it}}re^{it})|^{\rho-1}[(1 - \mu_{re^{it}})a_{\gamma}(re^{it})]^{2}$$

$$\leq 64(1 - \mu_{re^{it}})^{\varepsilon_{\rho}}\log^{2}(d(re^{it})) \leq C_{\rho}.$$

It is clear that $1 - r \le 1 - \mu_{re^{it}} \le d(re^{it}) \le \frac{1}{2}$ and so $\frac{1}{2} \le \mu_{re^{it}} \le r$. We have

$$\begin{split} \int_{\gamma_{r}\cap\Delta_{\gamma}^{22}} |f(re^{it}) - f(\mu_{re^{it}}re^{it})|^{2\rho} a_{\gamma}^{2}(re^{it}) r dt \\ &\leq C_{\rho} \int_{\gamma_{r}\cap\Delta_{\gamma}^{22}} \frac{|f(re^{it}) - f(\mu_{re^{it}}re^{it})|^{\rho+1}}{(1 - \mu_{re^{it}})^{2}} r dt \\ &\leq \frac{C_{\rho}}{(1 - r)^{1 - \varepsilon_{\rho}}} \int_{\gamma_{r}\cap\Delta_{\gamma}^{22}} \frac{|f(re^{it}) - f(\mu_{re^{it}}re^{it})|^{2}}{1 - \mu_{re^{it}}} r dt \\ &\leq \frac{C_{\rho}}{(1 - r)^{1 - \varepsilon_{\rho}}} \int_{\gamma_{r}\cap\Delta_{\gamma}^{22}} \left(\int_{\mu_{re^{it}}r}^{r} |f'(se^{it})|^{2} ds\right) r dt \\ &\leq \frac{C_{\rho}}{(1 - r)^{1 - \varepsilon_{\rho}}} \int_{S_{r}} |f'(se^{it})|^{2} s ds dt \\ &\leq \frac{C_{\rho}}{(1 - r)^{1 - \varepsilon_{\rho}}} \int_{S_{r}} |f'(w)|^{2} dA(w), \end{split}$$

where

$$S_r := \left\{ w \in \mathbb{D} : 0 \le |w| \le r \text{ and } \frac{w}{|w|} \in \gamma \right\}.$$

The proof is therefore completed.

The last result that we need before giving the proof of Theorem 2.1 is the following one.

Lemma 4.8

$$\int_{\Delta_{\gamma}^{22}} |f(z)|^{2\rho} a_{\gamma}^{2}(z) dA(z) \leq C_{\rho} ||f'||_{L^{2}(\Delta_{\gamma})}^{2} + CA(\Delta_{\gamma}).$$

Proof Using (4.9) and Lemmas 4.6 and 4.7, we find that

$$\begin{split} \int_{\Delta_{\gamma}^{22}} |f(z)|^{2\rho} a_{\gamma}^{2}(z) dA(z) \\ &= \frac{1}{\pi} \int_{0}^{1} \left(\int_{\gamma_{r} \cap \Delta_{\gamma}^{22}} |f(re^{it})|^{2\rho} a_{\gamma}^{2}(re^{it}) r dt \right) dr \\ &\leq CA(\Delta_{\gamma}) + 2^{2\rho - 1} \int_{0}^{1} \left(\int_{\gamma_{r} \cap \Delta_{\gamma}^{22}} |f(re^{it}) - f(\mu_{re^{it}} r e^{it})|^{2\rho} a_{\gamma}^{2}(re^{it}) r dt \right) dr \\ &\leq CA(\Delta_{\gamma}) + C_{\rho} \|f'\|_{L^{2}(\Delta_{\gamma})}^{2}. \end{split}$$

This completes the proof of the lemma.

4.2.3 Conclusion

Now, according to (4.8) and Lemmas 4.4, 4.5, and 4.8, we obtain

$$\int_{\Delta_{\gamma}^{2}} |f(z)|^{2\rho} |f'_{\Gamma}(z)|^{2} dA(z) \leq 2\|f'\|_{L^{2}(\Delta_{\gamma})}^{2} + 8 \int_{\Delta_{\gamma}^{2}} |f(z)|^{2\rho} a_{\gamma}^{2}(z) dA(z)$$
$$\leq C_{\rho} \|f'\|_{L^{2}(\Delta_{\gamma})}^{2} + CA(\Delta_{\gamma}).$$

Combining this with Lemma 4.3, we deduce that

$$\int_{\Delta_{\gamma}} |f(z)|^{2\rho} |f'_{\Gamma}(z)|^2 dA(z) \le C_{\rho} ||f'||_{L^2(\Delta_{\gamma})}^2 + CA(\Delta_{\gamma}).$$

Hence

$$\begin{split} \int_{\mathbb{D}} |f(z)|^{2\rho} |f'_{\Gamma}(z)|^2 dA(z) &= \sum_{n=1}^{\infty} \int_{\Delta_{\gamma_n}} |f(z)|^{2\rho} |f'_{\Gamma}(z)|^2 dA(z) \\ &\leq C_{\rho} \sum_{n=1}^{\infty} \|f'\|_{L^2(\Delta_{\gamma_n})}^2 + C \sum_{n=1}^{\infty} A(\Delta_{\gamma_n}) \leq C_{\rho}. \end{split}$$

This completes the proof of Theorem 2.1.

Acknowledgments I wish to thank Professors A. Borichev, O. El Fallah, and K. Kellay for the interest which they carried to this work.

References

- [1] L. Carleson, A representation formula for the Dirichlet space. Math. Z. 73(1960), 190–196.
- [2] O. El-Fallah, K. Kellay, and T. Ransford, *Cyclicity in the Dirichlet space*. Ark. Mat. **44**(2006), no. 1, 61–86.
- [3] J. Esterle, E. Strouse, and F. Zouakia, *Closed ideals of A*⁺ and the Cantor set. J. Reine Angew. Math. **449**(1994), 65–79.
- [4] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions. Michigan Math. J. 37(1990), no. 1, 91–104.
- [5] K. Hoffman, *Banach spaces of analytic functions*. Reprint of the 1962 original, Dover Publications Inc., New York, 1988.
- [6] B. I. Korenbljuum, *Invariant subspaces of the shift operator in a weighted Hilbert space*. Mat. Sb. **89(131)**(1972), 110–137, 166.
- [7] A. Matheson, Approximation of analytic functions satisfying a Lipschitz condition. Michigan Math. J. 25(1978), no. 3, 289–298.
- [8] F. A. Shamoyan, Closed ideals in algebras of functions that are analytic in the disk and smooth up to its boundary. Mat. Sb. **79**(1994), no. 2, 425–445.
- [9] N. A. Shirokov, *Analytic functions smooth up to the boundary*. Lecture notes in mathematics 1312, Springer-Verlag, Berlin, 1988.
- [10] ____, Closed ideals of algebras of type B^{α}_{pq} . Izv. Akad. Nauk. SSSR Ser. Mat. **46**(1982), no. 6, 1316–1332, 1344.
- [11] B. A. Taylor and D. L. Williams, *Ideals in rings of analytic functions with smooth boundary values*. Canad J. Math. **22**(1970), 1266–1283.