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Closed Ideals in Some Algebras of
Analytic Functions

Brahim Bouya

Abstract. 'We obtain a complete description of closed ideals of the algebra DNlip,,, 0 < o < %, where
D is the Dirichlet space and lip,, is the algebra of analytic functions satisfying the Lipschitz condition
of order a.

1 Introduction

The Dirichlet space ‘D consists of the complex-valued analytic functions f on the unit
disk D with finite Dirichlet integral

D(f) = / F(@)[FdAG) < +oc,
D

where dA(z) = %rdrdt denotes the normalized area measure on D. Equipped with
the pointwise algebraic operations and the norm

1

2m 00
o= 5= [ AP+ D) = Y1+ mlfn,
n=0

D becomes a Hilbert space. For 0 < a < 1, let lip, be the algebra of analytic

functions f on D that are continuous on I satisfing the Lipschitz condition of order
aonD:

1f(2) — fw)| = o(lz—w|*)  (|z—w| —0).
Note that this condition is equivalent to
[f'@]=0o( =)™ (] = 17).
Then, lip,, is a Banach algebra when equipped with the norm
[flla:= [1flloo +sup{(1 = [2)'=*|f"(2)| : z € D}.

Here || f]|oc := sup,cp |f(2)]. Unlike the case when 0 < a < 1/2, the inclusion
lip, C D always holds provided that 1/2 < o < 1. In what follows, let 0 < a <'1/2
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and define A, := D Nlip,. It is easy to check that A, is a commutative Banach
algebra when it is endowed with the pointwise algebraic operations and the norm

Iflla, = Iflla+ DV2(f)  (f € Aa).

In order to describe the closed ideals in subalgebras of the disc algebra A(D), it is
natural to make use of Nevanlinna’s factorization theory. For f € A(ID) there is a
canonical factorization f = C;U Oy, where Cy is a constant, U an inner function
thatis |[Us| = 1 a.e on T and Oy the outer function given by

1 [ el + 4
Ofs(2) :exp{%/o 29_210g|f(6’6)|d9}.
Denote by JH{>°(ID) the algebra of bounded analytic functions. Note that A, has the
so-called F-property: if f € A, and U is an inner function such that /U € H>(DD),
then f/U € A, and ||f/U||l4, < Cullflla,> where C, is independent of f (see
[1,9]). Korenblum [6] has described the closed ideals of the algebra H? of analytic
functions f such that f/ € H?, where H? is the Hardy space. This result has been
extended to some other Banach algebras of analytic functions, by Matheson for lip,,
[7] and by Shamoyan for the algebra A" of analytic functions f on D such that

(¢ = )] = o(w(l¢ = GD) as ¢ — Gl — 0,

where 7 is a nonnegative integer and w is an arbitrary nonnegative nondecreasing
subadditive function on (0, +00) [8]. Shirokov [9,10] has given a complete descrip-
tion of closed ideals for Besov algebras AB;, ; of analytic functions and particularly
forthecases > 1/2and p=q =2

AB;,z = {f c A(D) : Z |]?(n)|2(1 + n)Zs < oo}

n>0

Note that in the case of AB;/ 22 = A(D)ND the problem of description of closed ideals
appears to be much more difficult (see [2,4]). The purpose of this paper is to describe
the structure of the closed ideals of the Banach algebras A,,. More precisely we prove
that these ideals are standard in the sense of the Beurling—Rudin characterization of
the closed ideals in the disc algebra [5].

Theorem 1.1 IfJis a closed ideal of A, then

J= {fefla : f\EJ =0and f/U, € Q{OO(JD))},

where E, := {z € T: f(z) =0, Vf € 3} and U, is the greatest common divisor of the
inner parts of the non-zero functions in J.

Such characterization of closed ideals can be reduced further to a problem of
approximation of outer functions using the Beurling—Carleman—Domar resolvent
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method. Define d(&, E) to be the distance from & € T to the set E C T. Suppose
that J is a closed ideal in A,, such that U, = 1. We have Z, = E,, where

Z,={zeD: f(z) =0, Vf € J}.
Next, for f € A, such that

[f(O)] <Cdg,E)*™  (£€T),

where M, is a positive constant depending only on A,,, we have f € J (see Section 3
for more precisions). Now, to prove Theorem 1.1 we need Theorem 1.2 below, which
states that every function in A,, \ {0} can be approximated in .A,, by functions with
boundary zeros of arbitrary high order.

Theorem 1.2 Let f be a function in A, \ {0} and let M > 0. There exists a sequence
of functions {g,}>2, C A(D) such that:

(i) PForalln € N, we have f, = fg, € Ay and lim |f, — f|la, = 0.

(i) [gu(&)] < Cud™(&,Ef) (£ €T), whereEp:={£ € T: f(§) =0}

To prove this theorem, we give a refinement of the classical Korenblum approxi-
mation theory [6-10].

2 Main Result on Approximation of Functions in A,

We begin by fixing some notations. Let f € A, and let {v, := (an, by)}n>0 be
the countable collection of the (disjoint open) arcs of T \ Ef. Without loss of the
generality, we can suppose that the arc lengths of 7, are less than 1/2. In what follows,
we denote by I" the union of a family of arcs ,. Define

i0 ‘
f@ e { 5= [ S loglselas |

The difficult part in the proof of Theorem 1.2 is to establish the following.

Theorem 2.1 Let f € A, \ {0} be an outer function such that || |
N > land p > 1. Then we have f* fN € A, and

(2.1) SI;pIIf”fFNI

A, <1, and let

Ao S CN,pu

where Cy, is a positive constant independent of T'.

Remark 2.2 ForasetS C A(D), we denote by co(S) the convex hull of S consisting
of the intersection of all convex sets that contain S. Set I'y, = U>,Ym, and let f
be as in Theorem 2.1. It is clear that the sequence ( f” er )n converges uniformly on
compact subsets of D to f”. We use (2.1) to deduce, by the Hilbertian structure
of D, that there is a sequence h, € co({f”frljx}j’no:n) converging to f” in D. Also,
by [7, Section 4], we obtain that h, converges to f” in lip, for sufficiently large N.
(In fact, we can prove that this result remains true for every N > 1.) Therefore,
A, — f*|la, — 0,asn — oo.
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Define J(F) to be the closed ideal of all functions in A, that vanish on F C ID. In
the proof of Theorem 1.2, we need the following classical lemma. (See for instance
[7, Lemma 4] and [6, Lemma 24]).

Lemma 2.3 Let f € A, and E' be a finite subset of T such that fijp; = 0. Let M > 0
be given. For every € > 0 there is an outer function F in J(E') such that

(W) NFf = flla, <&
(ii) |FO|<Ca"(&E) (€.

Proof of Theorem 1.2 Now, we can deduce the proof of Theorem 1.2 by using Theo-
rem 2.1 and Lemma 2.3. Indeed, let f be a function in A, \ {0} such that || f]|4, < 1,
and let € > 0. For m > 1 we have

1 1 1 Ly
(fof — ' = (Of - nf + ZUfO}" Oy.
The F-property of A, implies that Oy € A,. Then, there exists 1y € N such that

|fo} — fl

A, <€/3 (m > ).

Setl' = U,>,7p and N > M/a for a given M > 0. By Remark 2.2 applied to Oy
(with p = 1+ --), there is a sequence k,,, € co({frp }p:n) such that

1 1 1
10 "k — O 7|4, < —  (mEN, m>1).

It is clear that
1 1

—0 (n — +00).

Then for every m > 1 we get

107 kum — OF [0

—0 (n — +00).

So, there is a sequence k,, € co({ er p—m) such that
P

107k — O " [|a, < & (m>1),
10} ki — OF lloo < 5 (m>1).

m

We have

1 1 / 1 1 141 1+
(fOF kn — fO7)' = (f' = U0 (O ky — OF) + Up(O; "k — O, ™)',
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Since ||O¢[la, < Cal/flla, < Cas we obtain
1 1
1fOF kn — fOF A,
— [ fOFkn — FOF o +sup{(1 — |21 =*|(FOF ks — fOF)' (D)}
zeD
+DY*(fO} ky — fO})

< IfOF kn — FOF [l + Call fllallOF ks — OF [l

+sup{(1 - l2))' =10} "k — O ) (2)[}
zeD

1 1 1 1
+C||0} ki — OF [l D"2(f) + CD'(O "y — O ™)

Ca
Ao = -
m

i L 1+1 1+1
< CullOF k= OF [low +C[[O} ¥k, — OFF|

Then, fix n; > 1 such that

1fOF ki — fOF |a, <¢/3  (m=>m).

We have kyy = 3, cif:’, where >0, ¢ = 1. Set Ej, = {J,_; Ov:. Using Lemma

2.3, we obtain an outer function F,,, € H(E;n) such that |F,,({)| < CmdM(C,E:ﬂ) for
¢ € Tand

1 1 1
o7k,F, — fO"k,, < — >1).
||f f f f ||Aa " (m )

Then fix 1, > m; such that
1 1
||fOkaFm_fO}nkm||A“ <6/3 (man)
Consequently we obtain

1 fOF kFu — f|

A, <€ (m > m).

It is not hard to see that

|07 k()] < [knFn(©)] < Cud™(€,Ep) (€ €T).

Therefore g,, = O? ky,F,, is the desired sequence, which completes the proof of The-
orem 1.2. |
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3 Beurling—Carleman-Domar Resolvent Method

Since A, C lip,, then for all f € A,, E satisfies the Carleson condition

1
log ———dt < +o0.
/T (e Ey)

For f € A,, we denote by By the Blashke product with zeros Zs \ Ey, where Z; :=
{z €D: f(z) = 0}. We begin with following lemma.

Lemma 3.1 LetJ be a closed ideal of A,. Define B, to be the Blashke product with
zeros Z, \ E,. There is a function f € J such that Bf = B,.

Proof Let g € Jand let B, be the Blashke product with zeros Z, N D,,, where D,, :=
{zeD: |z <=1 ne N} Setg, = g/Ky, where K, = B,/I, and I, is the
Blashke product with zeros Z5 N ID,,. We have g, € J for every n. Indeed, fix n € N.
It is permissible to assume that Zg, consists of a single point, say Zx, = {w}. Let
m: Aq — Aq/J be the canonical quotient map. First suppose w ¢ Z_, then 7(K,,)
is invertible in A, /J. Tt follows that 7(g,) = w(g)m *(K,) = 0, hence g, € J. If
w € Z,, we consider the following ideal J,, := {f € A, : fI, € J}. Itis clear that
Jyw is closed. Since w ¢ Zy. it follows that K, is invertible in the quotient algebra
Aa/dw, and so g/(I,K,) € J,,. Hence g, € J.

It is clear that g, converges uniformly on compact subsets of D to f = (g/B,)By,
and we have By = B,. In the sequel we prove that f € J. If we obtain

|(gn) /(Z)| < 0(#) (ze D),

uniformly with respect to #, then lim,,—, 4o ||g» — f|lo = 0 by [7, Lemma 1]. Indeed,
by the Cauchy integral formula

L [8OK(Q) . 1 [ (@O~ g(z/|2))Ki(O)

(gn)/(z) = % T (C _ Z)Z - 271 T (C - Z)z

dc (ze D).
Then, forz = ré'? € D

(g) (2] <

[Klloe [ 1800 — g(2/ 12D 0y _ %/’r (") —g(e”)]

2t Jy |¢ — 2|2 1 —2rcost+12
Forall e > 0, there is 7 > 0 such that if || < 7, we have

g(@™?) —g(e)| <elt|* (@ € [=m,+7]).
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Then

T i(t+0)\ (0
/ lg(e"?) — g(e )Idt

1 —2rcost + r?

—T

= E/ i dt + IIgHa/ I dt
= Sy A= dr? >y (1 —1)2 +4rt2 /w2

+0o0 0% a
g u u
< Hi/ sdu+ — lgllo / ————du
r (1=t Jo 1+ Qu/m) 2 (L=t Jjy>ns 1+ (Qu/m)

1 1
< e0( =) +lgloo( 7= )
<0( 7= ) * leloo (==
We obtain
T |g(ei(t+9))_g(ei9)|
o <t )
/_7T 1 —2rcost+r:  — lglla (I —r)t-e
Consequently

, 1
(&) (2)] < IIgHuo(m) (z€D).

By the F-property of A,, we have ||g,|| < C,||g|l.4,. Using the Hilbertian structure
of D, we deduce that there is a sequence h, € co({gc}>,) converging to f in D. It
is clear that h, € Jand lim,— oo ||in — flla = 0. Then lim,— oo ||hn — fla, = 0.
Thus f € J. This completes the proof of the lemma. ]

As a consequence of Theorem 1.2, we can prove Theorem 1.1 and deduce that
each closed ideal of A,, is standard. For the sake of completeness, we sketch the proof
here.

Proof of Theorem 1.1 Define v on ID by v(z) = z, and let 7: A, — A, /J be the
canonical quotient map. Also, let f € J(E,) be such that /U, € H>(ID) and (f,)»
be the sequence in Theorem 1.2 associated to f with M > 3. More exactly, we have
fo = fgn where |g,(&)] < & (&, Ef) < d°(&,E,). Define

f2) = f(N)

L\(f)(z) == Z— A itz # A,
£\ ifz= A
Then
(3.1) () =N = fN) =N+ a(La(f).

Itis clear that (7(7)—\) ! is an analytic function on C\ Z, . Note that the multiplicity
of the pole zg € Z,ND of (m(y) — ) ! is equal to the multiplicity of the zero zy of U, .
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Since U, divides f, then according to (3.1) we can deduce that w(f)(7(y) — A) ™' is
an analytic function on C \ E,. Let |A| > 1, we have

9]
a1
n=0

By Lemma 3.1, there is ¢ € J such that B, = B,. Let k = f(g/By). Then k =
(f/B,)g € J,and for |A| < 1, we have

kN (m(y) = N7 = =7 (La(k)) .

C

AT < ||fHAa(|)\|_71)3/2'

17 () =N la, < NIf]

‘A «

Therefore
[7(A@(y) = XN a, < FOEE) =74, + LA 4,
|ILA(K)]| 4,
e L
< </B0) +[[La(H)] A,
C(f,k)

~ (1= [ADIg/Bg|(N)

<C(f,Re=m (Al < 1),
We use [11, Lemmas 5.8 and 5.9] to deduce
C(f, k)
d(§, E,)’

[m(Hm(y) =7 <

(1<[1<2,E¢E,).
Then, we obtain

E= (@) O (A () = 7M€ L=(T).
With a simple calculation as in [3, Lemma 2.4], we can deduce that
1

m(fa) =7 T(gn)(§)7r(f)(7r(7) —&7lde.

Denote Jg‘; (E,) = {h € A(D) : h“gj = 0and h/U, € A(D)}. From [5, p. 81],
we know that 35‘; (E,) has an approximate identity (e;)m>1 € 35‘; (E,) such that
lem|loo < 1. T is dense in I3 (E, ) with respect to the sup norm || - || oo, so there exists

(Um)m>1 € T with ||t |leco < 1 and im0 u(§) = 1for & € T\ E,. Therefore
7(fu) = 7(fu — fathm) — 0asm — oo. Then f, € Jand f € J. [ |

4 Proof of Theorem 2.1

The proof of Theorem 2.1 is based on a series of lemmas. In what follows, C, will
denote a positive number that depends only on p, not necessarily the same at each
occurrence. For an open subset A of ID, we put

1F sy = /A (2 dA2).

We begin with the following key lemma.
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Lemma 4.1 Let [ € A, besuch that ||f||a, <1, and let p > 1 be given. Then

|f(eit) |2p
d(e't)

dr < Cpr/”%Z(AA‘,)v

where a,b € Ef, v = (a,b) C T\ Ey, d(z) := min{|z — a|,|z — b|} and A, :=
{zeD: z/|z] € v}.

Proof Let ¢! € + and define z, := (1 — d(e"))e”. Since |y| < 1/2, we obtain
|z¢] > 1/2. We have

(4'1) |f(eit)|2/) < 22p—1(|f(eit) _ f(Zt)|2p + |f(zt)|2/)> )

By Hélder’s inequality combined with the fact that || f||oc < ||f]

A, <1, we get
f(e") = f@@)|* = |f(¢") = fl@) P2 f(e") = f(z)]

1
<2771 - |z)) |/ (re'")[*dr

|z
§22”*1d(e")/ |f!(re")|rdr.
0
Hence

ity _ o 1
(4.2) AW&SZ”‘I‘AA |/ (re'")|*rdrdt

< 22/)717T|‘f/”%2(A7)'

Since d(e'*) < 1/2, we obtain % < d(z,) < V2d(e"). Putd(z,) = |z, — £| and note
that either § = aor £ = b. Let

z(u) = (1 —u)z, + ué 0<u<l).

With a simple calculation, we can prove that for all et e vyand forallu,0 < u <1,
we have

() — W] > %(1 —wd(e)  (we dA,),

where OA, is the boundary of A,. Then D, := {zeD:|z—zw)| < %(1 -
u)d(e")} € A, forall e € yand forall u,0 < u < 1. Since | f'(z)| is subharmonic
on D), it follows that

! 4 ! 2 !
|f'(ze(w)| < (1 i) A)m |f'(2)|dA(2) < mﬂf ll2a,)-

https://doi.org/10.4153/CJM-2009-014-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-014-5

Closed Ideals in Some Algebras of Analytic Functions 291

Sete, = 2a(p — 1). We have
7@ = |f"(@) — /O

1
= Pz — €| / £ ) £ (2 ()
0
) 1 < 2
<G @) ([ latw ~ %1 e
0

Ep ( ' 1 ?
gC,)dﬂ(et)(/0 7%) ”f/H%Z(Aq)

(1—w)'—7
< des"(eit)Hf/”iZ(AA,)-

Hence
|f(z)|* 2
(43) L a4 = Collf s,
Therefore the result follows from (4.1), (4.2), and (4.3). [ |

In the sequel we denote by f an outer function in A, such that ||f|la, < 1,
and we fix a constant p, 1 < p < 2. By [7, Theorem B], we have fper € lip,

and || f ’)erHlip,, < Cn,. To prove Theorem 2.1 we need to estimate the integral
ﬁD) |(f’)er)l|2dA(Z). Define

1 el "
80—+ [ s log (e b,
r

Clearly we have ' = f(g. +g,,)and (f')" = NfNg,, so

(4.4) fPUN = NffNg,

(4.5) = frOINFRY = NF g

Since || f|loe < 1, it is obvious that || fN||oc < 1 and || f*~!||oc < 1. Hence, by (4.4)
we get

/ (7 £) PdA(2) < p* + N? / |£7(£,)'[PdA(2).
D D

We fix v = (a,b) C T\ Ey such that f(a) = f(b) = 0. Our purpose in what follows
is to estimate the integral | A PR |?dA(z), which we can rewrite as

/Aﬁ i Paae = [+ ]

A; = {z €A, d(z) <2(1— |z|)}
Ai = {Z €A, d(z) >2(1 - |z|)}.

where
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4.1 The Integral on the Region A!
We begin with the following lemma.

Lemma 4.2

|f(2) = f(z/[zD
/Aq (1= 2 dA()—za(p I e,

Proof Letz =ré € A, and pute, = 2a(p — 1). We have
r|f(reit) _ f(eit)|2p _ 1’|f(7’€i[) _ f(eit)|2/)—2|f(1,eit) _ f(eit)|2

1
<r(1-— r)“gﬂ/ | (se")|*ds

1
<(1- r)”gﬂ/ | (se")|?sds.
0

Therefore

1£G) = fle/le ! o
d — i l p et
/Am e e - | (/Wlf(re) fEPE)

1
1
< 7|2 —  dr
= ||f HLHAQ\/O (1 _ 1,)1—5,)

This completes the proof. ]

Now, we can state the following result.

Lemma 4.3

[ @R @PdA < G s,

Proof By Cauchy’s estimate, it follows that |f/(re"")] < . Using Lemma 4.2, we
get

2p
wo [ r@PIErue < [ N 0z)

A (1= (122

/ [ LGP
<Gl Tia + 2 [ S 4o

Using Lemma 4.1, we obtain

(4.7) / |f(z/—|z|)|2palA(z):l / |f(e”)|2pfdrdt
A T JA

" (1= 22 (=1
F(enpr 2
<5 ) Taey # =Gl e,
The result of our lemma follows by combining the estimates (4.6) and (4.7). m
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4.2 The Integral on the Region A2

In this subsection, we estimate the integral [, |f(2)|*|f/(2)|*dA(z). Before this, we
o

make some remarks. For z € ID define

1 —log | f(¢)] .
a,(z) = Efr w%fz‘z‘do ify ¢ T,
F I A Y S ¥
2 ST\ T2 v CT.

Using equation (4.4), it is easy to see that

—log| (&)

2
, 9 ‘ .
|ez(7 _Z|2

1
f@rf@F <4 fers |

Using equation (4.5), it is clear that

B i
|f(z)pfrl(z)|2 < 2|fI(Z)|2 +8 ’ f(Z)pi/ 10g|f(€ )|d9 ’2 .
T\[

P e

Then
) [ @M @R <2 T, 8 [ f@P G
Since log | f| € L'(T), we have
C
(4.9) m@) < prs (€A,

Given such inequality, it is not easy to estimate immediately the integral of the func-
tion | f(2)[*a%(z) on the whole A2. In what follows, we give a partition of A? into
three parts so that one can estimate the integral f |f (z)|2pa%,(z)dA(z) on each part.

Letz € A?Y; three situations are possible:

| log(d(2))]

(4.10) a,(z) < SW,
| log(d(z))| | log(d(2))|
(4.11) —de < a,(z) <8ﬁ,

(4.12) sw < a(2).

We can now divide A? into the following three parts
A%,l ={z¢€ Ai, : z satisfying (4.10) } ,
A%z ={z¢€ Ai : z satisfying (4.11)},
A? ={ze€ Ai : z satisfying (4.12) } .
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4.2.1 The Integral on the Regions A2 and A2’

In this case we begin with the following.

Lemma 4.4

[ @R @A < Gl T,

Proof Using Lemma 4.2, we get
/A . f(2)[a’ (2)dA(2)
<2° /A21 f@I" 7! f(2) — f(z/|2])|"* @ (2)dA(2)

v / F@I /2] a (2)dAC2)

— p+1 it +1
<c, [ VOSGE e, [ N

|f(eit)|p+1
<Gl a + G /A )

y

Let ¢ € y and denote by ¢; the point of A2 N'D such that ¢, /|¢;| = €. We have

, d 4
|ezt _ <t| —1— |<t| _ (ZCt) S d(@lt).

Then

|f(eit)|p+1 / |f(eit)|p+1

————drdt < ————drdt

/A%l A2 (eh) rat = n () 4
|f(eit)|ﬂ+1 /1 |f(eit)|p+1
= | ——— drdt < | —————dt
L@ rat = (e

Using Lemma 4.1, we get I, ; < Cp”f/HiZ(Aq)- This proves the result. [ |
Lemma 4.5

/A ; |f(2)[Pd’ (2)dA(z) < CA(A,),

where A(A) is the area measure of A

Proof Set

A r fory ¢ T,
7Tl T\T fory CT.
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Letz € A,Zf . We have

27 ) )
f@l=ew { 5 [ s loglftelds }
0

27 lei? — 2]

1 1—r ;
< — [ == log|f(e do}
- exp{ 27 /Aq |ei? — z|2 og|f(")]

—exp { —(1-1a,(2) | < d'(2).
Using (4.9), we obtain the result. [ |
4.2.2 The Integral on the Region A%

Here, we will give an estimate of the following integral
/ |f(2)* a3 (2)dA(2).
Az

Before doing this, we begin with some lemmas. The next one is essential for what fol-
lows. Note that a similar result is used by various authors: Korenblum [6], Matheson
[7], Shamoyan [8], and Shirokov [9,10].

Lemma 4.6 Letz € A2 and let i, = 1 — Sl Logld@)| ey,

a,(z)

(4.13) |f(p=2)] < d*(2).
Proof Letz € A, andlet ;x < 1. We have

1 2m 1— 2 X
|f(uz)| = eXP{ %/0 ﬁbglﬂe"’)ldﬂ

2
<o { o [ i togl s )

21 Jy, | — pz|?
i6 —z 2
< exp { —(1 = pr) 9ienj£ m ‘ ay(2) } .

Forz € A%,z, it is clear that 1 — y, < d(z) < | — z| forall ¢ € A,. Then

i0
. e’ —z
inf

z e AP,
0eA, ( 7)

1
2

el — i,z ’_

Thus

fpal <op{ Lo}  @ean)

Then, we have

f(e)] < exp { ‘i“ —p)ay() f=d@) (€ AP),

which yields (4.13). |
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For r < 1, define

B. Bouya

v :={z€D: |zl =rand z/|z| € 7}.

Without loss of generality, we can suppose that d(z) <
following.

Lemma 4.7 Letr < 1. Then
/ [f(re") — f(pyeere™) | (re")rdt <
'7’rﬂA»2)2

wheree, = ap — 1).

Proof Let re't € A%Z. Then

|f(re") — f(pppere™) [P (1 — umz‘f)aq,(re”)]z

1
2

S
“(1=rl2

, 2 € A%,. We need the

112,

< 64(1 — puyer ) log’(d(re)) < C,,.

Itis clear that 1 — r < 1 — ju,0 < d(re’*) < % and so % < et < 1. We have

/ |f(re") — f(pipenre™) |2pa§ (reé*)rdt
Y NAZ

|f(reit) - f(Mre‘freit)|p+l

rdt

-
! rNA2 (1- Horeit )2

T (1—r)—%

I Hreit

ity " ity |2
Cﬂ / |f(r€ ) f(,ure re )| fdt
Y NAZ

C r .
<7p/ / "(se")|?ds ) rdt
S Mz( G )

C ;
R / | (se™) Psdisdt
a—n=—=J

C
< g [ 17 eRdAw),

where w
s,;:{ WED: 0= |wl < rand oo
w

The proof is therefore completed.

erl.

The last result that we need before giving the proof of Theorem 2.1 is the following

one.
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Lemma 4.8
[ QP @A) < Gl s, + CAG,),
A2
Proof Using (4.9) and Lemmas 4.6 and 4.7, we find that

/A @ ()dAc)

1 /! o
= ity (2p it
77/0 (/%rmgz |f(re")|*a’ (re )rdt) dr

1
< CA(A,) + 2% / ( / |F(re") = f(pgrre)[2a2 (reyrdt ) dr
0 Y NA2
< CAMA) +Coll f 122, -
This completes the proof of the lemma. ]

4.2.3 Conclusion

Now, according to (4.8) and Lemmas 4.4, 4.5, and 4.8, we obtain

/Az [f@PIf (2)PdAG=) <2 f'|Fa) + 8/Az |f(2)|*a’ (2)dA(z2)
<ClIf' T, + CAA,).

Combining this with Lemma 4.3, we deduce that

/A F@PIf @A < Cyllf |Paa) + CAA,).

Hence
[ r@rig@bae =3 [ ifepgekae
D n=1 In

<G Z Hf/||i2(AA,,,) + CZA(A%) <C,.
n=1

n=1
This completes the proof of Theorem 2.1. ]

Acknowledgments I wish to thank Professors A. Borichev, O. El Fallah, and K. Kel-
lay for the interest which they carried to this work.

https://doi.org/10.4153/CJM-2009-014-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-014-5

298 B. Bouya
References

[1] L. Carleson, A representation formula for the Dirichlet space. Math. Z. 73(1960), 190-196.

2] O. El-Fallah, K. Kellay, and T. Ransford, Cyclicity in the Dirichlet space. Ark. Mat. 44(2006), no. 1,
61-86.

[3] J. Esterle, E. Strouse, and F. Zouakia, Closed ideals of A* and the Cantor set. ]. Reine Angew. Math.
449(1994), 65-79.

[4] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions.
Michigan Math. J. 37(1990), no. 1, 91-104.

[5] K. Hoffman, Banach spaces of analytic functions. Reprint of the 1962 original, Dover Publications
Inc., New York, 1988.

[6] B. 1. Korenbljuum, Invariant subspaces of the shift operator in a weighted Hilbert space. Mat. Sb.
89(131)(1972),110-137, 166.

[7] A. Matheson, Approximation of analytic functions satisfying a Lipschitz condition. Michigan
Math. J. 25(1978), no. 3, 289-298.

[8] E A. Shamoyan, Closed ideals in algebras of functions that are analytic in the disk and smooth up to
its boundary. Mat. Sb. 79(1994), no. 2, 425-445.

[9] N. A. Shirokov, Analytic functions smooth up to the boundary. Lecture notes in mathematics 1312,
Springer-Verlag, Berlin, 1988.

[10] , Closed ideals of algebras of type B}, . Izv. Akad. Nauk. SSSR Ser. Mat. 46(1982), no. 6,
1316-1332, 1344.

[11]  B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values.

Canad J. Math. 22(1970), 1266-1283.

Département de Mathématiques, Faculté des Sciences, Université Mohamed V, Rabat, Morocco
e-mail: brahimbouya@gmail.com

https://doi.org/10.4153/CJM-2009-014-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-014-5

