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Abstract

For each integer d > 3, we obtain a characterization of all graphs in which the ball of radius 3 around
each vertex is isomorphic to the ball of radius 3 in Ld , the graph of the d-dimensional integer lattice.
The finite, connected graphs with this property have a highly rigid, ‘global’ algebraic structure;
they can be viewed as quotient lattices of Ld in various compact d-dimensional orbifolds which
arise from crystallographic groups. We give examples showing that ‘radius 3’ cannot be replaced
by ‘radius 2’, and that ‘orbifold’ cannot be replaced by ‘manifold’. In the d = 2 case, our methods
yield new proofs of structure theorems of Thomassen [‘Tilings of the Torus and Klein bottle and
vertex-transitive graphs on a fixed surface’, Trans. Amer. Math. Soc. 323 (1991), 605–635] and
of Márquez et al. [‘Locally grid graphs: classification and Tutte uniqueness’, Discrete Math. 266
(2003), 327–352], and also yield short, ‘algebraic’ restatements of these theorems. Our proofs use
a mixture of techniques and results from combinatorics, geometry and group theory.
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1. Introduction

Many results in Combinatorics concern the impact of ‘local’ properties on ‘global’
properties of combinatorial structures (for example graphs). A natural ‘local’
condition to impose on a graph, is that it be regular. If d ∈ N, a graph is said to be
d-regular if all its vertices have degree d . Regular graphs have been extensively
studied, and satisfy some rather strong ‘global’ properties. For example, a well-
known conjecture of Nash-Williams states that if G is an n-vertex, d-regular graph
c© The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2016.30 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:itai.benjamini@weizmann.ac.il
mailto:d.ellis@qmul.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/fms.2016.30&domain=pdf
https://doi.org/10.1017/fms.2016.30


I. Benjamini and D. Ellis 2

with d > bn/2c, then G can be decomposed into edge-disjoint Hamiltonian cycles
and at most one perfect matching; this was recently proved for all sufficiently
large n by Csaba et al. [11]. On the other hand, d-regular graphs are still quite
‘flexible’ structures. For example, it was proved by Bollobás [7] and independently
by McKay and Wormald [25] that for any fixed integer d > 3, Gd(n) has trivial
automorphism group with high probability, that is

Prob{|Aut(Gd(n))| = 1} → 1 as n→∞.
This result was later extended to any d ∈ {3, 4, . . . , n − 4} by Kim et al. [20],
answering a question of Wormald.

It is natural to ask what happens to the global structure of a graph when we
impose a ‘local’ condition which is stronger than being d-regular. A natural
condition to impose is that the subgraph induced by the ball of radius r in G
around any vertex, is isomorphic to some fixed graph, for some fixed, small r ∈ N.
We proceed to give definitions which make this precise.

If G is a (simple, undirected) graph, we write V (G) for the vertex set of G and
E(G) for its edge set. If S ⊂ V (G), we write G[S] for the subgraph of G induced
by S, that is the maximal subgraph of G with vertex set S. If v,w ∈ V (G), the
distance from v to w in G is defined to be the minimum number of edges in a
path from v to w in G; it is denoted by dG(v,w). If v ∈ V (G), and r ∈ N, we
define Linkr (v,G) to be the subgraph of G induced by the set of vertices of G
with distance at most r from v, and we define

Link−r (v,G) := Linkr (v,G) \ {{x, y} ∈ E(G) : dG(v, x) = dG(v, y) = r}.
A rooted graph is an ordered pair (G, v) where G is a graph, and v ∈ V (G).

Our key definitions are as follows.

DEFINITION 1. If (F, u) is a rooted graph, we say that a graph G is r-locally
(F, u) if for every vertex v ∈ V (G), there exists a graph isomorphism φ :
Linkr (u, F)→ Linkr (v,G) such that φ(u) = v.

DEFINITION 2. If (F, u) is a rooted graph, we say that a graph G is weakly r-
locally (F, u) if for every vertex v ∈ V (G), there exists a graph isomorphism
φ : Link−r (u, F)→ Link−r (v,G) such that φ(u) = v.

Clearly, we have the implications

G is r -locally (F, u)⇒ G is weakly r -locally (F, u)⇒ G
is (r − 1)-locally (F, u),

for any r ∈ N.
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We remark that if F is vertex-transitive, then Definitions 1 and 2 are
independent of the choice of u. Hence, if F is a vertex-transitive graph, we
say that a graph G is r-locally F if there exists u ∈ V (F) such that G is r -locally
(F, u). Similarly, we say that G is weakly r-locally F if there exists u ∈ V (F)
such that G is weakly r -locally (F, u).

As a simple example, if d ∈ N, let Td denote the infinite d-regular tree. A graph
G is r -locally Td if and only if it is a d-regular graph with girth at least 2r+2, and
is weakly r -locally Td if and only if it is a d-regular graph with girth at least 2r+1.

Perhaps not surprisingly, for many rooted graphs (F, u), graphs which are r -
locally (F, u) (for small r ) have a very rigid global structure. Sometimes, there
is only one such connected graph up to isomorphism—for example, the only
connected graph which is 1-locally K t+1, is K t+1 itself.

The r = 1 case of Definition 1 is familiar in the literature. If G is a graph
and v ∈ V (G), we write Γ (v) for the set of neighbours of v, and we write
L(v,G) := G[Γ (v)] for the subgraph of G induced by the neighbours of v; L(v,
G) is often called the link of G at v. Note that a graph G is 1-locally (F, u) if and
only if L(v,G) ∼= L(u, F) for every vertex v of G. (Graphs which are 1-locally
(F, u) for some rooted graph (F, u) are usually called graphs of constant link.)

Many authors have given succinct necessary or sufficient conditions on H for
there to exist finite (or, in some cases, possibly infinite) graphs of constant link H ,
for graphs H within various classes; results of this kind can be found for example
in [8, 9, 14, 16, 28, 35]. However, the problem seems very hard in general. For
more background, the reader may consult the survey [18].

In this paper, we will focus on the case where F is a Euclidean lattice. If d ∈ N,
the d-dimensional lattice Ld is the graph with vertex set Zd , and edge set

{{x, x + ei} : x ∈ Zd, i ∈ [d]},
where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) denotes the i th unit vector in Rd . We study
the properties of graphs which are r -locally Ld or weakly r -locally Ld , for various
r . We feel Ld is a natural ‘second’ case to study, the ‘first’ case perhaps being T2d .
Note that T2d is the standard Cayley graph of the free group on d generators, and
as remarked above, a graph is r -locally T2d if and only if it is a (2d)-regular graph
of girth at least 2r + 2; regular graphs of high girth have been intensively studied
(see for example [19, 21, 22]). By comparison, Ld is the standard Cayley graph
of the free Abelian group on d generators.

Note that a graph is r -locally L1 if and only if it is a vertex-disjoint union of
cycles of length at least 2r + 2, and is weakly r -locally L1 if and only if it is a
vertex-disjoint union of cycles of length at least 2r+1, so the first interesting case
is d = 2.

It turns out that for all d > 2 and all r > 3, graphs which are weakly r -locally
Ld have a very rigidly proscribed, algebraic global structure, in stark contrast to
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regular graphs of high girth. By comparison, the uniform random d-regular graph
Gd(n) can be generated using a simple, purely combinatorial process, namely, the
Configuration Model of Bollobás [5], and Gd(n) has girth at least g with positive
probability for any fixed d, g > 3 (see [6, 37]).

The highly rigid, algebraic structure of graphs which are r -locally Ld is not
perhaps very surprising, in the light of results on complexes with specified links.
Indeed, one may associate to a graph G, a 2-dimensional CW complex S, by
attaching 2-cells to certain of its cycles; the property of G being weakly r -locally
(F, u) then translates to a property of the links or the combinatorial r -balls of
S. (Rigidity phenomena for complexes with specified links or combinatorial r -
balls have been observed by many authors, for example by Tits [33, 34] in his
celebrated work on buildings, and more recently for example by Ballman and
Brin [1], Światkowski [29] and Wise [36].) One of our proofs takes advantage of
this connection.

Our main result is the following structure theorem for graphs which are weakly
3-locally Ld .

THEOREM 1. Let d > 2 be an integer, and let G be a connected graph which is
weakly 3-locally Ld . Then there exists a normal covering map from Ld to G.

The reader is referred to Definitions 4 and 7 (pp. 7–8) for the definition of a
normal covering map.

We will give a construction (Example 2) to show that Theorem 1 is best possible
for each d > 3, in the sense that for each d > 3, there exist finite connected
graphs which are 2-locally Ld but which are not covered by Ld . The construction
is algebraic.

In the d = 2 case, we prove something slightly stronger, yielding new proofs
of structure theorems of Thomassen [31] and of Márquez et al. [24], and also
yielding short, ‘algebraic’ restatements of these theorems. To state our result, we
need the following definition, implicit in [31].

DEFINITION 3. Let G be a graph. We say that G has the 4-cycle wheel property
if it is 4-regular, and there exists a family C of 4-cycles of G such that for every
vertex v of G, there are exactly four 4-cycles in C which contain v, and the union
of these four 4-cycles is isomorphic to the following graph.
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Note that a graph which is weakly 2-locally L2 has the 4-cycle wheel property;
on the other hand, a 3 × 3 discrete torus has 4-cycle wheel property, but is not
weakly 2-locally L2.

We prove the following structure theorem for graphs with the 4-cycle wheel
property.

THEOREM 2. Let G be a connected graph with the 4-cycle wheel property. Then
there exists a normal covering map from L2 to G.

Our (short) proof of Theorem 2 takes advantage of some classical techniques
in geometry. Namely, we use the family C of 4-cycles to define a 2-dimensional
cubical CW complex S in the natural way, and we consider the universal cover
of S.

We note that the technique of ‘promoting’ a graph to a 2-complex using its
cycles has been used before in the context of graphs with constant link, for
example by Nedela in [26, 27]. We note also that Weetman [35] obtained results
on graphs of constant link by considering topological properties of the clique
complex of a graph (the simplicial complex whose simplices correspond to cliques
in the graph).

We remark that Theorem 1 can also be given a proof along similar lines, by
using the 4-cycles of G to define a 2-dimensional cubical CW complex S in the
natural way, and considering an appropriate ‘thickening’ of S to an incomplete
flat manifold. However, as this proof appeals to geometric machinery which may
unfamiliar to some readers, we have chosen to present here a somewhat longer,
but more elementary and more combinatorial proof of Theorem 1.

We use some fairly standard arguments from topological graph theory and
group theory to deduce the following from Theorem 2.

COROLLARY 3. Let G be a finite, connected graph with the 4-cycle wheel
property. Then there exists a subgroup Γ 6 Aut(L2) which acts freely on L2, such
that G is isomorphic to the quotient graph L2/Γ , and such that the orbit space
R2/Γ is either a torus or a Klein bottle. (See Definitions 10 and 11 in Section 2
for the definitions of a quotient graph and a free action.)

It follows that we can view any finite, connected graph with the 4-cycle wheel
property as a ‘quotient lattice’ of L2 inside a torus or a Klein bottle; in particular,
it must be a quadrangulation of the torus or of the Klein bottle, as observed by
Thomassen in [31]. One can use Corollary 3 to deduce the structure theorems for
graphs with the 4-cycle wheel property which are proved by Thomassen [31] and
by Márquez et al. [24], and also to give short, clean, ‘algebraic’ descriptions of

https://doi.org/10.1017/fms.2016.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.30


I. Benjamini and D. Ellis 6

the graphs which are defined combinatorially (at some length) in these structure
theorems. We omit the details of these deductions, as they are straightforward.

Likewise, in the d > 3 case, we deduce the following from Theorem 1.

COROLLARY 4. Let d > 3 be an integer, and let G be a finite, connected graph
which is weakly 3-locally Ld . Then there exists a subgroup Γ 6 Aut(Ld) which
acts freely on Ld , such that G is isomorphic to the quotient graph Ld/Γ . Moreover,
viewed as a subgroup of Isom(Rd), Γ is a d-dimensional crystallographic group,
and the orbit space Rd/Γ is a compact topological orbifold.

It follows that we can view any finite, connected graph which is weakly
3-locally Ld , as a ‘quotient lattice’ of Ld inside a compact d-dimensional
topological orbifold. (See Definition 22 for the definition of a topological
orbifold.) We will give an example to show that for each d > 7, the orbit space
Rd/Γ in Corollary 4 need not be a topological manifold (see Example 3).

REMARK 1. Bieberbach’s theorems [3, 4] imply that for any d ∈ N, there are
only a finite number ( f (d), say) of affine-conjugacy classes of d-dimensional
crystallographic groups (where two crystallographic groups are said to be affine-
conjugate if they are conjugate via an affine transformation of Rd). It follows that
the orbit space Rd/Γ in Corollary 4 is homeomorphic to one of at most f (d)
topological spaces. (See Fact 6.)

We also obtain an exact (algebraic) characterization of the graphs which are
3-locally Ld , or weakly 3-locally Ld , for each d > 3 (Proposition 11). As its
statement is a little more technical than that of Corollary 4, we defer it until
Section 4.

The remainder of this paper is structured as follows. In Section 2, we give
the definitions, background and standard tools which we require from topological
graph theory, topology and group theory. This section is rather long, but as various
‘standard’ texts in topology and geometry use slightly different conventions, we
prefer to set out our conventions in full, to avoid ambiguity. All or part of Section 2
can be skipped by readers familiar with the relevant areas. In Section 3, we prove
Theorems 1 and 2, and we construct an example showing that Theorem 1 is best
possible in a certain sense. In Section 4, we deduce Corollary 3 from Theorem
2 and Corollary 4 from Theorem 1, using some fairly standard arguments from
topological graph theory and group theory. We conclude with a discussion of
some open problems and related results in Section 5.
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2. Definitions, background and tools

Basic graph-theoretic notation and terminology. Unless otherwise stated, all
graphs will be undirected and simple (that is, without loops or multiple edges);
they need not be finite. An undirected, simple graph is defined to be an ordered
pair of sets (V, E), where E ⊂ (V

2

)
; V is called the vertex set and E the edge set.

An edge {v,w} of a graph will often be written vw, for brevity.
If S ⊂ V (G), we let N (S) denote the neighbourhood of S, that is

N (S) = S ∪ {v ∈ V (G) : sv ∈ E(G) for some s ∈ S}.
We say a graph is locally finite if each of its vertices has only finitely many
neighbours.

If G is a graph, and u, v ∈ V (G) are in the same component of G, the distance
from u to v in G is the minimum length of a path from u to v; it is denoted by
dG(u, v) (or by d(u, v), when the graph G is understood). A path of minimum
length between u and v (that is, a path of length dG(u, v)) is called a geodesic. If
G is a graph, and v is a vertex of G, the ball of radius r around v is defined by

Br (v,G) := {w ∈ V (G) : dG(v,w) 6 r},
that is it is the set of vertices of G of distance at most r from v.

Background and tools from topological graph theory. We follow [15, 23].

DEFINITION 4. If F and G are graphs, and p : V (F) → V (G) is a graph
homomorphism from F to G, we say that p is a covering map if p maps Γ (v)
bijectively onto Γ (p(v)), for all v ∈ V (F). In this case, we say that F covers G.

REMARK 2. It is easy to see that if F and G are graphs with G connected, and
p : V (F)→ V (G) is a covering map, then p is surjective.

DEFINITION 5. Let F and G be graphs, and let p : V (F)→ V (G) be a covering
of G by F . The pre-image of a vertex of G under p is called a fibre of p.

DEFINITION 6. Let F and G be graphs, and let p : V (F)→ V (G) be a covering
of G by F . An automorphism φ ∈ Aut(F) is said to be a covering transformation
of p if p ◦ φ = p. The group of covering transformations of p is denoted by
CT(p).

Note that any covering transformation of p acts on each fibre of p, but it need
not act transitively on any fibre of p.
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DEFINITION 7. Let F and G be graphs, and let p : V (F)→ V (G) be a covering
of G by F . We say that p is a normal covering if CT(p) acts transitively on each
fibre of p.

REMARK 3. It is well known (and easy to check) that if F is a connected graph,
and p : V (F)→ V (G) is a covering of G by F , then if CT(p) acts transitively
on some fibre of p, it acts transitively on every fibre of p. Hence, in the previous
definition, ‘on each fibre’ may be replaced by ‘on some fibre’.

DEFINITION 8. Let Γ be a group, let X be a set, and let α : Γ × X → X be an
action of Γ on X . For each x ∈ X , we write OrbΓ (x) := {α(γ, x) : γ ∈ Γ } for
the Γ -orbit of x , and StabΓ (x) := {γ ∈ Γ : α(γ, x) = x} for the stabilizer of x
in Γ . When the group Γ is understood, we suppress the subscript Γ .

DEFINITION 9. If F is a graph and Γ 6 Aut(F), the minimum displacement of
Γ is defined to be D(Γ ) := min{dF(x, γ (x)) : x ∈ V (F), γ ∈ Γ \ {Id}}.

DEFINITION 10. Let Γ be a group, let X be a set, and let α : Γ × X → X be
an action of Γ on X . We say that α is free if α(γ, x) 6= x for all x ∈ X and all
γ ∈ Γ \ {Id}.

DEFINITION 11 (Quotient of a graph). Let F be a simple graph, and let Γ 6
Aut(F). Then Γ acts on V (F) via the natural left action (γ, x) 7→ γ (x), and on
E(F) via the natural (induced) action (γ, {x, y}) 7→ {γ (x), γ (y)}. We define the
quotient graph F/Γ to be the multigraph whose vertices are the Γ -orbits of V (F),
and whose edges are the Γ -orbits of E(F), where for any edge {x, y} ∈ E(F),
the edge Orb({x, y}) has endpoints Orb(x) and Orb(y). Note that F/Γ may have
loops (if {x, γ (x)} ∈ E(F) for some γ ∈ Γ and some v ∈ V (F)), and it may also
have multiple edges (if there exist {u1, u2}, {v1, v2} ∈ E(F) with γ1(u1) = v1 and
γ2(u2) = v2 for some γ1, γ2 ∈ Γ , but {γ (u1), γ (u2)} 6= {v1, v2} for all γ ∈ Γ ).

DEFINITION 12. Let G be a graph, and let Γ 6 Aut(G). We say that Γ acts
freely on G if the natural actions of Γ on V (G) and E(G) are both free actions,
or equivalently, if no element of Γ \ {Id} fixes any vertex or edge of G.

The following two lemmas are well known, and easy to check.

LEMMA 5. Let F be a connected (possibly infinite) graph, let G be a graph, and
let p : V (F)→ V (G) be a covering map from F to G. Then CT(p) acts freely
on F.
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LEMMA 6. Let F and G be (possibly infinite) graphs with G connected, and
suppose p : V (F)→ V (G) is a normal covering map from F to G. Then there is
a graph isomorphism between G and F/CT(p).

Some background from topology and group theory

FACT 1. The group Isom(Rd) of isometries of d-dimensional Euclidean space
satisfies

Isom(Rd) = {t ◦ σ : t ∈ T (Rd), σ ∈ O(d)}
= {σ ◦ t : t ∈ T (Rd), σ ∈ O(d)}
= T (Rd)o O(d),

where
T (Rd) := {x 7→ x + v : v ∈ Rd}

denotes the group of all translations in Rd , and O(d) 6 GL(Rd) denotes the group
of all real orthogonal d × d matrices.

FACT 2. For any d ∈ N, we have

Aut(Ld) = {t ◦ σ : t ∈ T (Zd), σ ∈ Bd}
= {σ ◦ t : t ∈ T (Zd), σ ∈ Bd}
= T (Zd)o Bd,

where
T (Zd) := {x 7→ x + v : v ∈ Zd}

denotes the group of all translations by elements of Zd , and

Bd = {σ ∈ GL(Rd) : σ({±ei : i ∈ [d]}) = {±ei : i ∈ [d]}},
denotes the d-dimensional hyperoctahedral group, which is the symmetry group
of the d-dimensional (solid) cube with set of vertices {−1, 1}d , and can be
identified with the permutation group

{σ ∈ Sym([d] ∪ {−i : i ∈ [d]}) : σ(−i) = −σ(i) ∀i},
in the natural way (identifying ei with i and −ei with −i for all i ∈ [d]). We
therefore have |Bd | = 2dd!.

FACT 3. It is easy to see that every element of Aut(Ld) can be uniquely extended
to an element of Isom(Rd). We can therefore view Aut(Ld) as a subgroup of
Isom(Rd).
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DEFINITION 13. If X is a topological space, and Γ is a group acting on X , the
orbit space X/Γ is the (topological) quotient space X/ ∼, where x ∼ y iff y ∈
OrbΓ (x), that is iff x and y are in the same Γ -orbit.

DEFINITION 14. If X is a topological space, a group Γ of homeomorphisms of X
is said to be discrete if the relative topology on Γ (induced by the compact open
topology on the group of all homeomorphisms of X ) is the discrete topology.

DEFINITION 15. If X is a topological space, and Γ is a discrete group of
homeomorphisms of X , we say that Γ acts properly discontinuously on X if for
any x, y ∈ X , there exist open neighbourhoods U of x and V of y such that
|{γ ∈ Γ : γ (U ) ∩ V 6= ∅}| <∞.

FACT 4. If Γ 6 Isom(Rd), then Γ is discrete if and only if for any x ∈ Rd , the
orbit {γ (x) : γ ∈ Γ } is a discrete subset of Rd . Hence, Aut(Ld) is a discrete
subgroup of Isom(Rd).

FACT 5. If Γ 6 Isom(Rd) is discrete, then Γ acts properly discontinuously on Rd .
(Note that it is clear directly from the definition that Aut(Ld), and any subgroup
thereof, acts properly discontinuously on Rd .)

DEFINITION 16. Let Γ be a discrete subgroup of Isom(Rd). The translation
subgroup TΓ of Γ is the subgroup of all translations in Γ . The lattice of
translations of Γ is the lattice LΓ := {γ (0) : γ ∈ TΓ } ⊂ Rd . We have LΓ ∼= Zr

for some r ∈ {0, 1, . . . , d}; the integer r is called the rank of the lattice LΓ .

DEFINITION 17. A discrete subgroup Γ 6 Isom(Rd) is said to be a d-
dimensional crystallographic group if its lattice of translations has rank d
(or, equivalently, if the orbit space Rd/Γ is compact).

DEFINITION 18. A group Γ is said to be torsion-free if the only element of finite
order in Γ is the identity.

DEFINITION 19 (Following [10]). A torsion-free d-dimensional crystallographic
group is called a d-dimensional Bieberbach group.

DEFINITION 20. If Γ is a d-dimensional crystallographic group, its point group
PΓ is defined by

PΓ = {σ ∈ O(d) : t ◦ σ ∈ Γ for some t ∈ T (Rd)}.
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FACT 6 (Bieberbach’s Theorems). Bieberbach’s First Theorem [3] implies that
if Γ is a d-dimensional crystallographic group, then PΓ is finite. It is easy to
check that if Γ is a d-dimensional crystallographic group, then its point group
PΓ acts faithfully on the lattice LΓ . Hence, PΓ is isomorphic to a finite subgroup
of GLd(Z). The Jordan–Zassenhaus theorem implies that for any (fixed) d ∈ N,
there are only finitely many isomorphism classes of finite subgroups of GLd(Z).
It follows that for any d ∈ N, there are only finitely many possibilities for
the isomorphism class of the point group of a d-dimensional crystallographic
group. Bieberbach’s Third Theorem [4] says more: for any d ∈ N, there are
only finitely many possibilities for the isomorphism class of a d-dimensional
crystallographic group. (Meaning, as usual, an isomorphism class of abstract
groups.) Bieberbach’s Second Theorem [4] states that if Γ and Γ ′ are d-
dimensional crystallographic groups, and Φ : Γ → Γ ′ is an isomorphism, then
there exists an affine transformation α of Rd such that Φ(γ ) = α−1γα for all
γ ∈ Γ . Hence, two d-dimensional crystallographic groups are isomorphic if and
only if they are conjugate in Aff(Rd), the group of all affine transformations of
Rd . It follows that for any fixed d ∈ N, there are only a finite number ( f (d), say)
of possibilities for the affine-conjugacy class of a d-dimensional crystallographic
group.

DEFINITION 21 (d-dimensional topological manifold). Let d ∈ N. A Hausdorff
topological space X is said to be a d-dimensional topological manifold if for
every x ∈ X , there exists an open neighbourhood of x which is homeomorphic to
an open subset of Rd . (Note that we do not regard a ‘manifold with boundary’ as
a manifold.)

DEFINITION 22 (d-dimensional topological orbifold, following [12]). Let d ∈ N
be fixed. Let X be a Hausdorff topological space. An orbifold chart on X is a
4-tuple (V,G,U, π), where

• V is an open subset of Rd ;

• U is an open subset of X ;

• G is a finite group of homeomorphisms of V ;

• π = φ ◦ q , where q : V → V/G is the orbit map (that is the map taking v ∈ V
to its orbit), and φ : V/G → U is a homeomorphism.

We say that two orbifold charts (V1,G1,U1, π1), (V2,G2,U2, π2) on X are
compatible if for any v1 ∈ V1, v2 ∈ V2 with π1(v1) = π2(v2), there exist open
neighbourhoods Wi of vi in Vi (for i = 1, 2), and a homeomorphism h : W2→ W1,
such that π2|W2 = (π1|W1) ◦ h.
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An atlas of orbifold charts on X is a collection {(Vi ,G i ,Ui , πi) : i ∈ I } of
pairwise compatible orbifold charts on X such that {Ui : i ∈ I } is a cover of X .
A d-dimensional topological orbifold is a pair (X,A), where X is a topological
space, and A is an atlas of orbifold charts on X . (Abusing terminology slightly,
if (X,A) is a topological orbifold, we will sometimes refer to the underlying
topological space X as a topological orbifold.)

Note that, for simplicity, all orbifolds (and manifolds) in this paper will be
viewed only as topological ones. An ‘orbifold’ (respectively ‘manifold’) will
therefore always mean a topological orbifold (respectively manifold).

REMARK 4. Informally, a d-dimensional topological orbifold is a topological
space, together with a collection of charts which model it locally using quotients
of open subsets of Rd under the actions of finite groups (rather than simply using
open subsets of Rd , as in the definition of a manifold). Note that a d-dimensional
manifold is precisely a d-dimensional orbifold where we can take each finite
group G i in Definition 22 to be the trivial group.

EXAMPLE 1. The orbit space R2/〈(x1, x2) 7→ (x1,−x2)〉 (which is
homeomorphic to the closed upper half-plane) can be given the structure of
a 2-dimensional orbifold. More generally, any ‘manifold with boundary’ can be
given the structure of an orbifold. Even more generally, if M is a manifold, and
Γ is a finite group of homeomorphisms of M , then the orbit space M/Γ can be
given the structure of an orbifold.

FACT 7 (See [32], Proposition 13.2.1.). If Γ is a discrete group of
homeomorphisms of a d-dimensional topological manifold M , and Γ acts
properly discontinuously on M , then the orbit space M/Γ can be given the
structure of a d-dimensional topological orbifold. Indeed, for each x ∈ M , we
can take a chart at x where the finite group of homeomorphisms Gx is isomorphic
to StabΓ (x). If, in addition, Γ is torsion-free, then StabΓ (x) is trivial for all x , so
M/Γ is a d-dimensional topological manifold.

FACT 8. It follows from Facts 5 and 7 that if Γ 6 Isom(Rd) is discrete, then
Rd/Γ is a d-dimensional orbifold, and if in addition, Γ is torsion-free, then Rd/Γ

is a d-dimensional manifold. Therefore, if Γ is a d-dimensional crystallographic
group, then Rd/Γ is a compact d-dimensional orbifold, and if Γ is a d-
dimensional Bieberbach group, then Rd/Γ is a compact d-dimensional manifold.
Since there are at most f (d) possibilities for the affine-conjugacy class of a d-
dimensional crystallographic group, the orbit space Rd/Γ is homeomorphic to
one of at most f (d) topological spaces.
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3. Proofs of ‘topological’ structure theorems

Proof of Theorem 2. Let G be as in the statement of the theorem. Let C be a
collection of 4-cycles of G as in the definition of the 4-cycle wheel property. There
is an obvious way to produce from G a 2-dimensional cubical CW complex S, by
attaching a unit square to each of the 4-cycles in C (and gluing these unit squares
together along edges of G); these unit squares are the 2-cells of the complex, and
the edges of G are the 1-cells. Since any edge of G is contained in exactly two
of the 4-cycles in C, S is a complete surface, and an isomorphic copy G ′ of G is
embedded in S, the faces of G ′ being precisely the 2-cells of S.

Clearly, the surface S is flat (that is, locally isometric to R2); since S is a
complete, flat surface, its universal cover is R2. Let p : R2 → S be a universal
covering map. Note that p is a normal covering map, since it is universal. Let
H = p−1(G ′) denote the pullback of G ′. It is well known (and easy to see, for
example by composing p with a ‘developing map’), that we may take p to be
a local isometry—equivalently, we may assume that p−1(F) is a unit square for
each face F of G ′. This in turn implies that H = p−1(G ′) is a tesselation of R2

with unit squares, and it follows easily that H = L2. Hence, p|V (L2) is a normal
covering map (in the graph sense) from L2 to H .

REMARK 5. This proof can very easily be adapted to prove a weakening of
Theorem 1, namely that if G is a connected graph which is weakly d-locally Ld ,
then G is normally covered by Ld . Indeed, one produces from G a d-dimensional
cubical CW complex S in the natural way; S is a complete, flat d-dimensional
manifold so has universal cover Rd .

For our proof of Theorem 1, we will need the following.

OBSERVATION 1. Let d > 2 be an integer. Let G be a graph which is weakly
2-locally Ld . Then G is (2d)-regular, and for each vertex u ∈ V (G), the set of
neighbours of u can be partitioned into d pairs

{{a(i)1 , a(i)2 } : i ∈ [d]} (1)

such that for all i ∈ [d], a(i)1 and a(i)2 have u as their only common neighbour, and
for each pair 1 6 i < j 6 d and each (k, l) ∈ [2]2, there are exactly two common
neighbours of a(i)k and a( j)

l , namely u and one other vertex c{i, j},(k,l), with the 4
(d

2

)
vertices

(c{i, j},(k,l) : {i, j} ∈ [n](2), (k, l) ∈ [2]2)
being distinct. Further, the partition (1) is the unique partition with these
properties. For each i ∈ [d], we say that the two vertices a(i)1 and a(i)2 are ‘opposite
one another across u’.
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REMARK 6. Suppose that G is weakly 2-locally Ld for some integer d > 2.
Suppose a1 and a2 are opposite one another across u, and b ∈ Γ (u) \ {a1, a2}.
Then a1 and b have exactly two common neighbours, u and c1 (say). Similarly, a2

and b have exactly two common neighbours, u and c2 (say). If, in addition, G is
weakly 3-locally Ld , then c1 and c2 must be opposite one another across b, since
b is their only common neighbour. (Example 2 shows that for each d > 3, this
need not be true if G is merely 2-locally Ld .)

LEMMA 7. Let d > 2 be an integer. Suppose G is weakly 2-locally Ld . Suppose
further that p : V (Ld)→ V (G) is a covering map from Ld to G. Then for every
x ∈ V (Ld) and every i ∈ [d], p(x + ei) is opposite p(x − ei) across p(x).

Proof. Without loss of generality, we may assume that x = 0, and i = 1. Suppose
for a contradiction that p(e1) is not opposite p(−e1) across p(0). Then there
exists s ∈ {±1} and j 6= 1 such that p(se j) is opposite p(e1) across p(0), that
is p(0) is the unique common neighbour of p(e1) and p(se j). Since p is a graph
homomorphism, and e1+ se j is a common neighbour of e1 and se j , we must have
p(se j + e1) = p(0). But this contradicts the fact that p is injective on N (e1),
proving the lemma.

We can now prove Theorem 1.

Proof of Theorem 1. We will construct a normal covering map p : V (Ld) →
V (G), directly. Choose any v0 ∈ V (G), and define p(0) = v0. Write Γ (v0) =
{w±i : i ∈ [d]}, where wi is opposite w−i across v0, for each i ∈ [d]. Define
p(ei) = wi and p(−ei) = w−i for each i ∈ [d]. We will show that there is a
unique way of extending p to all of Zd , in such a way that p is a covering map
from Ld to G.

We first make the following.

CLAIM 1. There is at most one covering map p from Ld to G such that p(0) = v0,
p(ei) = wi for all i ∈ [d], and p(−ei) = w−i for all i ∈ [d].

Proof of Claim 1. Note that if p : Zd → V (G) is a covering map from Ld to G,
and xyzwx is a 4-cycle in Ld , then p(x)p(y)p(z)p(w)p(x) is a 4-cycle in G.
Since any three vertices of G are in at most one 4-cycle, this implies that for any
4-cycle xyzwx of Ld , the values of p(x), p(y) and p(z) determine the value of
p(w).

This fact, combined with Lemma 7, immediately implies that there is at most
one extension of p to all of Zd , such that p is a covering map from Ld to G.
(Starting with the set N (0) = {0} ∪ {±ei : i ∈ [d]} on which p is initially defined,
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we may cover all of Zd by successive applications of the two operations of adding
the third of three consecutive vertices on a straight path of length 2, and adding
the fourth vertex of a 4-cycle.)

We now turn to showing existence. Let x ∈ Zd ; we define p(x) as follows. Let
P be any geodesic from 0 to x in Ld . Let H = Ld[N (P)] be the subgraph of Ld

induced on N (P). We make the following.

CLAIM 2. There exists a unique map q : V (H)→ V (G) such that:

(1) q agrees with p on N (0), that is q(0) = v0, q(ei) = wi , q(−ei) = w−i for
all i ∈ [d];

(2) for each y ∈ V (P) and each i ∈ [d], q(y + ei) is opposite q(y − ei) across
y;

(3) q|Γ (y) is a bijection from Γ (y) to Γ (q(y)), for all y ∈ V (P);

(4) if abcda is a 4-cycle containing an edge of P, then q(a)q(b)q(c)q(d)q(a)
is a 4-cycle in G.

Proof of Claim 2: WLOG WMA x is in the positive orthant. Write P =
x0x1 . . . xl , where x0 = 0 and xl = x . For each k 6 l, let Pk = x0x1 . . . xk .
We construct q (and show uniqueness) recursively. Let k 6 l, and suppose we
have already defined q on N (Pk) such that q satisfies properties (1)–(4) above
when P is replaced by Pk . We split into two cases.

Case 1: xk−1, xk, xk+1 are colinear. In this case, WLOG WMA xk+1 − xk = xk −
xk−1 = e1. To satisfy property (2) when y = xk+1 and i = 1, we must define
q(xk+1 + e1) to be the vertex of G which is opposite q(xk) across q(xk+1). For
each i > 1, observe that q(xk + ei) and q(xk+1) = q(xk + e1) are not opposite
one another across q(xk), so they have exactly two common neighbours, q(xk)

and another vertex, vi say. To satisfy property (4) at the 4-cycle with vertex set
{xk, xk+1, xk+1 + ei , xk + ei}, we must define q(xk+1 + ei) = vi . Similarly, for
each i > 1, observe that q(xk − ei) and q(xk+1) = q(xk + e1) are not opposite
one another across q(xk), so they have exactly two common neighbours, q(xk)

and another vertex, v′i say. To satisfy property (4) at the 4-cycle with vertex set
{xk, xk+1, xk+1 − ei , xk − ei}, we must define q(xk+1 − ei) = v′i . By Remark 6, for
each i > 1, q(xk+1+ ei) and q(xk+1− ei) are opposite one another across q(xk+1),
so property (2) holds when y = xk+1 for each i > 1. Property (3) now holds when
y = xk+1, because it holds when y = xk , and G is weakly 2-locally Ld .

Case 2: xk−1, xk, xk+1 are not colinear. In this case, WLOG WMA xk+1 − xk =
e1 and xk − xk−1 = e2. To satisfy property (2) when y = xk+1 and i = 1, we
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must define q(xk+1 + e1) to be the vertex of G which is opposite q(xk) across
q(xk+1). Observe that q(xk + e2) and q(xk+1) = q(xk + e1) are not opposite one
another across q(xk), so they have exactly two common neighbours, q(xk) and
another vertex, v say. To satisfy property (4) at the 4-cycle with vertex set {xk,

xk+1, xk+1 + e2, xk + e2}, we must define q(xk+1 + e2) = v. Note that we have
already defined q(xk+1 − e2) = q(xk−1 + e1); this vertex is opposite q(xk+1 + e2)

across q(xk+1) by Remark 6, so property (2) holds when y = xk+1 and i = 2. For
each i > 2, q(xk+1 + ei) and q(xk+1 − ei) must be defined exactly as in Case 1.
As in Case 1, for each i > 2, q(xk+1 + ei) and q(xk+1 − ei) are then opposite
one another across q(xk+1), so property (2) holds when y = xk+1 for each i > 2.
Again as in Case 1, property (3) now holds when y = xk+1, because it holds when
y = xk , and G is weakly 2-locally Ld .

We define p(x) = q(x). Our next aim is to prove:

q(x) is independent of the choice of geodesic P from 0 to x . (2)

To prove (2), WLOG WMA x is in the positive quadrant. Observe that for
any two geodesics P, P ′ from 0 to x , we can get from P to P ′ by a sequence of
‘elementary switches’, meaning operations which replace some subpath (y, y+ei ,

y + ei + e j) by the subpath (y, y + e j , y + ei + e j), for some i 6= j . Hence, it
suffices to show that if P and P ′ differ from one another by an elementary switch,
then the corresponding maps q and q ′ satisfy q(x) = q ′(x). Suppose then that
P = (x0, x1, . . . , xk, xk + ei , xk + ei + e j , xk+3, . . . , xl) and P ′ = (x0, x1, . . . , xk,

xk+e j , xk+ei+e j , xk+3, . . . , xl), where x0 = 0 and xl = x . WLOG, WMA i = 1
and j = 2, and let us write y := xk , so that

P = (x0, x1, . . . , xk−1, y, y + e1, y + e1 + e2, xk+3, . . . , xl),

P ′ = (x0, x1, . . . , xk−1, y, y + e2, y + e1 + e2, xk+3, . . . , xl).

We have q(y) = q ′(y) and q(y+ ei) = q ′(y+ ei) for all i ∈ [d], since P ′k = Pk

and q is uniquely determined on N (Pk) (and q ′ on N (P ′k)). In other words, q and
q ′ agree with one another on N (y). We assert that q and q ′ agree with one another
on N (y + e1 + e2). Indeed, since G is weakly 3-locally Ld , there exists a graph
isomorphism φ : Link−3 (y,Ld)→ Link−3 (q(y),G) such that φ agrees with q (and
q ′) on N (y); it is easy to see that this φ is unique. Moreover, since q and q ′ satisfy
properties (2) and (4), they must agree with φ on B3(y,Ld), wherever they are
defined. Since N (y + e1 + e2) ⊂ B3(y,Ld), it follows that q and q ′ must agree
with one another on N (y + e1+ e2), as asserted. By the uniqueness part of Claim
2 (applied with xk+2 = y + e1 + e2 in place of 0), it follows now that q = q ′ on
{xk+2, xk+3, . . . , xl}, so in particular q(x) = q ′(x), proving (2).
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It follows from property (3) of Claim 2 that p : Zd → V (G) is a covering map
from Zd to G. Normality follows from Claim 1. To see this, it suffices to show
that the group of covering transformations of p is transitive on the fibre p−1(0).
So let x ∈ Zd \ {0} with p(x) = p(0). By Lemma 7, p(ei) and p(−ei) must be
opposite one another across p(0) for all i ∈ [d], and p(x+ei) and p(x−ei)must
be opposite one another across p(x) = p(0) for all i ∈ [d]. Hence, we have

{{p(x + ei), p(x − ei)} : i ∈ [d]} = {{p(ei), p(−ei)} : i ∈ [d]}.
Since Aut(Ld) = T (Zd)o Bd , and the elements of Bd correspond precisely to the
permutations of {±ei : i ∈ [d]} which preserve the partition

{{ei ,−ei} : i ∈ [d]}
(see Fact 2), we may choose α ∈ Aut(Ld) such that α(0) = x and p(w) =
p(α(w)) for all w ∈ Γ (0). (Take α = g ◦ tx , where tx is translation by x and
g is the appropriate element of Bd .)

Observe that p ◦ α is a covering map from Ld to G which agrees with p on
N (0). Hence, by Claim 1, we have p ◦ α = p, so α ∈ CT(p). Therefore, CT(p)
acts transitively on p−1(0), as required. Hence, p is a normal covering map from
Ld to G. This completes the proof of Theorem 1.

EXAMPLE 2. We now give an example showing that Theorem 1 is best possible,
in the sense that for every integer d > 3, there exists a finite, connected graph
which is 2-locally Ld but which is not covered by Ld . We first deal with the case
d = 3.

Let us recall some more group-theoretic notions. If Γ is a group, and S ⊂ Γ
with Id /∈ S and S−1 = S, the (right) Cayley graph of G with respect to S is the
graph with vertex set G and edge set

{{g, gs} : g ∈ Γ, s ∈ S}.
It is sometimes denoted by Cay(Γ, S).

We write finitely presented groups in the form

〈a1, a2, . . . , as; R1, . . . , RN 〉
where a1, . . . , as are the generators and R1, . . . , RN are the relations (that is, Ri

is an equation of the form wi = w′i , where wi and w′i are words in a1, . . . , as and
their inverses).

If Γ is a finitely presented group with generators a1, . . . , as , the length of the
word

ar1
i1

ar2
i2
. . . art

it
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is defined to be
∑t

i=1 |ri |; for example, a−2
1 a2

2a−1
2 has length 5. A relator is a

word which evaluates to the identity in Γ . A relator is trivial if it evaluates to the
identity in the free group with generators a1, a2, . . . , as . For example, the trivial
relators of length two are ai a−1

i and a−1
i ai (for i ∈ [s]).

Let Γ be the finitely presented group with three generators defined by

Γ = 〈a, b, c; a−1b = c2, b−1c = a2, c−1a = b2〉, (3)

and let G = Cay(Γ, {a, b, c, a−1, b−1, c−1}), that is G is the graph of the finitely
presented group Γ with respect to the generators a, b, c. It can be checked (for
example using a computer algebra system) that Γ is a finite group, and in fact that
Γ ∼= F4

2 o C7, so |Γ | = 112. A concrete realization of Γ is the group

T (F4
2)o 〈M〉 6 Aff(F4

2),

where Aff(F4
2) denotes the group of all affine transformations of the vector space

F4
2, that is

Aff(F4
2) = {(x 7→ Ax + v) : A ∈ GL(F4

2), v ∈ F4
2},

T (F4
2) = {(x 7→ x + v) : v ∈ F4

2} 6 Aff(F4
2)

denotes the subgroup of all translations, and

M =


0 0 1 0
1 1 0 0
0 1 1 0
0 0 0 1

 .
Note that M7 = Id, so 〈M〉 6 GL(F4

2) is a cyclic group of order 7. We may take
the generators a, b, c to be

a = (x 7→ Mx + (1, 0, 0, 1)>),

b = (x 7→ M2x + (1, 0, 1, 1)>),

c = (x 7→ M4x + (0, 1, 0, 1)>),

where we compose these functions from left to right, so that (a · b)(x) = b(a(x)).
We now find the Abelianization of Γ , that is the quotient group Γ/[Γ, Γ ],

where
[Γ, Γ ] := {ghg−1h−1 : g, h ∈ Γ }

denotes the commutator subgroup of Γ . Let ā, b̄, c̄ denote the images of a, b, c
in the Abelianization of Γ . Then, from the second relation, we have c̄ = ā2b̄;
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substituting this into the first relation gives b̄ = āc̄2 = āā4b̄2, so b̄ = ā−5.
Substituting this back into the second relation gives c̄ = ā2b̄ = ā−3. The third
relation then gives 1 = c̄−1āb̄−2 = ā3āā10 = ā14. Hence,

Γ/[Γ, Γ ] = 〈ā〉 ∼= C14,

a cyclic group of order 14, and we have

b̄ = ā9, c̄ = ā11, ā−1 = ā13, b̄−1 = ā5, c̄−1 = ā3.

Since each of ā, b̄, c̄ is an odd power of ā, there is no relator of odd length (in
ā, b̄, c̄ and their inverses) in Γ/[Γ, Γ ], and so there is no relator of odd length in
the group Γ . Hence, G has no odd cycle. In particular, G has no cycle of length 3
or 5. Moreover, ā, b̄, c̄, ā−1, b̄−1, c̄−1 are all distinct elements of Γ/[Γ, Γ ]. Hence,
a, b, c, a−1, b−1, c−1 are all distinct elements of Γ , so G is 6-regular.

It can be checked that for the group Γ , the only relators of length 4 are the
24 relators arising from rearranging the relations in (3) and taking inverses. (We
suppress the details of this calculation, as it is straightforward but somewhat long;
it can easily be done using a computer algebra system.) Hence, the following
words of length 2 appear in no nontrivial relator of length 4:

ab, bc, ca, b−1a−1, c−1b−1, a−1c−1 (4)

all the other nontrivial words of length 2 appear as the initial two letters of exactly
one nontrivial relator of length 4.

It follows that G is 2-locally L3. Indeed, since G is vertex-transitive, it
suffices to check this at the vertex Id, only. In other words, we must construct
a map ψ : B2(0,L3) → V (G) which is an isomorphism from Link2(0,L2) to
Link2(Id,G), with ψ(0) = Id.

Let S := {a, b, c, a−1, b−1, c−1}. Let us say that two distinct elements x, y ∈ S
are complementary if x−1 y appears in no nontrivial relator of length 4. (Note that
this relation is symmetric, as x−1 y appears in the list (4) if and only if y−1x does.
Moreover, each element of S is complementary to exactly one other element of S.)
We can construct an appropriate map ψ by choosing the six images ψ(±ei) to be
distinct elements of S, in such a way that ψ(ei) and ψ(−ei) are complementary
for each i ∈ {1, 2, 3}. For i 6= j and s, t ∈ {±1}, we can then define ψ(sei + te j)

as follows. Let x = ψ(sei) and y = ψ(te j). Then x and y are distinct and not
complementary, so x−1 y appears as the initial two letters of exactly one nontrivial
relator of length 4, say x−1 yuv = Id. Define ψ(sei+ te j) = yu (= xv−1). Finally,
for each i and each s ∈ {±1}, define ψ(2sei) as follows. Let x = ψ(sei). Let y
be the unique element of S such that x−1 and y are complementary, and define
ψ(2sei) = xy.
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An explicit choice of ψ is as follows.

ψ(0) = Id,
ψ(e1) = a,

ψ(−e1) = c−1,

ψ(e2) = b,

ψ(−e2) = a−1,

ψ(e3) = c,

ψ(−e3) = b−1,

ψ(2e1) = ab,

ψ(−2e1) = c−1b−1,

ψ(2e2) = bc,

ψ(−2e2) = a−1c−1,

ψ(2e3) = ca,

ψ(−2e3) = b−1a−1,

ψ(e1 + e2) = ac = bc−1,

ψ(e1 − e2) = ac−1 = a−1b−1,

ψ(−e1 + e2) = c−1a = b2,

ψ(−e1 − e2) = c−1b = a−2,

ψ(e1 + e3) = ab−1 = cb,

ψ(e1 − e3) = a2 = b−1c,

ψ(−e1 + e3) = c−1a−1 = cb−1,

ψ(−e1 − e3) = c−2 = b−1a,

ψ(e2 + e3) = ca−1 = ba,

ψ(e2 − e3) = ba−1 = b−1c−1,

ψ(−e2 + e3) = a−1b = c2,

ψ(−e2 − e3) = a−1c = b−2.

Figure 1. The map ψ .
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Using the facts that G has no 3-cycle or 5-cycle, together with (4), it is easy
to see that ψ is an isomorphism from Link2(0,L2) to Link2(Id,G). We may
conclude that G is 2-locally L3.

On the other hand, we claim that G is not covered by L3. Indeed, suppose for
a contradiction that p : L3 → G is a cover map. By considering p ◦ φ for some
φ ∈ Aut(L3) if necessary, we may assume that p(0) = Id and p(e1) = a. By
Lemma 7, p(−e1)must be opposite p(e1) = a across p(0) = Id, so p(−e1) = c−1.
By considering p◦φ for some φ ∈ Aut(L3) fixing the x-axis, if necessary, we may
assume that p(e2) = b. Then, by Lemma 7, p(−e2) must be opposite p(e2) = b
across p(0) = Id, so p(−e2) = a−1.

The only common neighbours of p(e1)= a and p(e2)= b are Id and ac = bc−1.
Hence, we must have p(e1 + e2) = ac = bc−1 (clearly, p(e1 + e2) 6= Id,
as p must be bijective on Γ (e1)). Similarly, the only common neighbours of
p(e1) = a and p(−e2) = a−1 are Id and ac−1 = a−1b−1, so we must have
p(e1 − e2) = ac−1 = a−1b−1. But then p(e1 + e2) and p(e1 − e2) have two
common neighbours, namely a and ac−1a−1 = acb−1, so they are not opposite
one another, contradicting Lemma 7. Hence, G is not covered by L3, as claimed.

For d > 4, we let Γd = Γ × Zd−3
14 , and Gd = Cay(Γd, Sd) where

Sd = {(a, 0), (b, 0), (c, 0), (a−1, 0), (b−1, 0), (c−1, 0)}
∪ {(Id, fi) : i ∈ [d − 3]} ∪ {(Id,− fi) : i ∈ [d − 3]}),

and where fi = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Zd−3
14 denotes the i th unit vector in

Zd−3
14 . It is easy to see (using the d = 3 case) that Gd is 2-locally Ld , but is not

covered by Ld .

4. Proofs of ‘algebraic’ structure theorems

In this section, we use standard results and techniques from topological graph
theory and group theory, combined with the ‘topological’ structure theorems
of the previous two sections, to deduce Corollaries 3 and 4, which concern
the ‘algebraic’ (quotient-type) structure of graphs which have the 4-cycle-wheel
property, or which are weakly 3-locally Ld (for d > 3).

The d = 2 case. We first prove the following.

PROPOSITION 8. If G is a finite, connected graph with the 4-cycle wheel property,
then G is isomorphic to L2/Γ , where Γ is a subgroup of Aut(L2) with |Z2/Γ | <
∞ and with minimum displacement at least 3.
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Proof. Let G be a finite, connected graph with the 4-cycle wheel property. It
follows immediately from Theorem 2, Lemmas 5 and 6 that G is isomorphic to
L2/Γ , where Γ is a subgroup of Aut(L2) which acts freely on L2. Clearly, we
have |Z2/Γ | = |V (G)| < ∞. Observe that if Γ has minimum displacement at
most 2, then L2/Γ is not 4-regular, so it does not have the 4-cycle wheel property.
Hence, Γ has minimum displacement at least 3.

Our next step is to classify the subgroups Γ of Aut(L2) which have |Z2/Γ | <
∞ and minimum displacement at least 3. Using the description of Aut(L2) in Fact
2, it is easy to check the following.

CLAIM 3. If Γ 6 Aut(L2) has minimum displacement at least 3, then Γ is
torsion-free.

We also need the d = 2 case of the following simple fact (we will need the
d > 3 case later).

CLAIM 4. If Γ 6 Aut(Ld) with |Zd/Γ | < ∞, then the lattice of translations of
Γ has rank d.

Proof. Let LΓ denote the lattice of translations of Γ . Suppose rank(LΓ ) < d . Let
{v1, . . . , vr } be a Z-basis for LΓ ; then r < d . Choosew ∈ Zd\〈v1, . . . , vr 〉R, where
〈v1, . . . , vr 〉R denotes the subspace of Rd spanned by v1, . . . , vr over R. We assert
that for any x ∈ Zd , there are at most 2dd! elements of {x+λw : λ ∈ Z} := L in the
same Γ -orbit as x . Indeed, suppose otherwise. Let S = {γ ∈ Γ : γ (x) ∈ {x+λw :
λ ∈ Z}}; then |S| > 2dd!. Since Γ 6 Aut(Ld) = T (Zd) o Bd and |Bd | = 2dd!
(see Fact 2), by the pigeonhole principle, there exist g ∈ Bd and two distinct
translations t1, t2 ∈ T (Zd) such that t1g, t2g ∈ S. Notice that (t1g)(t2g)−1 = t1t−1

2
is a translation in Γ \ {Id}. But there exist y, z ∈ L such that t1g(x) = y and
t2g(x) = z, so t1t−1

2 (z) = y, so t1t−1
2 fixes the set L , so t1t−1

2 is a translation by
µw for some µ ∈ Z\ {0}, so w ∈ 〈v1, v2, . . . , vr 〉R, contradicting our choice of w,
and proving our assertion. The assertion implies that {λw : λ ∈ Z}meets infinitely
many Γ -orbits. Hence, |Zd/Γ | = ∞, proving the claim.

Recall that we can view Aut(L2) as a discrete subgroup of Isom(R2)

(see Facts 3 and 4), and of course the same holds for any subgroup of
Aut(L2). If Γ 6 Aut(L2) with |Z2/Γ | < ∞, then by Claim 4, the lattice of
translations of Γ has rank 2, so Γ is a 2-dimensional crystallographic group (see
Definition 17). Combining this fact with Claim 3 implies that if Γ 6 Aut(L2)with
|Z2/Γ | <∞ and with minimum displacement at least 3, then Γ is a torsion-free
2-dimensional crystallographic group, that is a 2-dimensional Bieberbach group
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(see Definition 19). The classification of 2-dimensional Bieberbach groups (see
for example [10]) says the following.

PROPOSITION 9. Let Γ 6 Isom(R2) be a 2-dimensional Bieberbach group. Then
either

(1) Γ = 〈t1, t2〉, where t1 and t2 are linearly independent translations; or

(2) Γ = 〈g, t〉, where g is a glide reflection and t is a translation in a direction
perpendicular to the reflection axis of g.

In case (1), R2/Γ is a (topological) torus; in case (2), R2/Γ is a (topological)
Klein bottle. This immediately implies Corollary 3.

The d > 3 case.

Proof of Corollary 4. Let G be a finite, connected graph which is weakly
3-locally Ld . It follows immediately from Theorem 1, Lemma 5 and Lemma 6
that G is isomorphic to Ld/Γ , where Γ is a subgroup of Aut(Ld) which acts
freely on Ld .

As in the d = 2 case, recall that Aut(Ld) can be viewed as a discrete subgroup
of Isom(Rd), and of course the same holds for any subgroup of Aut(Ld). Since
Γ 6 Aut(Ld) with |Zd/Γ | = |V (G)| <∞, by Claim 4, the lattice of translations
LΓ of Γ has rank d , so Rd/Γ is compact, and by definition, Γ is a d-dimensional
crystallographic group. Hence, by Fact 7, Rd/Γ can be given the structure of a
d-dimensional topological orbifold.

Our aim is now to obtain an exact (algebraic) characterization of the graphs
which are weakly 3-locally Ld , and to show that the orbit space Rd/Γ in
Corollary 4 need not be a topological manifold when d > 7. For this, we need
more detailed information about the group Γ . We first prove the following easy
lemma.

LEMMA 10. Let d, r ∈ N, and let Γ 6 Aut(Ld). Let D(Γ ) denote the minimum
displacement of Γ . Then

(i) Ld/Γ is r-locally Ld if and only if D(Γ ) > 2r + 2.

(ii) Ld/Γ is weakly r-locally Ld if and only if D(Γ ) > 2r + 1.

Proof. (i) Suppose Γ 6 Aut(Ld) has D(Γ ) > 2r + 2. Let x ∈ V (Ld). Then
it is easy to check that the orbit map x 7→ OrbΓ (x) is a graph isomorphism
from Linkr (x,Ld) to Linkr (Orb(x),Ld/Γ ) which maps x to Orb(x), so Ld/Γ

is r -locally Ld .
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On the other hand, suppose Γ 6 Aut(Ld) has D(Γ )6 2r+1. If D(Γ )= 2r+1,
then there exist y, z ∈ V (Ld) and γ ∈ Γ with dLd (y, z) = 2r + 1 and γ (y) = z,
so Orb(y) = Orb(z). Let (y, x1, x2, . . . , x2r , z) be a geodesic in Ld from y to z;
then

Orb(y)Orb(x1)Orb(x2) . . .Orb(x2r )Orb(y)

is a cycle in Ld/Γ of length 2r + 1, so Ld/Γ is not r -locally Ld . We may assume
henceforth that D(Γ ) 6 2r .

Now note that if {Orb(x),Orb(y)} ∈ E(Ld/Γ ), then there exists z ∈ Orb(y)
such that {x, z} ∈ E(Ld). Indeed, if {Orb(x),Orb(y)} ∈ E(Ld/Γ ), then there
exist γ, γ ′ ∈ Γ such that {γ (x), γ ′(y)} ∈ E(Ld), and therefore {x, γ −1γ ′(y)} ∈
E(Ld), so we may take z = γ −1γ ′(y). Similarly, if (Orb(x0),Orb(x1),Orb(x2),

. . . ,Orb(xl)) is a path in Ld/Γ , then there exist zi ∈ Orb(xi) for each i ∈ [l] such
that (x0, z1, z2, . . . , zl) is a path in Ld . It follows that the number of vertices of
Ld/Γ of distance at most r from Orb(x) is precisely the number of Γ -orbits of
V (Ld) intersecting the ball Br (x,Ld).

Since D(Γ ) 6 2r , there exist y, z ∈ V (Ld) and γ ∈ Γ such that dLd (y, z) 6 2r
and γ (y) = z, so Orb(y) = Orb(z). Choose x ∈ V (Ld) such that y, z ∈ Br (x,Ld).
Then Orb(y) intersects Br (x,Ld) in at least two vertices (y and z), so

|Br (Orb(x),Ld/Γ )| = no. of Γ -orbits of V (Ld) intersecting Br (x,Ld)

< |Br (x,Ld)|.
It follows that Ld/Γ is not r -locally Ld .

(ii) Suppose Γ 6 Aut(Ld) has D(Γ ) > 2r + 1. Let x ∈ V (Ld). It is easy to
check that the orbit map x 7→ OrbΓ (x) is a bijective graph homomorphism from
Linkr (x,Ld) to Linkr (Orb(x),Ld/Γ ) which maps x to Orb(x). Hence, Ld/Γ is
weakly r -locally Ld .

On the other hand, suppose Γ 6 Aut(Ld) has D(Γ ) 6 2r . Then, by the same
argument as in part (i),

|Br (Orb(x),Ld/Γ )| = no. of Γ -orbits of V (Ld) intersecting Br (x,Ld)

< |Br (x,Ld)|,
so Ld/Γ is not weakly r -locally Ld .

We can now deduce the following exact characterization of the graphs which
are 3-locally Ld , or weakly 3-locally Ld .

PROPOSITION 11. Let d ∈ N with d > 2, and let G be a connected graph. Then

(i) G is 3-locally Ld if and only if G is isomorphic to Ld/Γ , where Γ 6 Aut(Ld)

with D(Γ ) > 8;
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(ii) G is weakly 3-locally Ld if and only if G is isomorphic to Ld/Γ , where
Γ 6 Aut(Ld) with D(Γ ) > 7.

Proof. Let G be a connected graph which is weakly 3-locally Ld . It follows
immediately from Theorem 1, Lemma 5 and Lemma 6 that G is isomorphic to
Ld/Γ , where Γ is a subgroup of Aut(Ld) which acts freely on Ld . By part (ii) of
Lemma 10 applied with r = 3, we have D(Γ ) > 7. If in addition, G is 3-locally
Ld , then by part (i) of Lemma 10, we have D(Γ ) > 8. The converse of each
statement follows immediately from Lemma 10.

To show that for each d > 7, the orbit space Rd/Γ in Corollary 4 need not be
a topological manifold, it suffices to exhibit (for each d > 7) a subgroup Γ 6
Aut(Ld) satisfying the conditions of Proposition 11(ii) and such that Rd/Γ is not
a topological manifold. We do this below.

EXAMPLE 3. Let

Γ = 〈{(x 7→ x + 2dei) : i ∈ [d]} ∪ {(x 7→ (1, 1, . . . , 1)− x)}〉 6 Aut(Ld).

Note that Γ contains an element of order 2, so is not torsion-free and therefore
is not a Bieberbach group. It has |Zd/Γ | < ∞ and has minimum displacement
d , so by Lemma 10, Ld/Γ is weakly 3-locally Ld if d > 7 (and indeed 3-locally
Ld , if d > 8). However, for each d > 3, Rd/Γ is not a topological manifold.
This follows, for example, from the fact that a small metric ball around the
point [(1/2, 1/2, . . . , 1/2)] has topological boundary homeomorphic to (d − 1)-
dimensional projective space RPd−1, whereas it is known that no subset of Rd is
homeomorphic to RPd−1 if d > 3. (See [17] Ch. 3, p. 256 for a proof of this in
the case of odd d , and [30] for a proof for all d > 3.)

5. Conclusion and related problems

Theorem 1 states that a connected graph G which is weakly 3-locally Ld is
normally covered by Ld . Example 2 shows that for each d > 3, the hypothesis of
Theorem 1 cannot be weakened to G being 2-locally Ld . Nevertheless, Example
2 is still ‘highly structured’, and we are not aware of any essentially different
alternative constructions. It would be interesting to obtain a (weaker) structure
theorem for graphs which are 2-locally Ld (for each d > 3), and to do the same
for graphs which are weakly 2-locally Ld (for each d > 3).

Our results imply that if r > r∗(d), then a connected graph which is r -locally
Ld is covered by Ld , where
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r∗(d) :=
{

2 if d = 2;
3 if d > 3.

Benjamini and Georgakopoulos conjectured the following generalization of this
fact.

CONJECTURE 1 (Benjamini, Georgakopoulos). Let Γ be a finitely presented
group, and let F be a connected, locally finite Cayley graph of Γ . Then there
exists r ∈ N such that if G is a graph which is r-locally F, then F covers G.

(Note that this conjecture appeared in [2] without the assumption of Γ being
finitely presented. It is easy to see that the conjecture is false without this
assumption, however, and the conjecture was afterwards amended to the above.)

In [13], de la Salle and Tessera disprove Conjecture 1; they also prove several
positive results, among which is the following. If F is a graph and k ∈ N with
k > 2, we let Pk(F) denote the 2-dimensional polygonal CW complex whose 1-
skeleton is F , and whose 2-cells are the cycles of length at most k in F . Following
[13], we say that F is simply connected at level k if Pk(F) is simply connected,
and we say that F is large-scale simply connected if there exists k > 2 such that
F is simply connected at level k.

THEOREM 12 (De La Salle, Tessera). Let F be a connected, locally finite graph
which is large-scale simply connected, and which has |V (F)/Aut(F)| <∞ and
|StabAut(F)(v)| <∞ for all v ∈ V (F). Then there exists r = r(F) ∈ N such that
if G is a graph which is r-locally F, then F covers G.

Since Ld satisfies the hypotheses of Theorem 12 for any d ∈ N, the Ld-case of
Theorem 12 implies a weakened version of Theorem 1.

It would be interesting to determine more precisely the class of graphs F for
which the conclusion of Conjecture 1 holds; note that this class contains Td , the
infinite d-regular tree, which (for d > 3) does not satisfy the hypotheses of
Theorem 12, as Aut(Td) has infinite vertex stabilizers. It would also be of interest
to obtain good quantitative bounds on r(F) for graphs F in various classes (such
as Cayley graphs on nilpotent groups of step k).

This paper deals with the properties of all finite graphs which are r -locally Ld ,
or weakly r -locally Ld , for various r . In a subsequent paper [‘On random graphs
which are locally indistinguishable from a lattice’, in preparation], we will study
the typical properties of a uniform random n-vertex graph which is r -locally Ld .
It turns out that, for any integer r > 2, a graph chosen uniformly at random from
the set of all n-vertex graphs which are r -locally L2, has largest component of
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order o(n) and automorphism group of order at least exp(Ω((log n)2)), with high
probability. Similarly, for any integer d > 3 and any integer r > 3, a graph chosen
uniformly at random from the set of all n-vertex graphs which are r -locally Ld ,
has largest component of order o(n) and automorphism group of order at least
exp(Ω((log n)2)), with high probability. This is in stark contrast to G2d(n), the
random (2d)-regular graph on n vertices, which is connected with high probability
for all d > 2, and has trivial automorphism group with high probability for all d ∈
{2, 3, . . . , b(n−4)/2c}. In the aforementioned work, we make several conjectures
regarding what happens when Ld is replaced by other Cayley graphs of finitely
generated groups.
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[4] L. Bieberbach, ‘Über die Bewegungsgruppen der Euklidischen Räume II’, Math. Ann. 72
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