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Abstract

The pointwise order makes the group C(X) of continuous real-valued functions on a topological
space X a lattice-ordered group. We give a characterization of the compatible tight Riesz orders on
C(X), and also of their maximal tangents, in terms of the zero-sets of X. The space of maximal
tangents of a given compatible tight Riesz order T is studied, and consequently the concept of the
T-radical of C(X)is introduced, the T-radical being the intersection of all the maximal tangents of T.

Introduction

Given a topological space X we denote by C(X) the set of continuous
real-valued functions on X. If C(X) is equipped with the following order

f>0 if /(x)gO for all x£X

then it becomes an abelian lattice-ordered group with

/A g(x) = min{f(x),g(x)}

f V g(x) = max{f(x),g(x)}.

In order to obtain the compatible tight Riesz orders on C(X), we make use
of the following result due essentially to Wirth (1973). A compatible tight Riesz
order on a lattice-ordered group (G, < ) is determined by (and determines) a
subset T of the positive set G* = {x E G:0< x} of G satisfying the following
conditions:

(1) T is a proper dual-ideal of G +

(2) T is normal in G
(3) T=T+T
(4) 0 < n x < y for all positive integers n, for all y £ T, implies x = 0.

[n the case of C(X) we can modify the above result, since, C(X) abelian implies
(2) holds for all subsets T of C+(X), R archimedean implies (4) holds for all
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subsets T of C+(X) and C(X) divisible makes (3) easier to check. We have then
that the compatible tight Riesz orders on C(X) are determined by (and
determine) proper dual-ideals T of C+(X) satisfying T = T + T. By an abuse of
language we shall call each such dual-ideal T a compatible tight Riesz order on
C(X).

With each compatible tight Riesz order T on C(X) we associate tangents
[cf. Miller (1973)] i.e. convex sublattice subgroups of C(X) not meeting T and
maximal tangents i.e. convex sublattice subgroups of C(X) that are maximal
with respect to not meeting T. Each maximal tangent M of T satisfies the further
condition — / A g G M implies / 6 M or g G M — i.e. each maximal tangent is
a prime subgroup of C(X). Finally, if C(X) is given the open-interval topology
generated by the compatible tight Riesz order T, then every tangent of T is
closed.

Zero-set characterization of compatible tight Riesz orders

We proceed in analogy to Gillman and Jerison (1960).
Given / G C(X), the set {x G X: f(x) = 0} is called the zero-set of /, and will

be denoted by Z(f). Any set that is a zero-set of some function in C(X) is called
a zero-set in X, and we denote the set of all zero-sets in X by Z(X). Now

Z ( / ) U Z ( g ) = Z ( | / | ) U Z ( | g | ) = Z ( | / | A | g | )

and

whence Z(X) is closed under finite unions and intersections. Thus Z(X),
ordered by inclusion, is a lattice, and we make the following (usual) definitions -

A non-empty subfamily 3F of Z(X) is called a Z-ideal provided that:
(1) if Z,, Z2 G & then Z, U Z2 G 9
(2) if Z G ^, Z ' £ Z(X) and Z^>Z' then Z' G ^
If in addition
(3) X£ &
then & is a proper Z-ideal.
A non-empty subfamily ^ of Z(X) is called a Z-filter provided that:
(1) if Z,, Z2 G <S then Z, Pi Z2 G <S
(2) if Z G % Z' G Z(X) and Z' D Z then Z' G <§.
If in addition
(3) • £ »
then <§ is a proper Z-filter.

Throughout this paper we will assume all Z-ideals and Z-filters to be proper.
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THEOREM 1. (a) / / T is a proper dual-ideal of C+(X), then the family

= {Z(J):fET}

is a Z-ideal.
(b) / / & is a Z-ideal then the family

Z <-[&)• = {\f\:Z(f)e 9}

is a proper dual-ideal of C*{X).

PROOF, (a) 1. Let Z,,Z2eZ[T]. Choose fuf2GT satisfying Z, = Z(/,),
Z2=Z(f2), then since / , , / 2 £C + (X) we have Z(/,) U Z(/2) = Z(/, A f2), and
since T is a dual-ideal, /, A f2 £ T. Thus Z, U Z2 £ Z[T].

2. Let ZGZ[T] and Z ' £ Z(X) with Z D Z'. Choose / £ T and / ' £ C(X)
satisfying Z = Z(/), Z ' = Z(f') = Z(|/ ' | ) . Then Z( / )DZ( | / ' | ) whence
Z ( / V | / ' | ) = Z( / )nZ( | / ' | ) = Z ( | / ' | ) = Z \ But / « / V | / ' | implies
/ V | / ' | £ T , thus Z'GZ[T].

3. T proper implies 0 £ T implies X£ Z[T].
(b) 1. Let f=\f\, g = | g | £ Z ^ [ ^ ] * . Then / A g = | / A g | and

Z(f A g) = Z ( / ) U Z ( g ) £ ^ whence / A gEZ<^[&]*.

2. Let / = | / | £ Z - ^ [ S f ] * and let g <E C(X) satisfy / < g , whence

g £ C+(X)+(X). Now /, g £ C+(X), / < g imply Z(/) D Z(g) whence Z(g) £ ^ .

3. X ^ ^ implies 0 £ Z <

It is worth noting that since C(X) is divisible we have that Z(f) = Z(//2)
for all / £ C(X). In particular then, given 9 a Z-ideal and / = | /1 £ Z <- [^]*
we have / /2£ Z *—[&]*. Thus, Theorem 1 may be read with 'compatible tight
Riesz order on C(X)' for 'proper dual-ideal of C+(X)'.

Clearly we have the following relationships

Z[Z+-[&)•] = 9

and

for all Z-ideals 9 and compatible tight Riesz orders T. A compatible tight Riesz
order T satisfying Z*—[Z[T]]* = T will be called an algebraic tight Riesz
order.

If & is a Z-ideal then Z <— [^]* is an algebraic tight Riesz order. Every
maximal compatible tight Riesz order is algebraic.

Using the term adjunction in the sense of MacLane (1971), we may restate
our previous results as follows:
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THEOREM 2. There is an adjunction Z (- Z <—* from the set of compatible
tight Riesz orders on C(X), ordered by inclusion, to the set of Z-ideals of Z{X),
ordered by inclusion, such that the algebras for this adjunction are just the
algebraic tight Riesz orders.

COROLLARY 3. The unique minimal algebraic tight Riesz order is To =
{/ G C(X): f(x) > 0 for all x E X}.

PROOF. The unique minimal Z-ideal is {D} and Z *— [{•}]*= To.

COROLLARY 4. To is contained in every algebraic tight Riesz order.

Corollaries 3 and 4 are in fact special cases of a result of Wirth (1973, Lemma 4).

THEOREM 5. If T is an algebraic tight Riesz order on C(X) there is an
adjunction ZT h Z *—*T from the set of convex sublattice subgroups of C(X) not
meeting T, ordered by inclusion, to the set of Z-filters of Z(X) not meeting Z[T],
ordered by inclusion, such that the algebras for this adjunction include the
maximal tangents of T.

PROOF. Let T be an algebraic tight Riesz order and G a convex sublattice
subgroup (vector lattice ideal) of C(X) not meeting T. Consider Z[G].
(1) • £ Z[G], for suppose otherwise, then there exists / E G such that f(x)^ 0
for all x e X i.e. | /1 G G n To, a contradiction, since by Corollary 4, To C T.
(2) Let Zt,Z2SZ[G]. Choose /, g £ G n C+(X) such that Z, = Z(f) and
Z2=Z(g). Then Z, n Z2 = Z(J V g)E Z[G] since G is a sublattice. Thus
Z[G] is a filterbase and we denote the Z-filter generated by Z[G] by Z[G]T,
i.e. Z[G]T = {ZGZ(X) :ZDZ( / ) for some f £ G}. Suppose Z[G]T meets
Z[T]. Then there exists f<= T, g G G such that Z(/)DZ(g). But T an
algebraic tight Riesz order and Z(/) D Z(g) imply | g | £ T, i.e. | g | G G n T, a
contradiction. Thus Z[G\T is a Z-filter not meeting Z[T}.

Conversely, let 5F be a Z-filter not meeting Z[T]. Consider N = Z <-[&]*.
(1) Given g E N and 0 < / < g we have Z(/)Z> Z(g) whence Z ( / ) e 9, i.e. N
is convex.
(2) Given /, g G N we have that / A g G N since Z( /A g)=Z( / )UZ(g)
D Z(g) G 3̂  and that / V g E J V since Z(f V g)= Z(f) D Z(g) G ̂ . Thus N is
a sublattice.
(3) Moreover (N, +) is a subsemigroup of C(X), since given /, g G N we have

(4) M A T = • for if / G,NT> T then Z{f^ &-CiZ[T], a contradiction. Thus N
is a convex sublattice subsemigroup not meeting T. Remembering that every
directed subgroup is generated by its positive elements we have that
Z <^-[3']*T = {f - g:f, g&N} is a convex sublattice subgroup not meeting T.
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Recall that Z <-[Z[T']]* D T for all dual-ideals T of C+(X). Similarly
Z <^[Z[G]]*T D G for all convex sublattice subgroups of C(X) not meeting T.
Thus Z <r-[Z[M]]*T = M for all maximal tangents of T.

COROLLARY 6. // T is an algebraic tight Riesz order on C(X) there is a
one-one correspondence between maximal tangents of T and Z-filters maximal
with respect to not meeting Z[T].

The following result is due to Gillman and Jerison (1960),

THEOREM 7. // 9 is a Z-filter, then the family Z <-[&]= {/: Z(J) G &} is a
ring-ideal of C(X).

Using this criterion for obtaining ring-ideals of C(X) we prove the following:

THEOREM 8. If "Sis an algebraic tight Riesz order then each maximal tangent
of T is a ring-ideal of C{X).

PROOF. Let T be an algebraic tight Riesz order and let M be a maximal
tangent of T. Corollary 6 tells us that Z[M]T = {Z E Z(X):ZD Z(f) for some
/ G M} is a Z-filter and moreover that Z(g)= Z(f) for some f&M implies
| g | G M.

Consider Z«-[Z[M]T] = {g:Z(g)D Z(f) for some / G M}. Now

g G Z «- [Z[M]T] => Z(| g |) n Z(| /1) = Z(/) for some fGM

=>|g | V | / | G M

=̂> | g | whence g £ M , M a convex subgroup.

Thus Z «— [Z[Af]T] CM. The converse is trivially true, so by Theorem 7, M is a
ring-idfeal of C(X).

Given T an algebraic tight Riesz order on C(X) we define the T-radical of
C(X) to be the intersection of all the maximal tangents of T. Clearly the
T-radical of C(X) is a ring-ideal of C(X).

The space of maximal tangents of an algebraic tight Riesz order

Let T be an algebraic tight Riesz order. The set of all maximal tangents of T
is denoted by Max(T). Given / G C*(X) define

U(f) = {M G Max (T): / £ M}.

Then we have the following:

LEMMA 9. {C/(/):/G C+(X)} is a fcase topology, say U, on Max(T).
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PROOF. ( 1 ) / £ T implies U(f) = Max(T), so that Max(T) =

(2) Let M£Max(T), and / , , / 2E C+(X). Now /, £ M or f2E M
implies /, A / 2 6 M ( M convex) whence /, A f2£ M implies /, £ M and f2£ M,
i.e. t/(/, A f2) C t/(/,) Pi U(f2). Conversely, /, A f2 £ M implies /, E M or /2 £ M
(M prime) whence /, £ M and / 2 £ M imply /, A / 2 £ M, i.e. t/(/,)n [/(/2)C
t/(/. A /2).
Thus t/(/,) n L/(/2) = [/(/, A /2).

Similarly to (2) in the above proof we can show C/(/,) U U(f2) = !/(/, V /2).

PROPOSITION 10. (Max(T), U) is a T,-space.

PROOF. Let M, and M2 be distinct members of Max(T). Then there exist
/, G (M2 n C+(X))\M, and f2 £ (M, n C+(X))\M2, i.e. M, £ l/(/,), M2 € U(Jt)
and M2 £ U(f2), M, ^ t/(/2).

PROPOSITION 11. (Max(T), U) is compact.

PROOF. Basic closed sets being complements of basic open sets are of the
form V(/) = {M E Max (T): / £ M}, / £ C+(X). Let {V(/A): A £ A} be a collec-
tion of basic closed sets with the finite intersection property, i.e. V(/A|) n • • • D
V ( / A J / D for all finite subsets {A,, • • •, An} of A.

Consider / • • • the ideal generated by {/,},eA- / does not meet T, for if so
there exists g £ T such that g < /A, V • • ,• V /,, for some A,, • • •, \n £ A. But then
/A, V • • • V /,„ E T so that V(/Al V • • • V /AJ = D. However V(/A, V • • • V /,„) =
^(/*i)n ••• n V(/AJ ^ D so that / is a proper/-ideal containing {/A}AeA and not
meeting T.

Suppose HAEA V(/A) = D . This says that there exists no /-ideal containing
all the /A's and not meeting T. This however is clearly false, since I meets all
these requirements. Thus n < e A V{fk)^l3, whence (Max(T), U) is compact.

PROPOSITION 12. Let T and T" be algebraic tight Riesz orders such that
T C T'. Then each maximal tangent of T' is contained in a unique maximal
tangent of T.

PROOF. Let M' £ Max (T'). Then M' is a prime subgroup not meeting T.
Since the class of convex sublattice subgroups lying above a prime subgroup is
totally-ordered by inclusion [Holland (1963)] we have that M' is contained in a
unique maximal tangent M of T.

THEOREM 13. Let T and T be algebraic tight Riesz orders such that T C T.
If (Max(T'), U') is Hausdorjf then the map m :(Max(T'), [/')-• (Max(T), U)
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given by m(M') = M — the unique maximal tangent of T containing M' — is
continuous.

PROOF. Given a basic open set U(f) = {M £ Max (T): / £ M} we want to see
that S={M'E Max (T1): m (M') E [/(/)} is open in (Max (T), U% and we do so
by seeing that Max (T')\S is compact.

Let {Max (T')\ tT(/A)n Max (T)\S: A £ A} be a collection of basic closed
subsets of Max (T')\S with the finite intersection property, where U'(fx).=
{M' E Max (T')\ fx £ M'} for fx E C+(X). Then for each finite subset {A,, • • •, A,}
of A we have

(1) SU t/'(/A,)U ••• U £/'(/.„ ) ^ Max (T)

If / v /A, V • •• V fXn E T for some finite subset {A,,---,An} of A then
U(f V fx, V • • • V fK) = U(f)U U(fXl)U • • • U U(fXn) = Max(T). By assump-
tion (equation (l))there exists M'E Max(T) such that M'£S andM'£ U'(fXl),
i = 1,2, • • •, n. Then m(M')£ U(f) so that m(M')G t/(/A,) for some i, which
implies M' £ U'(fXl) — a contradiction. Thus, for every finite subset {Ai, • • -, An}
of A, / V fXl V • • • V fXn£ T. Similarly, for every finite subset {A,, • • •, An} of A,
/A, V • • • V /.„£ T. Hence, since by both (Max(T), U) and (Max(T'), U') are
compact (Proposition 11), there is an M' E Max (7") containing all fx: A E A, and
an M E Max (T) containing M' and /. Then m (M') = M, so we have M' £ S and
M'£ l/'(/A), for all A £ A, i.e. Max (T')\S is compact.

In proving the above theorem we made use of the fact that (Max(T'), U')
was Hausdorff. We now consider necessary and sufficient conditions for such a
space to be Hausdorff.

PROPOSITION 14. (Max(T), U) is Hausdorff if and only if given Mt and M2

distinct members of Max(T) there exist /, £ C*(X)\M, and f2 E C+(X)\M2 such
that /, A f2 E T-radical of C(X) = n {M : M E Max(T)}.
The proof is obvious.

THEOREM 15. M, and M2 distinct members of Max(T) can be Hausdorff
separated for U if either M, or M2 is minimal prime.

PROOF. Af, and M2 distinct implies that there exist fx E (M2 D C+(X))\M,
and f2 E (Mi PI C+(X))\M2. Suppose M2 is minimal prime. Then there exists
/ £ C\X)\M2 such that /, A / = 0. Moreover f£ M2 implies / A f2 £ Mt\M2 n
C*(X) (primality). Thus (/(/,) n U(f A f2) ='l/(/, A / A /2) = t/(0) = • . A
similar argument holds if Mi is minimal prime.

THEOREM 16. 7/ T is dual-prime then (Max(T), U) is a singleton.

PROOF. Let M £ Max (T). Then
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/ £ M O | /1 V | g | £ T for some g E M

<=>|/ |£T (T dual-prime)

i.e. there is but one maximal tangent of T.

The quotient space C(X)/A

Thoughout this section we assume X to be a compact Hausdorff space and
T to be an algebraic tight Riesz order on C(X). We denote the T-radical of
C(X) by A i.e. A = (1 {M: M E Max (T)}.

As a result of Proposition 14, we see that A plays an important role in
determining whether or not (Max (T), U) is Hausdorff. For this reason we make
a brief study of A and consequently of the quotient space C(X)/A.

Being an intersection of maximal tangents of T, A is a tangent — hence an
/-ideal (not necessarily prime), and so we may consider C(X)/A as the factor
group of C(X) with respect to the /-ideal A. Then C(X)/A is a lattice-ordered
group and the canonical mapping p: C(X)—»C(X)/A preserves the order
relation and lattice operations, (Fuchs (1963)). We use the same symbol =S to
denote the lattice-order in both C(X) and C(X)/A, and we denote {/+ A :0 +
A < / + A} by C(X)/A +, where we have 0 + A < / + A if and only if 0 « / + a
for some a £ A.

We consider the action of the canonical mapping p: C(X)—»C(X)/A.

THEOREM 17. pT is a compatible tight Riesz order on C(X)/A.

PROOF. This follows immediately from Theorem 8° of Miller (1973).

THEOREM 18. Let M be a maximal tangent of T then pM is a maximal
tangent of pT.

PROOF. Put M' = pM = M + A, T = pT = T + A. Then
(1) Since p preserves the order relation and lattice operations we have im-
mediately that M' is a convex sublattice of C(X)/A.
(2) M' is non-empty since M is non-empty. Moreover, it is straightforward to
show that M' is closed under addition and that each element in M' has an
additive inverse in M'. Thus M' is a subgroup of C(X)/A.
(3) Suppose / + A E M' D T . Now f + A £ M + A implies / + A = m + A for
some m E M i.e. f—m £ A C M for some m E M. In other words / £ M
Similarly / + A £ T + A implies / - t E M for some t £ T. Therv-f^'fy -t)-
t £ M for some t E T, a contradiction. Thus M' fi f = D.
(4) Suppose M' C N' where N' is a convex sublattice subgroup of C(X)/A not
meeting T". Put N = {f: f + A E JV'}. Then N is a convex sublattice subgroup of
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C(X) not meeting T. Moreover M CN. Thus M = N and M' = N' since M is a
maximal tangent of T.

In other words, M' is a maximal tangent of the compatible tight Riesz order
T.

COROLLARY 19. Let M be the set of maximal tangents of pT, then D
{M;MEM} = 0 + A.

PROOF. This follows since p preserves intersections.
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