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A rarefied gas flow thermally induced around a heated (or cooled) flat plate, contained
in a vessel, is considered in two different situations: (i) both sides of the plate are
simultaneously and uniformly heated (or cooled); and (ii) only one side of the plate
is uniformly heated. The former is known as the thermal edge flow and the latter,
typically observed in the Crookes radiometer, may be called the radiometric flow. The
steady behaviour of the gas induced in the container is investigated on the basis of
the Bhatnagar–Gross–Krook (BGK) model of the Boltzmann equation and the diffuse
reflection boundary condition by means of an accurate finite-difference method. The
flow features are clarified for a wide range of the Knudsen number, with a particular
emphasis placed on the structural similarity between the two flows. The limiting
behaviour of the flow as the Knudsen number tends to zero (and thus the system
approaches the continuum limit) is investigated for both flows. The detailed structure
of the normal stress on the plate as well as the cause of the radiometric force (the
force acting on the plate from the hotter to the colder side) is also clarified for the
present infinitely thin plate.
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1. Introduction
When a flat plate, one side of which is kept at a higher temperature than the other,

is placed in a rarefied gas that is otherwise at rest, a flow is induced and a force is
exerted on the plate from the hotter side to the colder one. This is the well-known
radiometric phenomenon and can be observed in the famous Crookes radiometer. It
received significant attention in the early days of kinetic theory (Reynolds 1876;
Maxwell 1879; Einstein 1924; Kennard 1938; Loeb 1961). Recently, there has been a
revival of interest in this phenomenon (Scandurra, Iacopetti & Colona 2007; Selden
et al. 2009a,b; Cornella et al. 2011; Gimelshein et al. 2011a,b) due to its relation to
various applications in micro-technologies (see e.g. Wadsworth & Muntz 1996; Ota,
Nakao & Sakamoto 2001 and the references in Selden et al. 2009b). Despite its long
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history, however, the mechanism of the flow and the force has not yet been fully
understood, particularly when the molecular mean free path is small compared with
the size of the plate (i.e. the near continuum regime).

In a previous study (Taguchi & Aoki 2011), we have investigated a radiometric flow
(i.e. a flow in a radiometer) numerically on the basis of the Bhatnagar–Gross–Krook
(BGK) model (Bhatnagar, Gross & Krook 1954; Welander 1954) of the Boltzmann
equation. It was found that there is a structural similarity between the radiometric
flow and the thermal edge flow, the latter of which is induced around the sharp
edge of a uniformly heated (or cooled) plate (with both sides kept at the same
temperature). This is a newer type of rarefied gas flow induced by the thermal effect,
discovered by Aoki, Sone & Masukawa (1995) by means of a numerical simulation
using the direct simulation Monte Carlo (DSMC) method (Bird 1976, 1994), and later
confirmed experimentally by Sone & Yoshimoto (1997). Hence, it is important to
consider not only the radiometric flow but also the thermal edge flow simultaneously
to understand the mechanism of the radiometric flow and force. However, due to the
limited space, no information on the thermal edge flow is given in our previous paper,
nor a comparison between the two flows. In this paper, therefore, we carry out a
more systematic study on the radiometric flow and the thermal edge flow, by extending
the previous numerical analysis, and clarify the similarity as well as the difference
embedded in the two flows.

Before ending this section, we briefly comment on the thermally induced flow
from a general point of view. According to the asymptotic theory of the Boltzmann
equation for small Knudsen numbers (Sone 1969, 1971, 1991; Sone et al. 1996; Sone
2002, 2007), the (steady) thermally induced flows are categorized into the following
three types: (i) thermal creep flow (Kennard 1938; Sone 1966; Ohwada, Sone &
Aoki 1989a; Sharipov & Seleznev 1998; Garcia & Siewert 2009); (ii) thermal stress
slip flow (Sone & Tanaka 1980; Sone 2000); and (iii) nonlinear thermal stress flow
(Galkin, Kogan & Fridlender 1971; Kogan, Galkin & Fridlender 1976; Sone 2000).
The magnitude of the thermal creep flow is proportional to the mean free path, that
of the thermal stress slip flow to the mean free path squared and that of the nonlinear
thermal stress flow to the mean free path. The last flow is negligible when the
temperature variation of the gas is small. On the other hand, the asymptotic theory is
based on the assumption that the shape of the boundary is smooth. Therefore, if this
condition is violated, another type of flow is possible. The thermal edge flow and the
radiometric flow considered in this study are typical examples of such flows, to which
the asymptotic theory does not apply even if the Knudsen number is small. Therefore,
we require further investigations to clarify the individual properties of these flows.

The remainder of the paper is organized as follows. In § 2, we formulate the
problem. In § 3, we briefly discuss the discontinuity in the velocity distribution
function and give some remarks on the numerical method used in the present
computation. In § 4, we present numerical results for the thermal edge flow and
the radiometric flow. Here, the purpose is to clarify the similarity between these flows
and explain the mechanism of the radiometric flow based on it. In § 5, we consider the
decay properties of the flows as the system approaches the continuum limit (the limit
in which the Knudsen number, defined as the ratio of the molecular mean free path to
the size of the system, tends to zero). We show that the thermal edge flow vanishes at
every point in the domain but the radiometric flow does not vanish at the edges in this
limit. In § 6, we investigate the structure of the normal stress on (and near) the plate.
We show that there is a significant contribution from the thermal stress to the normal
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Rarefied gas flow around a sharp edge 193

stress near the edge and that the radiometric force (i.e. the force exerted on the plate
from the hotter to the colder side) is caused by this effect. Section 7 is a conclusion.

2. The problem and basic equations
2.1. The problem

Let us consider a rarefied gas confined in a square vessel −L/2 6 X2 6 L/2 and
−L/2 6 X1 6 L/2 maintained at a uniform temperature T0, where Xi is the rectangular
space coordinate system (figure 1). A flat plate with width D and without thickness is
placed in the gas at X1 = 0 and −D/2 6 X2 6 D/2. Let us denote by S+ and S− the
right- and left-hand sides of the plate, respectively, i.e.

S± = {(X1,X2) | X1 = 0±,−D/26 X2 6 D/2} (2.1)

(in this paper, for a given a, a+ and a− mean the limits from above and below,
respectively, i.e. a± = limε(>0)→0(a ± ε)). S+ and S− are kept at uniform temperatures
T+w and T−w , respectively. We investigate the steady behaviour of the gas induced in the
container under the following assumptions:

(i) the behaviour of the gas is described by the BGK model of the Boltzmann
equation;

(ii) the gas molecules are reflected according to the corresponding part of the
equilibrium distribution having zero velocity, the temperature on the boundary
and the magnitude such that there is no net mass flux across the boundary (i.e.
diffuse reflection boundary condition).

In the present study, we consider the following two situations:

(A) the temperatures of both sides are the same, i.e. T−w = T+w = Tw. Here, Tw(6= T0)

denotes the uniform temperature of the plate;
(B) S+ is kept at a higher temperature than the vessel, whereas S− is at the same

temperature as the vessel, i.e. T+w > T0 and T−w = T0.

In case (A), the thermal edge flow is induced, whereas in case (B), it is the
radiometric flow.

2.2. Basic equations
Let us first introduce the basic notation: ξi (or ξ ) denotes the molecular velocity,
f (X1,X2, ξ) the velocity distribution function, ρ(X1,X2) the density, vi(X1,X2) the flow
velocity (v3 = 0), T(X1,X2) the temperature, p(X1,X2) the pressure, pij(X1,X2) the
stress tensor (p13 = p31 = p23 = p32 = 0) of the gas and R the specific gas constant (the
Boltzmann constant divided by the mass of a molecule). We also denote by ρav the
average density of the gas, i.e.

ρav = 1
L2

∫ L/2

−L/2

∫ L/2

−L/2
ρ dX1 dX2. (2.2)

Then, we introduce the dimensionless variables (xi, ζi, f̂ , ρ̂, v̂i, T̂ , p̂, p̂ij) corresponding
to (Xi, ξi, f , ρ, vi, T , p, pij) by the following relations:

xi = Xi

D
, ζi = ξi

(2RT0)
1/2 , f̂ = f

ρav/ (2RT0)
3/2 , (2.3)

ρ̂ = ρ

ρav
, v̂i = vi

(2RT0)
1/2 , T̂ = T

T0
, p̂= p

RρavT0
, p̂ij = pij

RρavT0
. (2.4)
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w w

FIGURE 1. The problem.

The BGK equation for the present steady two-dimensional problem is written as

ζ1
∂ f̂

∂x1
+ ζ2

∂ f̂

∂x2
= 2√
π

1
Kn
ρ̂(f̂e − f̂ ), (2.5)

f̂e = ρ̂

(πT̂)
3/2 exp

(
−(ζj − v̂j)

2

T̂

)
, (2.6)

ρ̂ =
∫

f̂ dζ , v̂i = 1
ρ̂

∫
ζi f̂ dζ , T̂ = 2

3ρ̂

∫
(ζj − v̂j)

2 f̂ dζ , (2.7)

Kn= `0

D
, `0 = 2√

π

(2RT0)
1/2

Acρav
, (2.8)

where v̂3 = 0, dζ = dζ1 dζ2 dζ3 and Ac is a constant (Acρ is the collision frequency).
Here and elsewhere, the domain of integration with respect to ζ = (ζ1, ζ2, ζ3) is the
whole space, unless otherwise stated; `0 is the mean free path of the gas molecules
in the equilibrium state at rest with temperature T0 and density ρav and Kn is the
Knudsen number.

The diffuse reflection boundary condition on each side of the plate is given by

f̂ = σ̂±w
(πT̂±w )

3/2 exp

(
− ζ

2
j

T̂±w

)
for ζ1 ≷ 0 (x1 = 0±,−1/26 x2 6 1/2), (2.9)

σ̂±w =∓2

(
π

T̂±w

)1/2 ∫
ζ1≶0

ζ1 f̂ (x1 = 0±, x2, ζ ) dζ , (2.10)

T̂±w = T±w /T0, (2.11)
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Rarefied gas flow around a sharp edge 195

where the upper (or lower) sign corresponds to the condition on S+ (or S−). On the
other hand, the boundary condition on the container is given by

f̂ = σ̂w

π3/2
exp(−ζ 2

j ) for ζjnj > 0

(x1 =±L̂/2,−L̂/26 x2 6 L̂/2) or (−L̂/2< x1 < L̂/2, x2 =±L̂/2), (2.12)

σ̂w =−2
√
π

∫
ζjnj<0

ζjnj f̂ dζ , (2.13)

L̂= L/D, (2.14)

where ni is the unit normal vector to the boundary pointing to the gas, i.e.

ni =
{
(∓1, 0, 0) (x1 =±L̂/2,−L̂/26 x2 6 L̂/2),
(0,∓1, 0) (−L̂/2< x1 < L̂/2, x2 =±L̂/2).

(2.15)

Since the problem is symmetric with respect to x2 = 0, we can analyse the present
boundary-value problem in the upper half-domain x2 > 0 by imposing the specular
reflection boundary condition at x2 = 0,

f̂ (x1, 0, ζ1, ζ2, ζ3)= f̂ (x1, 0, ζ1,−ζ2, ζ3) for ζ2 > 0 (−L̂/2< x1 < L̂/2). (2.16)

The solution in the lower half-domain x2 < 0 is then given in terms of that in the
upper half-domain by

f̂ (x1, x2, ζ1, ζ2, ζ3)= f̂ (x1,−x2, ζ1,−ζ2, ζ3)

(−L̂/26 x1 6 L̂/2,−L̂/26 x2 < 0). (2.17)

Finally, the pressure and the stress tensor are given by

p̂= ρ̂T̂, p̂ij = 2
∫
(ζi − v̂i)(ζj − v̂j)f̂ dζ . (2.18)

To summarize, the problem is characterized by the following dimensionless
parameters:

Kn= `0

D
, T̂+w =

T+w
T0
, T̂−w =

T−w
T0
, L̂= L

D
, (2.19)

where T̂+w = T̂−w (6=1) in the case of the thermal edge flow (case (A) in § 2.1) and
T̂+w > 1 and T̂−w = 1 in the case of the radiometric flow (case (B) in § 2.1).

2.3. Further transformations
Following the standard procedure (Chu 1965; Sone 2007), we can eliminate the X3

component of the molecular velocity ζ3 from the system of equations. Let us introduce
the marginal velocity distribution functions by

Φ =
[

g
h

]
=
∫ ∞
−∞

[
1
ζ 2

3

]
f̂ dζ3. (2.20)

Multiplying (2.5), (2.9), (2.12) and (2.16) by 1 and ζ 2
3 and integrating the results

with respect to ζ3 from −∞ to ∞, we obtain a system of simultaneous equations
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for g and h. The equations and boundary conditions thus obtained are summarized as
follows:

ζ1
∂Φ

∂x1
+ ζ2

∂Φ

∂x2
= 2√
π

1
Kn
ρ̂(Φe −Φ), (2.21)

Φe =
[

2/T̂
1

]
ρ̂

2π
exp

(
−(ζ1 − v̂1)

2+ (ζ2 − v̂2)
2

T̂

)
, (2.22)

ρ̂ =
∫ ∞
−∞

∫ ∞
−∞

g dζ1 dζ2, v̂i = 1
ρ̂

∫ ∞
−∞

∫ ∞
−∞
ζig dζ1 dζ2, (2.23)

T̂ = 2
3ρ̂

∫ ∞
−∞

∫ ∞
−∞
{[(ζ1 − v̂1)

2+ (ζ2 − v̂2)
2]g+ h} dζ1 dζ2, (2.24)

Φ =
[

2/T̂±w
1

]
σ̂±w
2π

exp

(
−ζ

2
1 + ζ 2

2

T̂±w

)
for ζ1 ≷ 0 (x1 = 0±, 06 x2 6 1/2), (2.25)

σ̂±w =∓2

(
π

T̂±w

)1/2 ∫
ζ1≶0

ζ1g(x1 = 0±, x2, ζ1, ζ2) dζ1 dζ2, (2.26)

Φ =
[

2
1

]
σ̂w

2π
exp(−(ζ 2

1 + ζ 2
2 )) for ζ1n1 + ζ2n2 > 0

(x1 =±L̂/2, 06 x2 6 L̂/2) or (−L̂/2< x1 < L̂/2, x2 = L̂/2), (2.27)

σ̂w =−2
√
π

∫
ζ1n1+ζ2n2<0

(ζ1n1 + ζ2n2)g dζ1 dζ2, (2.28)

Φ(x1, 0, ζ1, ζ2)=Φ(x1, 0, ζ1,−ζ2) for ζ2 > 0 (−L̂/2< x1 < L̂/2). (2.29)

Here, the range of x2 has been restricted to 0 6 x2 6 L̂/2 by the use of the specular
boundary condition (2.29). The stress tensor is expressed in terms of g and h as

p̂ij = 2
∫ ∞
−∞

∫ ∞
−∞
(ζi − v̂i)(ζj − v̂j)g dζ1 dζ2 (i, j= 1, 2), (2.30a)

p̂33 = 2
∫ ∞
−∞

∫ ∞
−∞

h dζ1 dζ2. (2.30b)

3. Numerical analysis
An important feature of the present problem is that the presence of the edges

introduces discontinuities in the velocity distribution function. This is closely related
to the abrupt variation of the macroscopic quantities near the edges whose correct
description is essential for the purpose of the present study. Below, we first discuss the
discontinuity and then give some remarks on the numerical method.

3.1. Discontinuity in the velocity distribution function
As discussed in Sone & Takata (1992), if the velocity distribution function is
discontinuous at a certain molecular velocity at a certain location in the space, the
discontinuity propagates from this location along the characteristic of (2.21). Such
a propagation of the discontinuity is commonly observed in a gas around a convex
boundary, and the velocity distribution function is generally discontinuous there. In the
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Rarefied gas flow around a sharp edge 197

present problem, the convex nature of the boundary is concentrated at the edges of the
plate, and discontinuities are introduced there, as explained below.

Let us consider the velocity distribution of the gas molecules coming into the
positive half-domain (x1 > 0) or the negative half-domain (x1 < 0) by either leaving
the plate surface (x2 < 1/2) or by passing through the x2 axis (x2 > 1/2). At the
location of the edge, (x1, x2) = (0, 1/2), the limit of Φ from below, Φ(x1 = 0±, x2 =
1/2−, ζ1, ζ2) for ζ1 ≷ 0, is prescribed by the diffuse reflection condition (2.25) with
(2.26), whereas the limit from above, Φ(x1 = 0, x2 = 1/2+, ζ1, ζ2), is determined
by the state of the gas (as a solution of the kinetic equation). The nature of
these velocity distributions is quite different and the velocity distribution function
becomes discontinuous at the edge (x1, x2) = (0, 1/2) for any fixed molecular velocity
(ζ1, ζ2). This discontinuity propagates in the gas in the direction of (ζ1, ζ2) (or along
the characteristic of (2.21)). Therefore, at a point (x1, x2) in the gas, the velocity
distribution function is discontinuous in the direction ζ2/ζ1 = (x2 − 1/2)/x1 in the
(ζ1, ζ2) plane. It should be noted that, in the framework of the boundary-value problem
(2.21)–(2.29), there is another discontinuity propagating from (x1, x2) = (0, 1/2) in the
direction ζ2/ζ1 =−(x2 + 1/2)/x1, reflected at the specularly reflecting boundary x2 = 0,
and reaching the point (x1, x2). Thus, the velocity distribution function at (x1, x2) is
also discontinuous in the direction ζ2/ζ1 = (x2 + 1/2)/x1 in the (ζ1, ζ2) plane. This
second discontinuity, of course, corresponds to the one originating from the other edge
(x1, x2) = (0,−1/2) in the original problem not restricted to positive x2. Owing to the
effect of the molecular collisions, the discontinuity decays with the distance from the
edge on the scale of the mean free path.

It may also be noted that the limits of σ̂w along the wall do not generally coincide
at the corner (the domain of integration in (2.28) changes discontinuously there) and
this introduces another discontinuity there. However, this discontinuity is much smaller
than those associated with the edges (Aoki et al. 2001b).

In Sone & Takata (1992) the propagation of discontinuities in the velocity
distribution function is discussed theoretically in connection with the S-layer (Sone
1973) appearing at the bottom of the Knudsen layer on the convex body when
the Knudsen number is small. The paper by Cercignani (2000) should also be
mentioned as a related work. A mathematical study of the propagation of boundary-
induced discontinuities in the solution of a simple kinetic equation is found in Aoki
et al. (2001a). Also, quite recently a mathematical description of the formation and
propagation of a discontinuity (in a gas in a non-convex domain) was given for the
solution of the Boltzmann equation by Kim (2011).

3.2. Remarks on the numerical analysis
We solve the boundary-value problem (2.21)–(2.29) by the finite-difference method.
The manner of propagation of the discontinuity from the edge is essentially the same
as that of the leading-edge problem of a rarefied gas, for which a finite-difference
method capable of describing the discontinuity accurately was devised by Aoki, Kanba
& Takata (1997). Therefore, we can employ this method with suitable adjustment. The
procedure is outlined in appendix A. Essentially, it consists of dividing the domain
−L̂/2 6 x1 6 L̂/2 and 0 6 x2 6 L̂/2 by the lines of discontinuity and applying the
finite-difference formula in each subdomain so that the finite-difference approximation
is not applied across the line of discontinuity; otherwise, a large numerical error will
be introduced. It should also be mentioned that the method in Aoki et al. (1997) is
based on the methods developed and used in earlier works (e.g. Sone & Sugimoto

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.536


198 S. Taguchi and K. Aoki

0
0

0
0

0
0

0
0

1 2

1

2

1 2

1

2
0.005 0.02 0.02 0.01

1 2

1

2

1 2

1

2
(a) (b) (c) (d)

FIGURE 2. Thermal edge flow (T+w /T0 = T−w /T0 = 2 and L/D= 4). (a) Kn= 5, (b) Kn= 0.5,
(c) Kn= 0.05, (d) Kn= 0.01. The arrows indicate the flow velocity vector (v1, v2)/ (2RT0)
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at its starting point. The reference length is shown above each plot.
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FIGURE 3. Close-up of figure 2 near the edge.

1990; Aoki et al. 1991; Sugimoto & Sone 1992; Sone & Sugimoto 1993; Takata,
Sone & Aoki 1993) on various problems in which the discontinuity in the velocity
distribution function plays an important role.

The computations were carried out for T̂+w = T̂−w = 2 and 0.5 in the case of the
thermal edge flow and for T̂+w = 2 and T̂−w = 1 in the case of the radiometric flow. L̂
has been fixed to L̂ = 4 throughout the computations. Kn ranges from 0.01 to 20 for
T̂+w = T̂−w = 2 and from 0.02 to 20 for T̂+w = T̂−w = 0.5 in the case of the thermal edge
flow and from 0.005 to 20 in the case of the radiometric flow (T̂+w = 2 and T̂−w = 1).
Some data on the accuracy of the present computations are given in appendix B.

4. Similarity between the radiometric flow and the thermal edge flow
We now show the numerical results obtained by the finite-difference method

described above. We first show some typical flow patterns of the thermal edge and
radiometric flows, and then compare the flow structures.

4.1. Thermal edge flow
Figures 2–7 show the flow fields of the thermal edge flow induced around a heated
plate in the case of T+w /T0 = T−w /T0 = 2 for Kn = 5, 0.5, 0.05 and 0.01 (L/D = 4).
More precisely, figure 2 shows the flow velocity vector (v1, v2), figure 3 its close-up
near the edge and figures 4–7 the distributions of the flow speed, density, temperature
and pressure, respectively. Note that the flow field is symmetric not only with respect
to the X1 axis, but also with respect to the X2 axis. For this reason, the result is
shown in the first quadrant of the domain. It should also be noted that the direction
along which the discontinuity in the velocity distribution function propagates is not
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FIGURE 4. Isolines of the flow speed |vi| = (v2
1 + v2

2)
1/2 for the thermal edge flow

(T+w /T0 = T−w /T0 = 2 and L/D = 4). (a) Kn = 5 (|vi|/ (2RT0)
1/2 = 0.0005m; m = 1, 2, . . . , 9),

(b) Kn = 0.5 (|vi|/ (2RT0)
1/2 = 0.002m; m = 1, 2, . . . , 10), (c) Kn = 0.05 (|vi|/ (2RT0)

1/2 =
0.002m; m= 1, 2, . . . , 9), (d) Kn= 0.01 (|vi|/ (2RT0)

1/2 = 0.001m; m= 1, 2, . . . , 8).
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FIGURE 5. Isolines of the density for the thermal edge flow (T+w /T0 = T−w /T0 = 2 and L/D=
4). (a) Kn= 5 (ρ/ρav = 0.86+ 0.02m; m= 0, 1, . . . , 8), (b) Kn= 0.5 (ρ/ρav = 0.75+ 0.05m;
m = 0, 1, . . . , 7), (c) Kn = 0.05 (ρ/ρav = 0.65 + 0.05m; m = 0, 1, . . . , 10), (d) Kn = 0.01
(ρ/ρav = 0.65+ 0.05m; m= 0, 1, . . . , 11).
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FIGURE 6. Isolines of the temperature for the thermal edge flow (T+w /T0 = T−w /T0 = 2
and L/D = 4). (a) Kn = 5 (T/T0 = 1.05 + 0.05m; m = 0, 1, . . . , 8), (b) Kn = 0.5 (T/T0 =
1.05 + 0.05m; m = 0, 1, . . . , 12), (c) Kn = 0.05 (T/T0 = 1.1 + 0.1m; m = 0, 1, . . . , 8),
(d) Kn= 0.01 (T/T0 = 1.1+ 0.1m; m= 0, 1, . . . , 8).

determined on the edge, unless the direction of approach to it is specified. This means
that the limiting velocity distribution function is different depending on the direction
of approach to the edge. As a result, the macroscopic quantities are not uniquely
determined at the edge. The flow velocities shown at the edge in figures 2 and 3 are
those of the limiting values from the right along the line X2/D= 0.5.

For each value of Kn, a counterclockwise circulating flow is induced in the domain.
For Kn = 5, the flow is very weak. Indeed, it vanishes in the free molecular limit
Kn→∞, as proved by Sone (1984, 1985) (the proof is more general; it allows the
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FIGURE 7. Isolines of the pressure for the thermal edge flow (T+w /T0 = T−w /T0 = 2 and
L/D = 4). (a) Kn = 5 (p/RρavT0 = 1.06 + 0.01m; m = 0, . . . , 8), (b) Kn = 0.5 (p/RρavT0 =
1.11 + 0.005m; m = 0, . . . , 12), (c) Kn = 0.05 (p/RρavT0 = 1.19 + 0.005m; m = 0, . . . , 8),
(d) Kn= 0.01 (p/RρavT0 = 1.212+ 0.002m; m= 0, 1, . . . , 9).
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FIGURE 8. Radiometric flow (T+w /T0 = 2, T−w /T0 = 1 and L/D = 4). (a) Kn = 5,
(b) Kn = 0.5, (c) Kn = 0.05, (d) Kn = 0.01. The flow fields for X1 ≷ 0 are shown separately.
For more details see the caption of figure 2.

shape and temperature distribution on the boundary to be arbitrary and the Maxwell-
type boundary condition is assumed). As Kn is decreased, the flow becomes faster,
attaining the highest speed around Kn = 0.5. For still smaller values of Kn, the
flow becomes weaker with the decrease of Kn. At each Kn, the flow speed varies
substantially over the domain and it is fastest near the edge (figures 3 and 4). For
the temperature, a low-temperature region appears above the plate when Kn is large
(figure 6a). This is because the molecules present in this region are mostly the
slow molecules directly coming from the wall of the container. The slow molecules
are thermalised owing to the molecular collisions with the fast molecules arriving
from the hot plate. As a result, the temperature above the plate increases with the
decrease of Kn. These features have already been observed by Aoki et al. (1995),
in which a DSMC simulation for essentially the same problem has been carried out
(in the case of a cooled plate and thus the effect manifests itself in the opposite
sense from the present case). The pressure exhibits a large spatial variation when

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.536


Rarefied gas flow around a sharp edge 201

0.4
–0.2 –0.1

0.0025 0.025

0.025 0.025

0 0 0.1 0.2

0.5

0.6

0.4
–0.2 –0.1 0 0 0.1 0.2

0.5

0.6

(a) (b)

(c) (d)

0.4
–0.2 –0.1 0 0 0.1 0.2

0.5

0.6

0.4
–0.2 –0.1 0 0 0.1 0.2

0.5

0.6

FIGURE 9. Close-up of figure 8 near the edge.

Kn is large (figure 7a); the pressure rises in the region next to the plate, whereas a
region with lower pressure is established above the plate. Again these reflect directly
the population of the fast (or thermalised) molecules present in each region. As Kn
becomes small, the pressure approaches a uniform distribution. The speed of approach,
however, is not uniform over the domain and is particularly slow near the edge.

The thermal edge flow has various potential engineering applications like other
thermally driven flows. A prototype of a thermal pump driven by the thermal edge
flow (the thermal edge pump) has been assembled and tested in Sugimoto & Sone
(2005). It was also demonstrated that the pump has a gas separation effect when
applied to a gas mixture (Sugimoto 2009). On the other hand, a blower driven by
the thermal edge flow (the thermal edge blower) has been devised and shown to be
applicable to freeze drying (Kitamura et al. 2009).

4.2. Radiometric flow
Figures 8–13 are the corresponding figures for the radiometric flow in the case of
T+w /T0 = 2 and T−w /T0 = 1, showing its typical flow patterns (Kn = 5, 0.5, 0.05 and
0.01); figure 8 shows the flow velocity vector (v1, v2), figure 9 its close-up around the
edge and figures 10–13 the distributions of the flow speed, density, temperature and
pressure, respectively, in the upper half of the container. In figures 8 and 9, the flow
fields for the regions X1 > 0 and X1 < 0 are shown separately to make it possible to
distinguish the arrows located on both sides of the plate. Note that, as in the case of
the thermal edge flow, the macroscopic quantities are not unique at the edge and they
depend on the direction of approach to it (see the first paragraph of § 4.1). The flow
velocities at the edge shown in figures 8 and 9 are those of the limiting values along
the line X2/D = 0.5 from the right or the left, depending on the domain X1 > 0 or
X1 < 0.

For each Kn, a counterclockwise circulating flow is induced. As Kn is reduced, the
overall flow speed increases (Kn = 5→ 0.5), and then decreases (Kn = 0.5→ 0.05→
0.01) as a whole. Near the edge, in contrast, the flow speed continues to increase with
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FIGURE 10. Isolines of the flow speed |vi| = (v2
1 + v2

2)
1/2 for the radiometric flow (T+w /T0 =

2, T−w /T0 = 1 and L/D= 4). (a) Kn= 5 (|vi|/ (2RT0)
1/2 = 0.001m; m= 1, 2, . . . , 3), (b) Kn=

0.5 (|vi|/ (2RT0)
1/2 = 0.005m; m = 1, 2, . . . , 5), (c) Kn = 0.05 (|vi|/ (2RT0)

1/2 = 0.005m;
m = 1, 2, . . . , 11), (d) Kn = 0.01 (|vi|/ (2RT0)

1/2 = 0.005m; m = 1, 2, . . . , 12). The dashed
line indicates the plate.
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FIGURE 11. Isolines of the density for the radiometric flow (T+w /T0 = 2, T−w /T0 = 1 and
L/D = 4). (a) Kn = 5 (ρ/ρav = 0.84 + 0.02m; m = 0, 1, . . . , 8), (b) Kn = 0.5 (ρ/ρav =
0.75 + 0.05m; m = 0, 1, . . . , 6), (c) Kn = 0.05 (ρ/ρav = 0.6 + 0.05m; m = 0, 1, . . . , 9),
(d) Kn= 0.01 (ρ/ρav = 0.6+ 0.05m; m= 0, 1, . . . , 10).

the decrease of Kn (figures 9 and 10). The variation of the flow speed throughout
the domain therefore becomes larger with the decrease of Kn. For Kn→∞ (the free
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FIGURE 12. Isolines of the temperature for the radiometric flow (T+w /T0 = 2, T−w /T0 = 1
and L/D = 4). (a) Kn = 5 (T/T0 = 1.05 + 0.05m; m = 0, 1, . . . , 8), (b) Kn = 0.5 (T/T0 =
1.05 + 0.05m; m = 0, 1, . . . , 11), (c) Kn = 0.05 (T/T0 = 1.05 + 0.05m; m = 0, 1, . . . , 17),
(d) Kn= 0.01 (T/T0 = 1.05+ 0.05m; m= 0, 1, . . . , 18).
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FIGURE 13. Isolines of the pressure for the radiometric flow (T+w /T0 = 2, T1/T0 = 2 and
L/D = 4). (a) Kn = 5 (p/RρavT0 = 1.04 + 0.02m; m = 0, . . . , 8), (b) Kn = 0.5 (p/RρavT0 =
1.04 + 0.02m; m = 0, . . . , 7), (c) Kn = 0.05 (p/RρavT0 = 1.09 + 0.01m; m = 0, . . . , 5),
(d) Kn= 0.01 (p/RρavT0 = 1.095+ 0.005m; m= 0, 1, . . . , 10).

molecular limit), no flow is induced in the container, as in the case of the thermal edge
flow.

When Kn is large, a region with higher temperature and pressure is formed next to
the plate on its right-hand side, by the effect of the thermalised molecules leaving the
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hot side of the plate (as in the case of the thermal edge flow). On the left-hand side
of the plate, on the other hand, the temperature and the pressure remain unelevated.
Therefore, there is a significant difference in the pressure between the right- and
left-hand sides of the plate as a whole, giving rise to a net force acting on the plate
from the hotter to the colder side. This is nothing but the radiometric force observed
when Kn is large (i.e. the Knudsen regime). This explanation, however, does not apply
to small Kn, because, in this case, the pressure distribution becomes almost uniform
along the plate, except in the close vicinity of the edge (again as in the case of the
thermal edge flow). The cause of the radiometric force for small Kn must thus be
sought in another mechanism, which is able to explain the structure of the pressure (or
the stress) in the vicinity of the edge. We shall leave this question open until § 6, in
which the structure of the normal stress (to the plate) is discussed in detail.

4.3. Similarity
In figures 14–16, we compare the profiles of the density ρ, temperature T and pressure
p of the radiometric flow with those of the thermal edge flow along four lines
X1/D = 0+, 0.01, 0.05 and 0.1 adjacent to the plate for various Kn (Kn = 5, 0.05 and
0.01). In each figure, the top row (a,c,e) shows the profiles of the thermal edge flow
induced around a heated plate (T+w /T0 = T−w /T0 = 2) and the bottom row (b,d,f ) those
of the radiometric flow (T+w /T0 = 2 and T−w /T0 = 1). As one can see, each macroscopic
quantity behaves in a quite analogous way along the plate in both the thermal edge
and radiometric flows. For example, in both flows, the density and the pressure rise
along the plate towards the edge and the temperature falls towards it. The appearance
of such a similarity is not surprising when Kn is large, for which the flow structure
of the radiometric flow in the region X1 > 0 resembles that of the thermal edge flow
as a whole (cf. e.g. figures 6a and 12a). In the case of small Kn, however, the
observed similarity is not so obvious from the overall flow patterns. In particular, it is
characteristic of both flows that a peak begins to form in the pressure near the edge
(X2/D∼ 0.5).

Figures 17–19 show the result of the corresponding comparison, between the
radiometric flow and the thermal edge flow, along four lines X1/D= 0−, −0.01, −0.05
and −0.1 close to the plate located on its left-hand side for Kn = 5, 0.05 and 0.02;
the top row (a,c,e) shows the profiles of the density, temperature and pressure of the
thermal edge flow around a cooled plate (T+w /T0 = T−w /T0 = 0.5) and the bottom row
(b,d,f ) the corresponding profiles of the radiometric flow (T+w /T0 = 2 and T−w /T0 = 1).
Note that the flow fields shown for the thermal edge flow are those induced around
a cooled plate. Again, each macroscopic quantity shows a similar structure along the
plate in both flows (in the part X2/D . 0.5), though there is a difference in the region
above the plate. That is, the density and the pressure falls towards the edge along the
plate, and the temperature behaves in the opposite way. Notably, a peak in the pressure
is formed near the edge in both flows as in the previous comparison on the heated side,
except that the peak is now directed in the negative-p direction.

To summarize, the distributions of the density, temperature and pressure of the
radiometric flow are similar to those of the thermal edge flow around a heated plate
on the heated side of the plate and are similar to those of the thermal edge flow
around a cooled plate on the unheated side. A natural implication of this is that
the thermal edge flow and the radiometric flow are induced by the same underlying
mechanism and thus are of the same type of the temperature-driven flow. Motivated by
this thought, we now try to apply the same reasoning behind the thermal edge flow
(Sone & Yoshimoto 1997) to explain the cause of the radiometric flow. That is, along
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FIGURE 14. Distributions of the density ρ along four lines X1/D = 0+, 0.01, 0.05 and 0.1
close to the plate for various Kn (L/D = 4). Top row (a,c,e) Thermal edge flow around
a heated plate (T+w /T0 = T−w /T0 = 2); bottom row (b,d,f ) radiometric flow (T+w /T0 = 2 and
T−w /T0 = 1): (a,b) Kn= 5; (c,d) Kn= 0.05; (e,f ) Kn= 0.01.
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FIGURE 15. As in figure 14, but for the temperature T: (a,b) Kn= 5; (c,d) Kn= 0.05;
(e,f ) kn= 0.01.

the heated side of the plate (the right-hand side of the plate in the present problem),
the temperature is decreasing towards the edge. This gives rise to a flow along (or
parallel to) the plate in the downward direction (or in the direction of the temperature
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FIGURE 16. As in figure 14, but for the pressure p: (a,b) Kn= 5; (c,d) Kn= 0.05;
(e,f ) Kn= 0.01.
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FIGURE 17. Distributions of the density ρ along four lines X1/D = 0−, −0.01, −0.05 and
−0.1 close to the plate for various Kn (L/D = 4). Top row (a,c,e) Thermal edge flow around
a cooled plate (T+w /T0 = T−w /T0 = 0.5); bottom row (b,d,f ) radiometric flow (T+w /T0 = 2 and
T−w /T0 = 1): (a,b) Kn= 5; (c,d) Kn= 0.05; (e,f ) Kn= 0.02.

gradient) by the same mechanism as the thermal creep flow. On the other hand, on the
unheated side of the plate (the left-hand side of the plate in the present problem), the
temperature distribution is such that it is increasing towards the edge, giving rise to a
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FIGURE 18. As in figure 17, but for the temperature T: (a,b) Kn= 5; (c,d) Kn= 0.05;
(e,f ) Kn= 0.02.
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FIGURE 19. As in figure 17, but for the pressure p: (a,b) Kn= 5; (c,d) Kn= 0.05;
(e,f ) Kn= 0.02.

flow along the plate in the upward direction. Hence, there are two flows induced, one
on each side, flowing in the opposite direction to each other. Such flows, once induced,
cause a motion of the gas passing over the edge in the direction from the colder to the
hotter side.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.536


208 S. Taguchi and K. Aoki

Another consequence of this explanation is that it allows us to understand a feature
of the flow when Kn is small in a natural way. In the case of the thermal edge
flow, the flow becomes more localised near the edge with the decrease of Kn. This
is because there is no significant temperature variation (along the plate) in the part
away from the edge (it is almost uniform along the plate; see the case Kn = 0.01
of figure 15(a,c,e) and the case Kn = 0.02 of figure 18(a,c,e)). In the case of the
radiometric flow, the temperature distribution along the plate also becomes flat with
the decrease of Kn, as seen from figure 15(b,d,f ) and 18(b,d,f ). Therefore, the flow
is more and more localised near the edge with the decrease of Kn (cf. figure 9). In
summary, the thermal edge flow and the radiometric flow are induced by the same
mechanism and the temperature distribution around the edge plays an essential role.

5. Decay property of the flows for small Knudsen numbers
In the previous section, we have seen that the radiometric flow and the thermal edge

flow belong to the same type of flow in the sense that both of them are induced by
the temperature field near the edge. On the other hand, if we look at the temperature
distributions shown in figures 15 and 18 carefully, we notice that the temperature
variations near the edge are more abrupt in the radiometric flow than in the thermal
edge flow, particularly when Kn is small. The temperature gradient being the driving
force of the flow, there may be a difference between the two flows in the flow strength
when Kn is small. In this section, therefore, we investigate the decay property of the
flow as the Knudsen number tends to zero on the basis of the numerical result.

5.1. Decay property of the thermal edge flow for small Knudsen numbers
We begin with the case of the thermal edge flow. In figure 20(a,c), the variation
of the flow speed (v2

1 + v2
2)

1/2 with Kn is shown at several locations in the gas
close to the edge, i.e. (X1/D,X2/D) = (0.05, 0.45), (0.05, 0.5), (0.05, 0.55) and (0,
0.55). Both cases in which the plate is heated (T+w /T0 = T−w /T0 = 2) and cooled
(T+w /T0 = T−w /T0 = 0.5) are included in the figure. One can see that, at each location,
the flow speed increases first with the decrease of Kn, and then tends to vanish with a
further decrease of Kn. If we draw a similar plot at other point in the gas, the same
behaviour is obtained. Thus, the flow vanishes in the continuum limit Kn→ 0 at any
point in the gas (except at the edge).

In order to see the limiting behaviour at the edge, we plot in figure 20(b,d) the
variation of the same quantity at points which are away from the edge by the distance
of the order of the mean free path. More precisely, the locations of the points are
given by (X1/`0, (X2/D − 1/2)/`0) = (1/2

√
2,−1/2

√
2), (1/2

√
2, 1/2

√
2), (0,−1),

(1, 0) and (0, 1); the first two points are away from the edge by the distance `0/2 and
the last three points by the distance `0 in the dimensional (X1,X2) plane. It should be
noted that these points are fixed in terms of the coordinates scaled by the mean free
path (centred at the edge). Therefore, they approach the edge with the decrease of Kn
in the original coordinates (X1,X2). In this figure, the flow speed (divided by

√
2RT0,

which is roughly the sound speed) tends to vanish in proportion to the square root of
the Knudsen number as Kn tends to zero; the rate of decay is obviously slower than
that in (a) for a fixed point. This means that the flow is more and more localised
near the edge as Kn becomes small (this is consistent with the discussion of the last
paragraph in § 4.3). The region with this localised flow converges to the edge as Kn
tends to zero and the flow vanishes there in the same limit. In this way, the state with
no flow everywhere is established in the continuum limit.
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FIGURE 20. Variation of the flow speed with Kn of the thermal edge flow at various
locations in the gas in the cases of T+w /T0 = T−w /T0 = 2 and 0.5 (L/D = 4). (a,b)
T+w /T0 = T−w /T0 = 2; (c, d) T+w /T0 = T−w /T0 = 0.5. In (a,c), the flow speed is evaluated at
four locations fixed in the gas: ◦, (X1/D,X2/D) = (0.05, 0.45); �, (0.05, 0.5); 4, (0.05,
0.55); and �, (0, 0.55). In (b,d), the flow speed is evaluated at five locations in the gas
having the same relative positions to the edge in the scale of the mean free path: ◦,
(X1/`0, (X2/D − 1/2)/`0) = (1/2

√
2,−1/2

√
2); �, (1/2

√
2, 1/2

√
2); 4, (0,−1); �, (1, 0);

and B, (0, 1). The dashed line is proportional to Kn1/2.

It should be mentioned that Sone & Yoshimoto (1997) gave a rough analytical
estimate of the speed of the thermal edge flow. According to them, it is proportional
to the square root of the mean free path. Thus, our result is consistent with theirs. The
estimate is based on the classical solution of the heat-conduction equation, describing
the temperature distribution of a gas over a uniformly heated semi-infinite plane. It
should be noted, however, that the heat-conduction equation is not guaranteed to
give a correct description of the temperature field in general even in the continuum
limit (Sone et al. 1996; Sone 2002, 2007). Therefore, it requires further validation
either numerically or mathematically, as mentioned in Sone & Yoshimoto (1997). The
present result provides a numerical justification for the previous estimate.

5.2. Decay property of the radiometric flow for small Knudsen numbers
Now we investigate the asymptotic behaviour of the radiometric flow for small Kn.
Figure 21 illustrates the variation of the local flow speed with Kn for this flow
(T+w /T0 = 2 and T−w /T0 = 1). As in figure 20, we show in (a) the variations at four
fixed locations near the edge, given by (X1/D,X2/D) = (0.05, 0.45), (0.05, 0.55),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.536


210 S. Taguchi and K. Aoki

10–3
10–3

10–2

10–1

10–2 10–1 100

(a)

Kn
10–3

10–3

10–2

10–1

10–2 10–1 100

(b)

Kn

FIGURE 21. Variation of the flow speed with Kn of the radiometric flow at various locations
in the gas in the case of T+w /T0 = 2 and T−w /T0 = 1 (L/D = 4). In (a), the flow speed is
evaluated at four locations fixed in the gas: ◦, (X1/D,X2/D) = (0.05, 0.45); �, (0.05, 0.55);
4, (−0.05, 0.55); �, (−0.05, 0.45). In (b), the flow speed is evaluated at four locations in
the gas having the same relative positions to the edge in the scale of the mean free path: ◦,
(X1/`0, (X2 − 2/D)/`0)= (1/2

√
2,−1/2

√
2); �, (1/2

√
2, 1/2

√
2); 4, (−1/2

√
2, 1/2

√
2); �,

(−1/2
√

2,−1/2
√

2).

(−0.05, 0.45) and (−0.05, 0.55), and in (b) those at four locations relatively at
the same positions to the edge in the scale of the mean free path, i.e. at
(X1/`0, (X2 −D/2)/`0)= (1/2

√
2, 1/2

√
2), (1/2

√
2,−1/2

√
2), (−1/2

√
2, 1/2

√
2) and

(−1/2
√

2,−1/2
√

2). Note that, in (b), the distance of the points from the edge is `0/2
in the dimensional (X1,X2) plane.

From figure 21(a), one can see that the flow tends to vanish as the limit Kn→ 0 is
approached, as in the case of the thermal edge flow. On the other hand, figure 21(b)
shows that the flow speed approaches a non-zero limiting value, depending on the
relative position to the edge, as Kn tends to zero. This means that the flow is not
vanishing at the edge in the continuum limit, unlike the case of the thermal edge
flow. This conclusion is also consistent with the following numerical result. That is,
figure 22 shows the contour plots of the temperature (in a) and the flow speed (in
b) around the edge for four different values of Kn (Kn = 0.04, 0.02, 0.01 and 0.005)
shown by using the coordinates scaled by the mean free path (centred at the edge).
It is seen from figure 22(a) that the temperature approaches a limiting distribution as
Kn becomes small. This means that there always exists a finite temperature variation
around the edge in the scale of the mean free path, irrespective of the smallness of
the global Knudsen number. As a result, a flow with a finite speed is induced near the
edge, as indicated by figure 22(b); the isolines for the flow speed approach the non-
zero lines as Kn→ 0. It should be noted, however, that the region with appreciable
flow shrinks towards the edge as Kn tends to zero. Therefore, the flow remains finite
only at the edges and at other points in the gas a state with no flow is established in
the continuum limit.

This situation is quite similar to the case of a flow induced by a discontinuous wall
temperature that was studied by Aoki et al. (2001b). More precisely, they considered
a rarefied gas confined in a square vessel whose left and right halves are maintained
at different uniform temperatures and investigated the steady flow induced in the vessel
with interest in its behaviour for small Knudsen numbers (based on the reference
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FIGURE 22. Distributions of the temperature T and flow speed |vi| = (v2
1 + v2

2)
1/2 near the

edge for various Kn (T+w /T0 = 2, T−w /T0 = 1 and L/D = 4). (a) T , (b) |vi|. The solid line
represents the isoline for Kn = 0.005, the dashed line for Kn = 0.01, the dash-dotted line for
Kn= 0.02 and the dotted line for Kn= 0.04.

mean free path and the size of the vessel). The result is summarized as follows: (i)
as the system approaches the continuum limit, the region with appreciable flow speed
converges to the point where the wall temperature is discontinuous, and (ii) the flow
vanishes at all points except at the points of discontinuity. In the present problem,
the plate temperature is discontinuous at the edges, and the flow is driven by the
temperature field established there. Therefore, the same singularity also occurs at the
edges in the radiometric flow.

6. Normal stress and the radiometric force
In this section, we discuss the normal stress on the plate, on the basis of the

numerical results, and clarify the cause of the radiometric force.

6.1. Normal stress
Figures 23 and 24 show the distributions of the normal stress p11 of the thermal edge
flow and those of the radiometric flow along several lines parallel to the plate for some
Knudsen numbers (Kn = 5, 0.05 and 0.01 or 0.02). More precisely, in figure 23 the
distributions of the normal stress of the radiometric flow (T+w /T0 = 2 and T−w /T0 = 1)
along four lines X1/D = 0+, 0.01, 0.05 and 0.1 are compared with the corresponding
distributions of the thermal edge flow around a heated plate (T+w /T0 = T−w /T0 = 2) for
Kn = 5, 0.05 and 0.01, and in figure 24 those of the radiometric flow along four
lines X1/D = 0−, −0.01, −0.05 and −0.1 are compared with the corresponding ones
of the thermal edge flow around a cooled plate (T+w /T0 = T−w /T0 = 0.5) for Kn = 5,
0.05 and 0.02. The profiles of p11 closely resemble those of the corresponding profiles
of the pressure p (figures 16 and 19) for both the thermal edge and radiometric
flows. In particular, as for the pressure, a sharp peak develops in the positive- or
negative-p11 direction near the edge with the decrease of Kn, depending on whether
the corresponding side of the plate is hotter than the environment (figure 23) or colder
than it (figure 24).

In order to obtain further information about the peak, let us investigate how the
magnitude of the peak varies with Kn. For this purpose, we introduce the quantity τ11
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FIGURE 23. Distributions of the stress p11 along four lines X1/D = 0+, 0.01, 0.05 and 0.1
close to the plate for various Kn (L/D = 4). Top row (a,c,e) Thermal edge flow around
a heated plate (T+w /T0 = T−w /T0 = 2); bottom row (b,d,f ) radiometric flow (T+w /T0 = 2 and
T−w /T0 = 1): (a,b) Kn= 5; (c,d) Kn= 0.05; (e,f ) Kn= 0.01.
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FIGURE 24. Distributions of the stress p11 along four lines X1/D = 0−, −0.01, −0.05 and
−0.1 close to the plate for various Kn (L/D = 4). Top row (a,c,e) Thermal edge flow around
a cooled plate (T+w /T0 = T−w /T0 = 0.5); bottom row (b,d,f ) radiometric flow (T+w /T0 = 2 and
T−w /T0 = 1): (a,b) Kn= 5; (c,d) Kn= 0.05; (e,f ) Kn= 0.02.
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FIGURE 25. τ11 as a function of Kn (L/D = 4). (a) Thermal edge flow around a heated plate
(T+w /T0 = T−w /T0 = 2), (b) thermal edge flow around a cooled plate (T+w /T0 = T−w /T0 = 0.5),
(c) radiometric flow (T+w /T0 = 2 and T−w /T0 = 1). In (a) and (b), ◦ represents the result along
X1/D= 0+ and � X1/D= Kn. In (c), ◦ represents the result along X1/D= 0+, � X1/D= Kn,
4 X1/D = 0− and � X1/D = −Kn. In (a) and (b), a dashed line proportional to Kn1/2 is also
shown.

as follows: i.e. for a given x1(= X1/D)= α∗(=const)

τ11(α∗)= max
06x260.5

|p̂11(x1 = α∗, x2)− p̂11(x1 = α∗, 0)|. (6.1)

(RρavT0)τ11 corresponds to the height of the peak in the profile of p11 along a given
line X1/D = α∗, measured from the value at X2/D = 0 (i.e. the value on the X1 axis),
and thus τ11 is a measure of the magnitude of the peak. When α∗ = 0+ or 0− (i.e.
on the plate), max06x260.5 in (6.1) should be interpreted as sup06x2<0.5 and should be
evaluated using the limiting value of p11 from below (see the first paragraph of § 4.1).
It should also be noted that τ11 depends on Kn, T+w /T0, T−w /T0 and L/D (through the
solution) in addition to α∗ (i.e. the line along which τ11 is evaluated). Here, we shall
evaluate τ11 along two lines X1/D = 0+ and X1/D = Kn (i.e. α∗ = 0+ and Kn) in the
case of the thermal edge flow and along four lines X1/D = 0± and X1/D = ±Kn (i.e.
α∗ = 0± and ±Kn) in the case of the radiometric flow. Note that the lines X1/D=±Kn
approach the plate (or the X2 axis) with the decrease of Kn, but the distance from the
plate is kept the same in the scale of the mean free path, irrespective of Kn. Figure 25
shows the variation of τ11 obtained in this way as a function of Kn; (a) shows the
result for the thermal edge flow around a heated plate (T+w /T0 = T−w /T0 = 2), (b) that
for the thermal edge flow around a cooled plate (T+w /T0 = T−w /T0 = 0.5) and (c) that
for the radiometric flow (T+w /T0 = 2 and T−w /T0 = 1). In the case of the thermal edge
flow (a and b), τ11 tends to decay in proportion to the square root of Kn as Kn
is decreased. In the case of the radiometric flow (c), on the other hand, it tends to
approach a non-zero limiting value.

The mechanism of the formation of the peak in p11 can be understood in the
following way. A rarefied gas having a non-uniform temperature distribution is subject
to a stress known as the thermal stress (Maxwell 1879; Sone 2002, 2007). Let us
consider a (imaginary) plane surface S in the gas and two points A and B on the
respective sides of it, located in such a way that the line joining A and B intersects
the surface perpendicularly. Let the distance of each point from the surface be, say,
one mean free path. The momentum flux across the surface in the direction normal
to it is roughly estimated to be the sum of the temperatures at these points, each of
which represents the character of the group of molecules impinging on the surface
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from either side. Hence, the normal stress on the surface is (roughly) given by

Stress∼ T(X − `)+ T(X + `)∼ 2T + d2T

dX2
`2, (6.2)

where X is a coordinate normal to the surface and ` is the mean free path. In the
last expression, the second term ( d2T/ dX2)`2 corresponds to the thermal stress arising
in the gas due to the temperature non-uniformity (Maxwell 1879; Sone 2002, 2007).
In this argument we implicitly consider a quiescent gas with temperature variation.
Therefore, the density varies, i.e. it is high (low) in the region of low (high)
temperature. This density variation reduces the normal stress in (6.2). However, the
density variation is determined in such a way that the mass flow ρ̂v̂i, the first moment
of the velocity distribution function (cf. (2.23)), vanishes. Since the normal stress is
the second moment (cf. (2.30a)), the effect of the temperature variation, that is, the
effect of the difference in the average molecular speed, dominates the effect of the
density variation. Therefore, (6.2), where the density variation is neglected, is correct
qualitatively.

Now we estimate the magnitude of the ( d2T/ dX2)`2 term. Since there is no
analytical solution available, we shall exploit here, for simplicity, the solution of
the heat-conduction equation. Indeed, it was in this way that Sone & Yoshimoto
(1997) were able to arrive at an estimate of the magnitude of the thermal edge flow.
First, we consider the case of the thermal edge flow. The temperature distribution
around a semi-infinite plate vertically placed in a large expanse of a gas (extending
indefinitely in the downward direction) and having temperature T1 is given by
T = T1 − a∗r1/2 cos(θ/2) + · · · . Here, r is the radial distance from the edge, θ is the
angle measured from the upward direction (θ = π on the right-hand side of the plate
and θ =−π on the left-hand side) and a∗ is a constant (a∗ is positive when the plate is
heated and is negative when it is cooled). Now we consider three points in the gas, say,
A, B and C, near the edge, which are aligned along the half-line perpendicular to the
plate originating from the edge. The point A is on the edge and B and C are located in
such a way that their distances from the edge are ` and 2`, respectively. If we denote
the temperatures at A, B and C by TA, TB and TC, respectively, they are then given by
TA = T1, TB = T1 − a∗`1/2/

√
2 and TC = T1 − a∗ (2`)

1/2 /
√

2. Thus, by using the central-
difference formula, the second derivative of T with respect to X (the coordinate along
the half-line) at B is evaluated as ∂2T/∂X2 ∼ (TA − 2TB + TC)/`

2 ∼ (√2 − 1)a∗`−3/2,
giving the result that the thermal stress is proportional to a∗

√
`. It should be noted

that ∂2T/∂X2 decreases with distance in the downward direction along the plate, as
can be seen from the isothermal lines in figure 6 that are more parallel to the plate
and more equally spaced near the centre than near the edge. Therefore, the thermal
stress is appreciable only near the edge. As a consequence, the thermal stress produces,
in p11, a rise towards the edge along the plate when the plate is heated and a fall
when the plate is cooled. Moreover, its height (or depth) is of the order of the
square root of the mean free path and this is perfectly consistent with our numerical
result (figures 25a and 25b). In the case of the radiometric flow, we can argue in
the same way except that the corresponding temperature distribution is now given by
T = (T0 + T1)/2 + (T1 − T0)θ/2π − b∗r1/2 cos(θ/2) + · · · , where T0 and T1(> T0) are,
respectively, the temperatures on the colder and the hotter side of the plate and b∗ is
a constant. A parallel calculation shows that (∂2T/∂X2)`2 ∼ (T1 − T0)/4 on the hotter
side and (∂2T/∂X2)`2 ∼ −(T1 − T0)/4 on the colder side. Thus, along the plate, there
will be a rise and a fall in p11 towards the edge on the hotter side and the colder
(or unheated) side of the plate, respectively. Since the magnitude of the thermal stress
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Rarefied gas flow around a sharp edge 215

FIGURE 26. (a) Distributions of the normal stress, p+11 = p11(X1,X2)|X1/D=0+ and
p−11 = p11(X1,X2)|X1/D=0− , along each side of the plate and (b) the difference [p11]+− = p+11− p−11

in the radiometric flow (T+w /T0 = 2, T−w /T0 = 1 and L/D= 4). In (a), the solid line represents
p+11 and the dashed line p−11.

is independent of the mean free path, it develops into a ‘peak’ localised around the
edge with the decrease of Kn. Again, this is consistent with our numerical result
(figure 25c).

In summary, from the above discussion and the numerical result to support it, it is
almost certain that the peak in p11 arising near the edge is caused by the effect of the
thermal stress. In the case of the thermal edge flow (or the case in which temperatures
on both sides of the plate are the same), the peak decays in proportion to the square
root of the mean free path, while in the case of the radiometric flow (or the case in
which temperatures on both sides are different), it is independent of the mean free path
(and thus does not vanish at the edge in the continuum limit).

6.2. Origin of the force acting on the plate in the radiometric flow
Now we turn to the question of the cause of the radiometric force. Figure 26
illustrates how the distribution of the normal stress on each side of the plate
varies with Kn in the case of the radiometric flow (T+w /T0 = 2 and T−w /T0 = 1);
(a) shows the actual distributions of the normal stresses p+11 = p11(X1,X2)|X1/D=0+
and p−11 = p11(X1,X2)|X1/D=0− along each side of the plate and (b) the difference
[p11]+− = p+11 − p−11. In the free molecular flow (Kn→∞), p+11 and p−11 are uniform
along the plate. For large Kn, there is a significant difference between p+11 and p−11
in the entire range of X2/D along the plate (this corresponds to the radiometric force
at a large Kn). As Kn becomes small, the difference between p+11 and p−11 tends to
vanish, except near the edge (X2/D∼ 0.5). Therefore, the plate experiences a net force
perpendicular to it only in the edge region and no force on the other parts. On the
other hand, from the result of the preceding subsection, this difference between p+11 and
p−11 near the edge comes from the thermal stress, which has different signs on each
side. Thus, the radiometric force is caused by the thermal stress.

Finally, we show in figure 27 the variation of the total force (F, 0, 0) acting on the
plate (per unit width in X3) as a function of Kn (T+w /T0 = 2 and T−w /T0 = 1). Here, F is
given by

F =−2
∫ D/2

0
[p11]+− dX2

=−2
∫ D/2

0
[p11(X1,X2)|X1/D=0+ − p11(X1,X2)|X1/D=0−] dX2. (6.3)
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Kn
10–3

10–4

10–3

10–2

10–1

100

10–2 10–1 100 101 102

FIGURE 27. Radiometric force F versus Kn in the case of T+w /T0 = 2 and T−w /T0 = 1
(L/D = 4). The symbols represents the numerical results which are connected by solid lines.
The dash-dotted line indicates the limiting value F/DRρavT0→−0.20986 as Kn→∞.

Kn −F/DRρavT0 Kn −F/DRρavT0 Kn −F/DRρavT0

0.005 0.00062 0.2 0.08000 3 0.20226
0.01 0.00183 0.3 0.10753 4 0.20504
0.02 0.00503 0.4 0.12698 5 0.20653
0.03 0.00888 0.5 0.14113 6 0.20744
0.04 0.01313 0.6 0.15182 7 0.20802
0.05 0.01761 0.7 0.16007 8 0.20842
0.06 0.02235 0.8 0.16660 9 0.20871
0.07 0.02703 0.9 0.17186 10 0.20892
0.08 0.03171 1 0.17617 15 0.20946
0.09 0.03634 1.2 0.18278 20 0.20966
0.1 0.04078 1.5 0.18947 ∞ 0.20986
0.15 0.06204 2 0.19606

TABLE 1. Radiometric force F versus Kn for T+w /T0 = 2 and T−w /T0 = 1 (L/D= 4).

The corresponding values are given in table 1. −F/DRρavT0 increases monotonically
with Kn. For each set of values T+w /T0, T−w /T0 and L/D, the force has a
limiting value as Kn→ ∞. In the present case of T+w /T0 = 2, T−w /T0 = 1 and
L/D = 4, F/DRρavT0 → −0.20986 as Kn→∞. It should be noted, however, that
the dimensional force −F decreases as Kn→∞ because Dρav generally decreases
with the increase of Kn.

7. Concluding remarks
In this paper, we have considered a rarefied gas flow induced around the sharp edges

of a flat plate by the effect of a temperature field. Typical examples of such flows are
the thermal edge flow and the radiometric flow. The former is induced when the plate
is uniformly heated (or cooled), and the latter is induced when the two sides of the
plate are maintained at different temperatures. In this paper, we have investigated these
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flows numerically on the basis of the BGK model Boltzmann equation and the diffuse
reflection boundary condition.

After the formulation of the problem (§ 2), a numerical method that is able to
give a correct description of the discontinuity contained in the velocity distribution
function was introduced (§ 3 and appendix A). Then, we have carried out an extensive
numerical analysis on the radiometric and the thermal edge flows for a wide range
of the Knudsen number. As a result, the following results were obtained. First, we
have clarified the existence of the similarity between the thermal edge flow and the
radiometric flow, particularly in the flow structure near the edge. In addition, we have
developed, on the basis of this analogy, an understanding of the mechanism of the
radiometric flow for the infinitely thin plate (§ 4). Second, we have investigated the
limiting behaviour of the flows as the Knudsen number tends to zero. The result shows
that there is an important difference between the thermal edge flow and the radiometric
flow in the continuum limit, despite the above similarity. That is, the former vanishes
everywhere in the gas, whereas the latter does so except at the edges (§ 5). Finally, we
have clarified the structure of the normal stress (on the plate), particularly that near the
plate. We have shown that the abrupt temperature variation near the edge gives rise
to a strong thermal stress there and this thermal stress causes a net force on the plate
when the temperatures on both sides are different from each other (§ 6).

The flows studied here are essentially caused by abrupt temperature variation near
the edges, and the region where the flow is appreciable shrinks as the Knudsen number
decreases. Therefore, it is essential to use a numerical method capable of resolving
overall tiny flow structures as well as abrupt change near the edges. For this purpose,
we used the finite-difference method, rather than the conventional DSMC method. The
latter method would need a huge number of particles and cells as well as many
averaging steps to meet our requirements. We used the BGK model instead of the
original Boltzmann equation because the required high resolution is still not possible
for the latter. It is well known that, for the BGK model, the Prandtl number becomes
unity, not around 2/3 as given by the Boltzmann equation for most of intermolecular
potentials. However, some existing results show that, in the case of thermally driven
flows, the BGK results show good agreement with the Boltzmann results for hard-
sphere molecules (see e.g. Ohwada, Sone & Aoki 1989b; Aoki, Degond & Mieussens
2009). In these comparisons, the mean free path of the BGK model is converted
to that of the Boltzmann equation in such a way that the thermal conductivity is a
common quantity. One can expect similar agreements between the BGK model and
more sophisticated models, such as the ellipsoidal statistical (ES) model. In fact, both
models give the same results for the linearized thermal transpiration through a channel
(Takata, Funagane & Aoki 2010).

In the present study, we have considered a plate without thickness, which is an
idealised situation. However, even if the plate is thicker and with round edges, and
even if the temperature change at the edges is not exactly discontinuous, we may
expect qualitatively the same behaviour of the gas. Indeed, it was found that the
thermal edge flow is induced even when the edge is quite round (Aoki, Sone &
Waniguchi 1998). Therefore, the features of the flow field obtained here are unlikely
to be restricted to the case of a flat plate without thickness and are likely to represent
the features in more general situations. In the present two-dimensional setting, when
the gas extends to infinity (instead of being enclosed in a container), we cannot control
the temperature at infinity. Therefore, the problem may be trivial: for instance, in the
case of the thermal edge flow, the temperature at infinity should be the same as that
of the plate, so that no flow is induced in the gas. However, when we consider a
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three-dimensional problem, say with a rectangular plate, the case in which the gas
extends to infinity makes sense, and we may expect that similar flows are induced by
the same mechanism as discussed in this paper.
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Appendix A. Outline of the numerical analysis
(i) For the numerical analysis, we introduce the polar coordinates (ζ, θζ ) in the

(ζ1, ζ2) plane defined by

ζ1 = ζ cos θζ , ζ2 = ζ sin θζ (A 1)

(0 6 ζ < ∞; −π 6 θζ 6 π), and regard Φ as a function of (x1, x2, ζ, θζ )

(Φ(x1, x2, ζ,π) = Φ(x1, x2, ζ,−π)). Since the equations and boundary conditions for
the new Φ are readily obtained from (2.21)–(2.29), we omit the explicit form.

(ii) We restrict the range of ζ to 06ζ 6Z, where Z is chosen in such a way that
Φ is negligibly small around ζ 'Z. We obtain the discrete solution Φ] of Φ at the
lattice points (x(i)1 ,x

(j)
2 ,ζ

(k),θ
(l)
ζ ) in the (x1,x2,ζ,θζ ) space as the limit of the sequence

{Φ(n)
] } (n=0,1,...) constructed by a finite-difference equation corresponding to (2.21)

that gives the relation between Φ(n)
] and Φ(n−1)

] , where the superscript (n) denotes the
value at the nth step of iteration. Let us assume that Φ(n−1)

] is known. For each 06
θ
(l)
ζ <π/2 (or for each −π/2<θ (l)ζ <0), Φ(n)

] is determined from x1=−L̂/2 to L̂/2 and
from x2=0 to L̂/2 (or from x2= L̂/2 to 0) by using the finite-difference equation, the
boundary condition (2.27) at x1=−L̂/2, the boundary condition (2.25) (with upper sign)
on the right-hand side of the plate and the specular reflection condition (2.29) at x2=
0 (or the boundary condition (2.27) at x2= L̂/2) for all ζ (k) (see figure 28a). Similarly,
for each π/2<θ (l)ζ 6π (or for each −π6θ (l)ζ <−π/2), Φ(n)

] is determined from x1= L̂/2
to −L̂/2 and from x2=0 to L̂/2 (or from x2= L̂/2 to 0) by using the finite-difference
equation, the boundary condition (2.27) at x1= L̂/2, the boundary condition (2.25) (with
lower sign) on the left-hand side of the plate and the specular reflection condition (2.29)
at x2=0 (or the boundary condition (2.27) at x2= L̂/2) for all ζ (k) (see figure 28b). For
θ
(l)
ζ =π/2 (or for θ (l)ζ =−π/2), Φ(n)

] is determined from x2=0 to L̂/2 (or from x2= L̂/2
to 0) using the finite-difference equation and the specular reflection condition (2.29) at
x2=0 (or the boundary condition (2.27) at x2= L̂/2) for all ζ (k).

(iii) As explained in § 3.1, the velocity distribution function is discontinuous in
the gas. Here, we neglect the discontinuities caused by the corners and concentrate
on those caused by the edges (see the third paragraph of § 3.1). Then, for a
given (ζ (k), θ

(l)
ζ ) = (α, β) with α > 0 and 0 6 β 6 π/2 (or −π/2 6 β < 0), Φ is

discontinuous along the lines x2 = (tanβ)x1 + 1/2 (the line between the regions I
and II in figure 28a) and x2 = (tanβ)x1 − 1/2 (the line between the regions II and
IV in figure 28a) (or along the line x2 = (tanβ)x1 + 1/2, i.e. the line between the
regions II and III in figure 28a). The application of the finite-difference expressions
for ∂Φ/∂x1 and ∂Φ/∂x2 across the discontinuity line introduces a significant error.
Therefore, a local correction is required to the finite-difference procedure explained in
(ii) near the discontinuity line. First, we decompose the domain into smaller regions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

53
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.536


Rarefied gas flow around a sharp edge 219

x2

x1

0
0

x2

0
x10

III

III

IV

(a)

(b)

FIGURE 28. Schematic illustration of the process of numerical analysis. (a) |θ (l)ζ |< π/2,
(b) π/2< |θ (l)ζ |6 π.

I, II + III and IV (or into I + II + IV and III). Since there is no discontinuity in
each region, we can use the same finite-difference equation as in (ii) in each region.
On the other hand, since the regions are now separated by the line of discontinuity,
we need the limiting value of Φ from the right along the discontinuity line as the
boundary condition for the regions II + III and IV (or the region I + II + IV) in the
process of determining Φ

(n)
] from x1 = −L̂/2 to L̂/2 in (ii). We obtain this limiting

value separately with the aid of another finite-difference equation for (2.21) along (the
right-hand side of) the discontinuity line. The case of (ζ (k), θ (l)ζ ) = (α′, β ′) with α′ > 0
and π/2 < β ′ 6 π (or −π 6 β ′ < −π/2) is treated in a similar way. In this case, we
divide the original domain into the regions I′, II′ + III′ and IV′ by the discontinuity
lines x2 = (tanβ ′)x1 + 1/2 (the line between the regions I′ and II′ in figure 28b) and
x2 = (tanβ ′)x1 − 1/2 (the line between the regions II′ and IV′ in figure 28b) (or into
the regions I′ + II′ + IV′ and III′ by the discontinuity line x2 = (tanβ ′)x1 + 1/2, i.e. the
line between the regions II′ and III′ in figure 28b), and apply the same finite-difference
equation as in (ii) in each region. At this point, we need the limiting value of Φ from
the left along the discontinuity line as the boundary condition for the regions II′ + III′

and IV′ (or for the region I′ + II′ + IV′) for the process of determining Φ
(n)
] from

x1 = L̂/2 to −L̂/2. This limiting value is obtained separately with the aid of another
finite-difference equation for (2.21) along (the left-hand side of) the discontinuity line.

Appendix B. Accuracy of the numerical computation
The grid systems were chosen carefully and various tests were performed for both

the thermal edge flow and the radiometric flow to confirm the accuracy. To save space,
we confine our attention to the case of the radiometric flow, omitting the details for the
thermal edge flow. In general, it is easier to attain higher accuracy in the thermal edge
flow than in the radiometric flow. Hereafter, we assume L̂= 4 (see § 3.2).
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The domain −2 6 x1 6 2 and 0 6 x2 6 2 is subdivided into 2M × M rectangular
domains ((x1-direction) × (x2-direction)) by the lattice lines. Here, the distribution of
lines x1 = const is symmetric with respect to x1 = 0 (the x2 axis). The lattice lines are
dense near x1 = −2 and 2 and x2 = 0 and 2 as well as around x1 = 0 and x2 = 0.5,
and the smallest lattice interval occurs between x1 = 0 and the neighbouring line
x1 = const with respect to the x1 direction and between x2 = 0.5 and the neighbouring
line x2 = const(<0.5) with respect to the x2 direction. The actual value of M is
given below, together with some reference values for the lattice intervals. For the
discretisation with respect to (ζ, θζ ), the domain 0 6 ζ 6 Z(=8.58) and −π 6 θζ 6 π
is subdivided into Mζ × Mθζ

(Mζ = 72 and Mθζ
= 480) rectangular domains ((ζ -

direction) × (θζ -direction)) by the lattice lines. The distribution of lines θζ = const
is uniform, whereas that of lines ζ = const is non-uniform. It is finer near ζ = 0 and
coarser near ζ = Z, and the smallest (largest) lattice interval is 2.02 × 10−3 (0.349) at
ζ = 0 (at ζ = Z).

The choice of M is summarized as follows. M = 320 for 0.005 6 Kn 6 0.05 and
M = 160 for 0.06 6 Kn 6 20. The smallest (largest) lattice interval is 5.7 × 10−6

(3.1 × 10−2) for Kn = 0.005, 1.4 × 10−5 (2.8 × 10−2) for Kn = 0.01, 3.4 × 10−5

(2.5 × 10−2) for 0.02 6 Kn 6 0.05, 8.4 × 10−4 (3.2 × 10−2) for 0.06 6 Kn 6 1 and
3.7× 10−3 (2.1× 10−2) for 1.26 Kn6 20 in both the x1 and x2 directions.

In order to estimate the accuracy of the present computation, we checked the
changes in the macroscopic variables when the number of lattice lines is almost halved
or doubled in the (x1, x2) plane or in the (ζ, θζ ) plane, by removing every other lattice
line or by adding new lattice lines between two lines of the standard lattice system
mentioned above. Let us denote by 1(1/2)

x (h) and 1(2)
x (h) the variations in h (h= ρ̂, v̂1,

etc.) when the value of M is halved and doubled, respectively, and by 1(1/2)
ζ (h) and

1
(2)
ζ (h) the variations in h when Mζ and Mθζ

are simultaneously halved and doubled,
respectively. For Kn= 5, 0.5 and 0.05 these are summarized as follows:

1(2)
x (h) < 4.4× 10−5(h= ρ̂, T̂, p̂),1(2)

x (v̂1) < 7.1× 10−6,

1(2)
x (v̂2) < 9.5× 10−6,

1
(2)
ζ (h) < 1.5× 10−5(h= ρ̂, T̂, p̂),1(2)

ζ (v̂1) < 4.4× 10−6,

1
(2)
ζ (v̂2) < 5.1× 10−6, (for Kn= 5), (B 1)

1(2)
x (h) < 8.4× 10−5(h= ρ̂, T̂, p̂),1(2)

x (v̂1) < 2.1× 10−5,

1(2)
x (v̂2) < 3.3× 10−5,

1
(2)
ζ (h) < 9.0× 10−5(h= ρ̂, T̂, p̂),1(2)

ζ (v̂1) < 4.1× 10−6,

1
(2)
ζ (v̂2) < 1.7× 10−5, (for Kn= 0.5), (B 2)

1(1/2)
x (h) < 7.1× 10−4(h= ρ̂, T̂, p̂),1(1/2)

x (v̂1) < 2.2× 10−4,

1(1/2)
x (v̂2) < 1.0× 10−4,

1
(1/2)
ζ (h) < 2.1× 10−4(h= ρ̂, T̂, p̂),1(1/2)

ζ (v̂1) < 1.0× 10−5,

1
(1/2)
ζ (v̂2) < 9.3× 10−5, (for Kn= 0.05). (B 3)
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Another measure of accuracy is obtained by checking the conservation laws. Let us
consider the closed domain (or the control surface) 0 6 x1 6 r1 and r∗2 6 x2 6 r2 in
the (x1, x2) plane, whose left side is on the x2 axis. Let us call the left side (x1 = 0)
of the domain side I, the right side (x1 = r1) side II, the bottom side (x2 = r∗2) side
III and the top side (x2 = r2) side IV. If we denote the mass, momentum in the
X1 direction, momentum in the X2 direction and energy flowing out of the domain
through the side J (J = I, II, III or IV) (per unit time and unit width in X3) by
ρav (2RT0)

1/2 DMJ , RρavT0DP1J , RρavT0DP2J and (ρav/2) (2RT0)
3/2 DEJ , respectively,

the sums M =∑IV
J=IMJ , P1 =

∑IV
J=IP1J , P2 =

∑IV
J=IP2J and E =∑IV

J=IEJ should
theoretically vanish. However, in reality, they do not vanish exactly due to the
numerical error, and the deviation from zero can be used as a measure of accuracy of
the present computation. Some examples of these are:

|M | = 2.1× 10−6(MIV =−3.7× 10−4),

|P1| = 1.3× 10−4(P1I =−2.3× 10−1),

|P2| = 8.1× 10−5(P2III =−2.1× 10−1),

|E | = −3.5× 10−4(EI =−5.4× 10−2),

(for Kn= 5 and (r1, r∗2, r2)= (0.189, 0.398, 0.602)), (B 4)

|M | = 4.3× 10−6(MIII = 2.1× 10−3),

|P1| = 2.3× 10−5(P1I =−2.0× 10−1),

|P2| = 1.2× 10−5(P2III =−2.3× 10−1),

|E | = 7.2× 10−5(EI =−3.2× 10−2),

(for Kn= 0.5 and (r1, r∗2, r2)= (0.203, 0.411, 0.589)), (B 5)

|M | = 1.8× 10−6(MIV = 3.2× 10−3),

|P1| = 1.7× 10−6(P1I =−2.0× 10−1),

|P2| = 8.5× 10−7(P2III =−2.2× 10−1),

|E | = −1.3× 10−5(EI =−1.5× 10−2),

(for Kn= 0.05 and (r1, r∗2, r2)= (0.199, 0.416, 0.597)), (B 6)

|M | = 7.8× 10−6(MI =−2.1× 10−3),

|P1| = 3.5× 10−6(P1I =−2.2× 10−1),

|P2| = 1.4× 10−6(P2III =−2.1× 10−1),

|E | = 1.1× 10−5(EI =−9.9× 10−3),

(for Kn= 0.01 and (r1, r∗2, r2)= (0.191, 0.397, 0.594)). (B 7)
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