
AN INVESTIGATION ON THE LOGICAL

STRUCTURE OF MATHEMATICS (VI)0

CONSISTENT V-SYSTEM T(V)

(WITH CORRECTIONS TO PART (XII))

SIGEKATU KURODA

The V-system T(V) is defined in §2 by using §1, and its consistency is

proved in §3. The definition of T(V) is given in such a way that the con-

sistency proof of T(V) in §3 shows a typical way to prove the consistency

of some subsystems of UL. Otherwise we could define T(V) more simply

by using truth values. After T(V)-sets are treated in §4, it is proved in

§5 as a T(V)-theorem that T(V)-sets are all equal to V. In this proof a

peculiar T(V)-set R, defined similarly as Russell's contradictory set R, is used.

The V-system itself is a trivial subsystem of UL, while such a subsystem

S of T(V) is important, for which S-unprovability of V*. x = Y is known (§6).

As an example for such a subsystem of T(V), the consistent natural number

theory Ti(N)ΠT(V) is developed in §7.0) The sequence V, {V}, {{V}}, . . .

is the sequence of natural numbers in Ti(N). In §8 the dual 0-system T(0) is

defined. As a consequence, the most general duality principle in logic is ob-

tained. In §9 the method of making use of the V-system in proving the con-

sistency of some part of mathematics is briefly described. As an appendix a

method to construct an infinitely many number of inconsistent systems of

dependent variables is added.

1. Decomposition of a formula in UL

Let G be any formula in UL. The trees To, Tu . . . are constructed

successively from G as follows. To is the tree consisting only of G. Assume

that Tk(k>0) has been constructed, and that there is a bottom formula, say

Received July 9, 1958.
0 ) Continuation of the author ' s previous work with the same major t i t le. This P a r t

(VI) presupposes in part icular the terminologies and the knowledge in P a r t s ( I ) and (II) ,
forthcoming in Hamburger Abhandlungen, and §§ 7, 9 of this P a r t (VI) can only be under-
standable after reading §§7, 10, 11 of P a r t (VII), appearing in this volume. T h e definition
of concept and set is given in P a r t (X) forthcoming elsewhere. T h e references indicated
by upper suffixes (I), ( I I ) , . . . refer to the Part (I) , ( I I ) , . . . respectively.
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96 SIGEKATU KURODA

Ky of Tky over which there is an imprimitive formula, say L, such that in

the TYstring through K there is under L no proof constituent which can be

associated to L. Tk+i is constructed by placing a proof constituent associated

to L directly under K. Any tree TOf Tu . . , obtained in this way from G

is called a decomposition of the formula G. There is a finite number of de-

compositions of a formula, if the difference of the variables used in the

decompositions is ignored.

A string S of a tree is called affirmative {negative), if all the primitive

S-formulas, if any, are affirmative (negative). If in any decomposition of a

formula G there is an affirmative (negative) string, G is called to be of

affirmative {negative) type. Let Tm be a decomposition of a formula G of

affirmative (negative) type and Tk be a decomposition of G which is a prolon-

gation of Tm- Then there is an affirmative (negative) 7Vstring S such that

for any prolongation Tk of Tm there is an affirmative (negative) 7Vstring

which is a prolongation of S. Such a 7Vstring is called an affirmative {nega-

tive) direction of the decomposition Tm of the formula G of affirmative (nega-

tive) type. A formula can at the same time be of affirmative and of nega-

tive type. For instance, the negation of the formula

(I) \fxyz. x-

is of affirmative as well as of negative type.1*

2. Definition of V-system T(V)

The V-system is a subsystem of UL, which we shall denote simply by

T(V). To define T(V) we have only to define the species of sets2) of T(V).

Let, first, p be a dependent variable in UL of order 0, which is defined by

(1) Vw. u*p = Fu.

Then p is a T(V)-set, if the negation Z F of the definiens of p is of nega-

tive type. Let, second, p be a dependent variable in UL of order n{n>l),

defined by (1). Then p is a T(V)-set, if all the dependent variables (of order

less than n) occurring in F are T(V)-sets and further if ~7F is of negative

type. There is no T(V)-set other than defined recursively in this way. Thus

*> The formula (I) is neither of affirmative nor of negative type.
2) Roughly speaking, the sets (X) of a theory are those dependent variables which are

allowed to substitute for bound variables in any proof of the theory.
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the species of T(V)-sets is defined. The universal constant V is a T(V)-set

and the null constant is not.

3. Consistency of T(V)

Assume that T(V) is inconsistent. Then there would be a T(V)-proof P

of the second normal form without cut for a contradiction ah with premises

a, where all the variables defined in a are T(V)-sets. By the definition of

T(V)-set we can conclude that there should be a negative P-string, contra-

dicting the primitive cancelling property of P, and consequently T(V) is con-

sistent.

To determine a negative P-string we descend, as follows, along a P-string

from the P-top sequence 7 a. Since all the P-top formulas are negative there

is at least one P-constituent. Let Eι be the uppermost P-constituent. If £Ί

is associated with a defining formula, say (1), in a> then Eι is either [DA] or

CDN] :

ΓDA] \nmp Fm,

CDN] rn^p 7Γ.

In the former case we descend to m<$p and in the latter to 7Fm. If E\ is

associated with the premise ( I ) , namely if Eι is of the form

[I] m-n m^l

we descend to nΦl, i.e. to the negative direction of the decomposition of (I) .

Assume now that we have descended to a P-formula directly under which

there is a P-constituent Ek (k>l). When Ek is associated with a defining

formula we descend to a formula of Ek in the same way as above. Other-

wise, assume that Ek belongs to a decomposition of the formula (I) or of

the negation of a definiens attached to a [DN] over Ek, and further that

all the formulas, occurring over Ek and carried by the decomposition belong

to a negative direction of the decomposition. This assumption is fulfilled trivi-

ally for & = 1. We descend to a formula of Ek, which belongs to a negative

direction of the decomposition. This is possible, since the formula (I) as

well as the negation of the definiens of a T(V)-set is of negative type and

since, as is stated at the end of § 1, there is a negative direction for any

decomposition of a formula of negative type. Thus we proceed an inductive

step, and the P-string we are descending must be a negative P-string.
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98 SIGEKATU KURODA

4. T(V)-sets

First of all, the elementary sets {??iι, . . . , rπk) and accordingly the ordered

&-tuple <wi, . . . , mk> are TίVJ-sets, provided that niu . . . , nik are T(V)-sets

or independent variables. All the other dependent variables used in the funda-

mental deductions in Part (III) are also T(V)-sets. Therefore, all the formulas

proved in Part (III) are theorems of the consistent V-system T(V). However,

the complement CFa of a in E, defined by

(2) V&. u^CEa = uz=Eκu$a

is not a T(V)-set," nor the complement Ca = Ca of a in V, which is defined by

the specialization™ of (2):

(3) V«. u^Ca = uΦa.

5. Proof of V*. x = V in T(V)

Since V is a T(V)-set, the constant R defined by

(4) Vw

is a T(V)-set. A similar proof as that of Russell's contradiction, when applied

to R, yields the following T(V)-theorem.

V*l R = V

Proof ^ y * 1 C u t
2

Spf.

R G R

:RVR = V

(2)

2

- 7 . R
RφR
φRVR=V

RΦV

By using V*l we have the T(V)-theorem:

V*2

Proof - V*2

Cut V*l

( 2 ) ( 1 )

Corresponding to Ca, defined by (3), we define a T(V)-set Cct by
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= V.

Then we have the following T(V)-theorems: V*3 by using V*2; V*4 by using

V*3; V*5 directly from VH'4; and V*6 directly from V*5.

V*3 C<V}=V

Proof ~ v i V * 3 Cut Ϋ*2

spf._ {y>=y
~'C{v}=v'

(1)

V*4 {V} = V

Proof i V*4__Cut V^3

- 7.
- V E { V } {V}ΦV

( = )

V*β a&b

The T(V)-sets used in the above proofs are indicated in the brackets [ ] at

the place of substitution for bound variables. These are R in V*l, C(V} in

V*3, and V in V*4. Taking the closure of the species of these sets, the T(V)-

sets R, C(V}, {V}, and V are used in the above deductions. Denote by τ the

sequence of the defining formulas of these sets. (The proof of V*l shows an

example to use a singular cut in the deduction of a consistent system.)

6. Subsystem of T(V)

Let Σ be a subspecies of the species of all T(V)-sets, and T% the theory of

which Σ is the species of sets. The theory T%, as subsystem of the consistent

theory T(V), is consistent. In T% the formula m*V is unprovable for any m

belonging to Σ\ otherwise wzΦV would be a T(V)-theorem, contradicting in

virtue of V*5 the consistency of T(V). If, on the contrary, it is known that

rrii — V', . • . , nik^y are unprovable for some niu . . . , rrik belonging to Σy then

a TVtheorem of the form

(5) r/h WiΦVλ . . .
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where au . . . , aι are independent variables occurring free in //, means more

than the fact that the formula obtained from (5) by replacing <; by r (see at

the end of §5) is a trivial consequence from V*5.

7. Natural-number theory Ti(N)

We define N by replacing the null constant 0 in the defining formula(λΠ) of

N by the universal constant V. Namely, (y' = {

(N) VwΓ weN = V#: VeitfλVjy.

The constant N is not a T(V)-set, while N is a T(V)-set. Let Σ be the species

consisting of V, N, and any elementary sets generated by V and N. Then Ts

is a subsystem of T(V). We define the theory Ti(N) by adjoining to Σ any

sets for induction in the same way as in defining(YII) Ti(N). Ti(N) is not a

subsystem of T(V). The subsystem ,T(V)ΠTi(N) is the part of TVN) in

which only the T(V)-sets are allowed to use as sets for induction. N Φ V is a

Ti(N)-theorem/YII) while NΦV is T(V)-unprovable. On the other hand, we

can prove not only the consistency of Ti(N) but also the Ti(N)-unprovability

of N = V just in the same way as in the consistency proof3) of Ti(N). Hence

we have a parallelism between two consistent theories Ti(N) and Ti(N). Namely

as follows.4)

The Ti(N)-theorem corresponding to Ti(N)-theorem *N*1 is

*N*1 VeN.

The Ti(N)-theorem N*2 and N*3 are also Ti(N)-theorems with N instead of N,

while, corresponding to N*4, we have

N*4 NΦV^α'ΦV.

The proof of N*4 is the same as that of V*2 by using N instead of 0. In virtue

of N*4 we can prove under the assumption NΦV that N is an infinite set.

Namely, in the same way as in Part (VII), §10, we have the Ti(N)-theorems:

I, . . . , an). (tn and n are metalogical numbers.)

3) The transfinite induction up to first ε-number is used in the consistency proof of
Ti(N)jvhich is given in Part (VIII). The author can not decide at present whether' N^V
is Ti(N)-provable or unprovable.

v In this §7 the proofs given in $§7, 10, 11 of Part (VII) are presupposed. The formula
indicated by N* and V* are all found there.
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From N*5 and N*6 we get ϊsf-5 and N β, if we replace 0 and N in N*5 and

N*β by V and N, respectively. Hence, Peano's system of axioms holds in Ti(N)

under the assumption NΦV. More precisely, corresponding to a Ti(N)-theorem,

say ΰYHy which is deduced from Peano's system of axioms, either dYH or

dh. NΦV-»// is provable as Ti(N)-theorem, where a and H are results of re-

placing 0 and N in a and H by V and N, respectively. For instance, instead of

N*9 we have

N*9 NΦVλβeN4fl'φβ.

This is proved by the induction with the set for induction P defined by w^P

~vJ^u and by using CutN*4 with V for a in N*4.

In Part (VII) N*9 is deduced from N*7 and N+8 by making use of the

speciality of the definition of N instead of Peano's system of axioms. This

method can also be applicable for Ti(N). Namely, we can prove

N*7

N*8

To prove N*7 we use the T(V)-set R defined by (4) as set for induction

instead of Russell's set R in the proof of N*7, and use a cut by N*4 with V

for a. The proof of N*8 is the same as that of N*8 by using cut by N*7.

N*ll

are the Ti(N)-theorems corresponding to N*10 and N*ll. The set for induction

to prove N^IO is defined as in the proof of N*10 by using V instead of 0. The

Ti(N)-theorems V*5~V*7 are also Ti(N)-theorems.

As for N+N i.e. the Ti(N)-theorem NΦN, we have the Ti(N)-theorem:

The proof of N Φ V - > N Φ N can be done in the same way as in the proof of N*N

and its converse is clear.

Corresponding to N*$ we have the Ti(N)-theorem

(N)φV, (« = 0, 1, 2, . . . ) .

In the above deduction, we used two sets for induction which are not T( V)-
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sets: namely the set P with the definiens u'^zi in the proof of N>9 and the set

P with the definiens MΦN in the proof of NφV-»N<$N. However, in the second

proof of N^9 we used the T(V)-set R. Therefore all the Ti(N)-theorems proved

above, except N*N, are Ti(N)/ΊT(V)-theorems.

8. Consistent 0-system T(0)

Dually to T(V) we define the 0-system T(0). Namely, a dependent variable

p defined by (1) is called a T(0)-set exactly if all the dependent variables, if

any, occurring in the definiens Fu of p, are T(0)-sets and further if Fu is of

affirmative type. The null constant 0 is a T(0)-set, while V is not. The 0-system

is consistent.

The elementary sets {α}, {α, b}t . . . and ordered tuples <α, b>, . . . are not

T(0)-sets. However, if we define *{«}, *{α, b}9 . . . *<α, b>} . . . by

Vu. u**<α, b> = u**{α)κu**{α, b)

and so on, these dependent variables are T(0)-sets and we can prove

So we sometimes look upon { },<••> as *{ },*<••>, respectively, when we

are speaking about 0-system. By using the T(0)-set *R defined by V#. we*R

ΞwίMAwΦO we can prove the T(0)-theorem *R = 0 just in the same way as in

the proof of V*l. A similar proof to that of V*2 yields the T(O)-theorem «Φθ

-ϊαf=α, which is the dual theorem of V*2. Using *C« defined by Vw. we*C«

ΞM?flλαΦθ instead of Cα we have the T(0)-theorem *C*{0} = 0, dually to V*3.

Further, dually to V*4 we have *{0} = 0 from which we have the T(0)-theorems

α-0 and α**b, dually to V*5 and V*6, respectively. Thus, the null set 0 is the

unique dependent variable in the theory T(0), which is the dual theory of T(V).

The above augument is a special case of the duality principle of UL we shall

formulate in the following way.

Concerning the dual operator * we are going to define, we remark in 'advance

that * is applicable to any logical operators, including ε, to any variables, to

formulas, to assertions, and to proofs in UL that * has the property that

*(*Q)=Q for any object Q in UL and that all the auxiliary symbols remairr
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unchanged when they are contained in the object to which * is applied.

First, we define the dual logical symbols as follows. The negation is self-

dual, i.e. V is 7 at any places wherever 7 occurs. Other logical symbols,

including «=, are affected by * in different ways according as they occur inside

or outside the definientes of dependent variables. Namely we define

*v

as

n

a

Inside

e

y

3

definiens

(self dual) and

'/

a

Outside

as Φ

λ

V

definiens

(selfdual)

(self dual).

The ε= on the left-hand side of = in any arbitrary defining formula (1) and the

right formulas Fm and ~7Fm of the proof constituents [DA] and [DN] associated

with (1), respectively, are looked upon, when operated by *, as they are inside

definiens.

Second, if © is a formula of the form m^l, ~?A, AkB or \fxFx, we define

the dual formula *ζ? of Q as *w*ε*/, *7(*A), ( * A ) * Λ ( * B ) , or *V*ΛΓ. *F\

respectively.

By the above definition of the dual operator * we can set

Inside definiens Outside definiens

-» as 4» and as -» (selfdual)

* = ft $ " = (selfdual)

*= " Φ " = (self dual)

Third, we define the dual variable of a variable. Any independent variables

are selfdual, i.e. *α is a at any places wherever a occurs, a being an independent

variable. The dual variable *£ of a dependent variable p with defining formula

D is the dependent variable with the defining formula *D (proceeding recursively

from the dependent variables of order 0 to those of higher order).

Lastly, if Q consists of formulas and auxiliary symbols, then *(? is the figure

obtained from Q by replacing each Q-formula by its dual formula.5)

5> It will be clear what is meant by the dual theory *T of T. The duality theorem C
in §2, Part (V) (forthcoming in J. Symb. Logic), is a special case of the duality principle.
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Thus, for instance, *V is 0 and *0 is V the variables *{a, b}y *<a, b>, *R,

and *Ca defined above are the dual variables of {a, b), <<?, b>, R, and Ca, re-

spectively: *Π is U and *U is Π so that *(a^b->aΓ\b = a) is aΏb->aUb = a;

and so on.

It is easily seen that the dual operator * has the same effect if we define

* as follows. Any object Q, namely formulas, proofs, subsystems etc. of UL,

operated by *, is changed into an object *Q which we obtain when we replace

every e wherever it occurs in Q by its negation Φ and all the dependent vari-

ables p by *p, leaving all the other symbols in Q unchanged.

Now, we formulate the duality principle as follows: If P is a proof in UL

for an assertion σYH, then *P is a proof for the dual assertion *ah*H. This

principle can be easily proved in virtue of the definitions of the proof in UL

and of the dual operator *, and may be said to be a generalization of the

duality prevailing in logic since de Morgan. As an immediate consequence

of the duality principle we have the following: If a theory T is a consistent

subsystem of UL, then the dual theory *T is also a consistent subsystem of UL,

and if A is a T-theorem, then *A is the dual *T-theorem in particular, if aYH

is a UL-theorem, so is also *<rh*#.

9. Further deduction in T(V)

It may be allowed to report here, preliminarily without detailed formulation,

the method of deducing some part of mathematics consistently in a subsystem

of T(V). For instance, we have the following T(V)-theorem.

( i ) If £ is different from V, then a\Jb = E and aΓ\b = 0E imply6) b = C*α.

(ii) If α is different from V there is no one-to-one mapping between α and

its power set %(α).

(iii) Two well-ordered sets are either similar to each other or one is similar

to a section of the other, provided that they are different from V.

The proofs of these propositions are performed as in the so-called "naive

set theory," and, for instance, the proposition (ii) acquires meaning, if there is

a subsystem T of T(V) such that Γ-unprovability of β=V for some Γ-set α is

known and the dependent variables used as sets in the proof of (ii) are" Γ-sets.

We first examine the usual proof of the inequivalence of a and %{ά). To

6> The T(V)-set 0E is defined by V
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prove this we have only to prove

(6) 7

where Un, Dσ, and Wσ are defined by

ŝ fxyz

These variables are all V-sets. However, in the proof of (6) we need a variable

La'σ used as set and defined by

(7) Vw. u^lfiO^u^aκy3Xu u^xk<MX>^a.

La'° is the set of such elements of a that the image by a of u does not contain

u itself. Lα>σ is not a T(V)-set so that (6) is not a T(V)-theorem. Moreover,

if a and a are specialized to V and e, where c is the identical mapping defined

by

we see that the definiens of Lv>£ is equivalent to w$u, so that \7'L is equal to

Russell's contradictory set R. Indeed, from (6) we have

(8) 7 . <eUnΛDe = VλWc = φ(V)

and, since eUn and Dt = V are UL-theorems (or more strongly they are T(V)-

theorems), we have W< $(V) from (8). On the other hand, we have T(V)-

theorems(III) WV = V and φ(V)=V, so we have come to the contradiction V Φ V .

Eliminating all the concepts and auxiliary sets(X) in the proof of this contra-

diction, we see that the contradiction is deduced only by using7) L ί>γ, c, V as

sets. Namely, we have the proof of contradiction for oY where a is the sequence

of defining formulas of L ί>v, c, and V. We can easily see that lf'a is a T(0)

set, so that the two T(V)-sets V and c and one T(0)-set La'a combined give

rise to the above contradiction. Still (6) is a UL-theorem. In fact, after elimi-

nating all the concepts and auxiliary sets (X) from the proof of (6) we see that

only La>σ is used as proper set ( X ) in the proof of (6). Since V ° is a set of

consistent T(0)-system, (6) is a UL- or more strongly T(0)-theorem, but not

T(V)-theorem.

In order to get a TίV)-theorem corresponding to (6), we define La'a by

7) Here the unspecialized definitionίIT) of Lc>y is meant. As is said above, the spe-
cialized definition*11* of L ί f V is the same as that of Russell's set R.
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(8) Vu' u&La'σ^u&aκ: 73x

adding the disjunctive term β = V so as to make LG'σ a T(V)-set. By using

L°'σ, instead of Lα'σ, the proof for (6) is changed into the proof of

(9)

which is a T(V)-theorem. From (9) follows the T(V)-theorem

(10) a φ V - ^ + φ U ) .

From (10) and the TX(N)-theorem N*$ follows again the T(V)-theorem

(11) { ) ( 1

which is, however, not a Ί\(N)-theorem, since La'σ used in the proof of (11) is

not a Γi(N)-set.

Let To be the extension of Ti(N) which we get from Ti(N) by adjoining

Lfl'σ where a = φ ί n )(N), as TVset. Then, not only (11) is a To-theorem but also

we can prove the TVunprovability of N = V. Let T be an extension (including

To) of To, and assume that T-unprovability of N = V is proved. In such a theory

T the deduction under the assumption N Φ V is consistent. Therefore, we can

use

(12) $ (

consistently in the deduction in T under the assumption NΦV. Since the T-

unprovability of N=V implies the consistency of T under the assumption NφV»

GodeΓs theorem concerning the consistency proof is applicable to the proof of

T-unprovability of N=V, when the species of T-sets is wide enough.8)

Appendix. VΦO is proved by using V or 0 as set, while V = a by §4. In

the proof of <z = V (V*5) the sets R, C{V}, and V are used. Hence the system

of variables R, C{V}, V, and 0 is inconsistent. For the proof of this contra-

diction 0 is used as set, since a is used in the proof of V*2 as set-variable (note

the association of αeR to 7'Sfx. ^eR in the proof of V*2).

8) Ti(N) does not yet contain enough dependent variables as sets by which the primi-
tive recursive functions of natural numbers can be treated as sets. It is, however, very
likely to be able to prove that (12) is a theorem under the assumption NφV in such a mini-
mal subsystem T/Ti(N) of UL which has the simple types with the elements of N as basic
type and which has the primitive recursive functions as sets.
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Corrections to Part (XII)9 )

With the view to reduce the principle of extensionality to some defining

formulas the formula (2)-»(!) is proved there.S) I have overlook the other

possibility a^b occurring as proof formulas. In order to treat both a — b and

a^b in the same way, the converse (l)-»(2) should have been proved also as a

UL-theorem from some suitably selected defining formulas as premises. Since

no way is found to prove this, the principle of extensionality is not replaced by

defining formulas.

Owing to the above error I should make the following corrections to Part

(XII) : 1. page 400, lines 17-19, the sentence "on the contrary . . . zey", is to

be deleted; 2. page 401, the paragraph directly under the proof figure, "the

formula (4) means . . . exclusively of defining formulas", is to be deleted; 3.

page 402, line 10, "the principle of choice is" instead of "both principles . . .

a r e " ; 4. page 403, line 11, period instead of comma after "formulas", and delete

the subsequent phrase "so that . . . of defining formulas"; δ. page 403, line 2,

insert "other than ( I ) " after "UL-premises".

After correcting the above, we mean hereafter by UL, as is so in the previ-

ous Parts, the logical system defined in Part (I) , I 0 ! including eventually the

axiom of choice in the way described in Part (XII).11J

Mathematical Institute

Nagoya University

9) Proc. Japan Acad. Vol. 34 (1958), pp. 400-403. This 'corrections" was written in
December, 1958.

10> Hamb. Abh. Vol. 22 (1958).
π> Still three errata in Part (XII): 1. page 401, in the proof figure, a line is to be

inserted between the abovemost two formulas; 2. page 401, the last line of the foot-note,
" instead of ^ Ξ J " ; 3. page 402, line 4 from bottom, insert a comma after "Part (II)".
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