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Abstract. In this paper, we show that the semi-linear elliptic systems of the form
{—Au—,uAv:g(x, v), —Av—AAu=f(x,u), x € Q, ©.1)

u=v=0, x e i

possess at least one non-trivial solution pair (u, v) € H(% (R) x H&(Q), where Q is a
smooth bounded domain in R", A and u are non-negative numbers, f(x, ) and g(x, )
are continuous functions on 2 x R and asymptotically linear at infinity.

2000 Mathematics Subject Classification. AMS classification: 35J60, 35J65.

1. Introduction. In this paper, we consider the existence of non-trivial solutions
of non-linear elliptic systems

—Au— puAv =g(x,v), —Av—rAu=f(x,u), xeQ, (11

u=v=0, X €99, ’
where Q@ C R" is a smooth bounded domain, A and u are non-negative numbers, f(x, )
and g(x, ¢) are continuous functions on 2 x R and asymptotically linear at infinity
for t.

In the case of A = u =0, in recent years, much attention has been paid to the
existence of non-trivial solutions of problem (1.1) for the case that f and g are
superlinear, see [1], [2], [3], [7] and references therein. In [4], G. Liand J. Yang considered
the asymptotically linear elliptic systems

—Au+u=g(xv), —Av+v=f(x,u),xecRY;

it obtained a positive solution by using linking theorem under the Cerami compactness
condition.

If A, u #0, the problem has some new features. First, by the Pohozaev-type
identity, the parameters A and u affect the sub-critical range of the growth of non-linear
terms at infinity. Second, if A < 1, the decomposition of the space in the framework
involves the parameters, see [5, 6]. Moreover, f and g are superlinear in [5] and are
asymptotically linear in [6].

In this paper, we will consider asymptotically linear elliptic systems (1.1) in £ =
Hé (Q) x H)(Q) with parameters A, u satisfies A > 1, which allow us to define an
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equivalent norm on E. In fact, let E be equipped with the norm

1

I2ly = (/Q (IVul? + 199P) dx)z,

where z = (u, v). Since A > 1, then there exists a real number/ > OsuchthatiA > [ > /%
and we have

14+ 1+ A
max {_ T“} (|\Vul*> + |Vv|*) = VuVv + §|Vu|2 + %|vv|2

(A =1 u 1 5 5
— - — =V Vul9). (1.2
= min 220 5 - 2 Lovae 4w 02

Then we may introduce a new inner product on E by the formula

{(u, v), (p, ¥)) = /Q(kVqup 4+ VuVy 4+ VoV + uVoVy) dx, (1.3)

and the corresponding norm is

1

lzll = ({z, z))% = (/ (A Vul> + 2VuVu + u|Vol?) a'x)2 , Vz=(u,v) € E. (1.4)
Q

The norms || - || and || - ||z are then equivalent if A > 1 by (1.2).

We assume that /" and g satisfy

(H1) f,ge€ CH(Q xR, R), f(x,1) =g(x, 1) =0if t < 0.

(H2) lim;o (f(x, 1)/ t) = lim,_¢ (g(x, £)/t) = 0 uniformly with respect to x € Q
and f(x,7) > 0,g(x,7) > 0fort> 0, x € Q.

(H3)lim, o (f(x, 0)/1) = > 0, lim,_, o, (g(x, 1)/1) = m > 0 uniformly in x € Q.

(H4) f(x, 1)/t and g(x, 1)/t are non-decreasing in ¢ > 0 for x € Q.

Let A; be the first eigenvalue of (—A, H& (22)) and ¢ > 0 be the corresponding

m mk+u17«/(m)»7ul)2+4ml}

eigenfunction. Define 4 = min{ﬁ, T 05D
The main result of this paper is as follows:
THEOREM 1.1. Suppose (H1) — (H4) hold. If \iu > 1 and Ay < A, then the problem

(1.1) possesses at least one non-trivial solution pair z = (u, v) € E. Furthermore, problem
(1.1) possesses the least energy non-trivial solution pair z = (u, v) € E.

We will use Mountain Pass theorem to prove Theorem 1.1. As a by-product, we
show that

I° =inf{I(z): I'(z) =0, z = (u,v) € E\{0}
is achieved by some zy = (ug, vg) with uy # 0, vy #Z 0.

Theorem 1.1 will be proved in Section 2.

2. Existence results. Suppose in this section A, u satisfies Au > 1 and A; < 4.
By (H)) — (H3), it is easy to see that thereisa2 < p <2N/(N —2)if N > 2and 2 <
p < +ooif N < 2 and that for any € > 0 thereisa ¢, > 0 such that for V(x, 7) € Q@ x R,

[ (x, 0)l, 1g(x, DI < €lt] + el 2.1
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So the corresponding energy function
1
I, v) = =|z||* - / F(x, u)dx — / G(x, v)dx (2.2)
2 Q Q

is well defined on E and class C'(E, R), where F(x, 7) = [; f(x,5)ds and G(x, 1) =
fot g(x, s)ds. Moreover, the Fréchet derivative I’ satisfying

I'(u, v), (@, ¥)) = f [VuVy + VoV + AVuVe + uVoVy] dx
Q
_ / Fx uyp dx — / g(e, V)Y dx 23)
Q Q

for V(p, ¥) € E.

Sequence {z,} C E is called the Palais—-Smale sequence of a C' function 7 on E
at level ¢ ((PS).-sequence for short) if I(z,) — ¢ and I'(z,) — 0 as n — oo. To get a
(PS).-sequence, we will use the Mountain Pass theorem cited in [8].

PrOPOSITION 2.1. Let E be a Hilbert space, I € CYE,R), ecE and r >
0 such that |le|| >r and b:=inf;= I(z) > I(0) > I(e). Let c¢ be characterised
by ¢:=1inf,cr max,cpo, 11 [(y (7)), where T :={y € C([0,1], E) : y(0) =0, y(1)=e}.
Then, there exists a sequence {z,} C E such that I(z,) - ¢ and I'(z,) —> 0 as
n— oo.

LEMMA 2.1. Let (H|) — (H3) hold. Then we have the following:
(a) There exist p, B > 0 such that I(z) > B for all z € E with |z|| = p.
(b) There exists e € E with |le|| > B such that I(e) < 0.

Proof. (a) It follows from (2.1) and the Sobolev embedding theorem that for any
€ > 0 thereis ac. > 0 such that

/ F(x,u)dx + / G(x, v)dx < ce||z|* + celz||P
Q Q

for all z = (u, v) € E. This, jointly with (2.2) implies ().
(b) By Fatou’s Lemma, we have

. (e, t 1 ) F(x, t G(x,t
i [ (pl)=—/(2+k—|—u)|V<p1|2dx—hm/ (x, tp1) + G(x. tg1)
t— 00 t2 2 Q >0 Jo [2
1 . F(x, 1 G(x, t
5—/(2+A+u)|Vrp1|2dx—/ lim (v, 1) + Glx (pl)golzdx
2 Q Q =00 tz(plz
1 1
= —/(2+A+/L)|Vg01|2dx——/(l+m)<p12dx
2 Q 2 Q
1 [
=—<2+/\+u—ﬂ)/|V<p1|2dx<O
2 Al Q
because of A1 < 4. So I(t¢, to;) — —oo as t — oo and part (b) is proved. ]
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PROPOSITION 2.2. If (u, v) € H}(R) x H)(RQ) is a non-trivial solution of (1.1), then
mA+pl— A/ (mr—pl)2+4ml

2001
l—mAi+A/ (mr—pl)>+4ml
Proof. Let k = >

trivial solution pair of the problem

we have Ay <

. It is apparent that (u, v) = (u, kv) is a non-

k

—Au — kAU = g(x, kv), —AD— AAu = %f(x u), xe€,
u=v=0, X € 0%,

that is

1 1
—Q+%)A<wwffgﬂ=@@xm+%ﬂxm.

By (H3) and (Hy), we have

A 1+ pk
(1+—)/ﬂv ut+ PG 1 ax
k) Jg 142

I
S
i

oQ
=
=

P

<

N
+

=
\
~~
=

<

p—
—
VY
<
+
— .

+
=
Pl

(a4

~———

U

=

By the definition of k& we know that lltr—“f = #, and hence
k
i ! A+ ul — /(mn — pl)® + 4ml
N S 7 o e (T e
"SI T kv 200 — 1) ‘
The proof is complete. O

PROPOSITION 2.3. Under assumptions (H,) — (Hy), problem (1.1) possesses at least
one non-trivial solution pair (u, v) € E.

Proof. Proposition 2.1 and Lemma 2.1 implies that there exists a (PS).—sequence
{z,} C E for I, that is
I(Zn) - C’ I,(Zﬂ) - 07 (24)

where ¢ > 0. To get a non-trivial solution, we only need to show that {z,} is bounded in
E. For this purpose, we suppose, by contradiction, that ||z,|| — oo as n — oo and let

2ye _ 2z _ (Zﬁun Zﬁvn> 5 (w), w)

wy, = t,z, = s w
llzx |l lzall NIzl

Y=
lzall’

2.5)

n’ nj):

Obviously, {w,} is bounded in E. By extracting a sub-sequence, we may suppose that
w,—w €E, w,— wa.e.in

asn — oo, where w = (wy, wy).
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We claim that
w £ 0.

In fact, by (H;) — (Hy), we see that there exists M > 0 such that |f(x,)/7] < M,
lg(x,1)/t] < M for all x € Q and ¢ > 0. Supposing w = 0, by Sobolev embedding
theorem that, w! — 0, w? — 0 in L*(Q), as n — oo. Then it follows from (2.4) and
(2.5) that

n
Up n

4c=/ [JMWHHMMF} dx + o(1)
Q
< M/ [|w,1,|2+|w3|2] dx+o(1)— 0
Q

as n — 00, which is impossible as ¢ > 0. Hence, the claim is proved.
Set

g—(z‘v”) if v,(x) > 0;
qn(x) = o
0 if v,(x) <0.

ACT Ty u,(x) > 0;

Pilx) = {o C i u(x) <0,

By (H») — (H4), we see that
0=<pu(x) =l 0=gux)=m, VxeQ,
and there exist two functions p(x), ¢(x) € L*°(€2) such that
Pn =Py g = qin L(Q)
as n — o0o. It results to
Pu(0)w, = p(x)maxfw' (x), 0}, gu(x)w; = glx)max{w?(x), 0} in L*()

as n — oo. Since {z,} is a (PS).—sequence of 7, then from (2.3) we have V(¢, V) € E,
so that

o(l) = / [VwlVy + VwiVe + AVw, Ve + uVuwlVy] dx
Q
- [ iolodx~ [ g.couivdx
Q Q
Letting n — oo, we obtain
/ [Vu'Vy + Vw’Ve + AVw' Vo + uVu? V] dx — / p(x)max{w', 0}pdx
Q Q
- f g(x)max{w?, 0}y dx = 0. (2.6)
Q
Therefore, w' and w? satisfy

{ —Aw' — pAw? = g(x)max{w?,0} > 0, x € Q, .7

—Aw? — AAw! = p(x)max{w', 0} > 0, x € Q.
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Choosing (¢, 0) as a test function in (2.6), we can get that

f [Vw2V(p1 + AVw1V<p1] dx = / p(x)max{w', 0}p; dx = l/ w'e dx,
Q Q Q

N{x:w!(x)>0}

but
/ [Vw2V<p1 + )»VwIVgol] dx = / [Alwzgol + )»klwlgol] dx,
Q Q
thus we have

/ (= wle dx < f rwe) dx. (2.8)
QN{x:w!(x)>0}

QN {x:w?(x)>0}

Similarly, choosing (0, ¢;) as a test function in (2.6), we can get

/ (m — pr)w’e dx < / rw'er dx. 2.9
QN{x:w?(x)>0} QN{x:w! (x)>0}

If @N{x:w?(x)>0}=4¢, then from (2.7) we know that the maximum principle
implies that w! = —pw? > 0 in Q, but w = (wy, wy) # 0, so we must have QN {x :
w'(x) > 0} # ¥. Hence we can conclude from (2.8) that / — Ax; < 0, which contradicts
A1 < A. Therefore N {x : w?(x) > 0} # @. Similarly, we have QN {x: w'(x) > 0} #
#. Thus, combining (2.8) and (2.9), we can get

(I = An)(m — py) < A7,

which is impossible since A; < A4.
Thus, we must have ||z,|| < ¢ < 400 and the Proposition is proved. O

The proof for Theorem 1.1 will be completed by the following Proposition.
PROPOSITION 2.4. If (H1) — (Hy) hold, then I* is assumed.

Proof. By Proposition 2.3, we know that /*° is well defined and finite. Now we
show that 7* is assumed. Using (2.1) and Sobolev embedding theorem, we get

Iz1* = /f(x, u)de+/ g(x, vvdx < eclz|l” + ezl
Q Q

When ¢ is small enough, we have
lzll = ¢ > 0. (2.10)

Suppose now z, = (u,, v,) # 0 is a minimising sequence of /°°. By Proposition 2.3,
we see that {z,} is uniformly bounded in E. So we may assume z, — z = (&, v) in E
and 7'(z) = 0. Since (2.10) implies z # (0, 0), it follows that 7*° = lim,,_, o, I(z,) = I(2).
Consequently, /*° is assumed by z € E \ {0}. The proof is complete. 0

Proof of Theorem 1.1. This is a direct consequence of Proposition 2.3 and 2.4. [
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