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0. Introduction

Extended affine Lie algebras are a higher-dimensional generalization of affine
Kac-Moody Lie algebras introduced by [H-KT] (under the name of irreducible
quasi-simple Lie algebras). They can be roughly described as complex Lie algebras
which have a nondegenerate invariant form, a self-centralizing finite-dimensional
ad-diagonalizable Abelian subalgebra (i.e., a Cartan subalgebra), a discrete
irreducible root system, and ad-nilpotency of nonisotropic root spaces (see
[AABGP], [BGK] and [ABGP] for more on basic structure theory). Toroidal Lie
algebras, which are central extensions of §® C[zE!, ..., /Fl] (§ is a finite-
dimensional simple Lie algebra), are examples of extended affine Lie algebras studied
by [F], [W], [MRY], [Y], [EF], [EM] and [BC], among others. There are many
extended affine Lie algebras which allow not only the Laurent polynomial algebra
C[toil, -+, F1] as coordinate algebras but also quantum tori, Jordan tori and
the octonion torus as coordinate algebras depending on the type of Lie algebra (see
[AABGP], [BGK], [BGKN], [AG] and [Yo]). For instance, extended affine Lie
algebras of type 4,1 are tied up with the Lie algebra g/,(C,), where C, is a quantum
torus CQ[ZOﬂ, .-+, F1 ] associated to a v x v matrix Q. Quantum tori defined as in [M]
are a noncommutative analogue of Laurent polynomial algebras. To get an extended
affine Lie algebra, one has to form an appropriate central extension of gl,(C,) and
add certain outer derivations (just like one obtains an affine Kac-Moody Lie algebra
from a loop algebra by forming a one-dimensional central extension and then adding
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the degree derivation). Representations for Lie algebras coordinatized by certain
quantum tori have been studied by [JK], [BS] and [G] in some cases.

In this paper, we will use the underlying Fock space for the principal vertex
operator representation of the affine Lie algebra

gl, = 1,(Clzo, ;') ® Cey ® Cdy

to construct a family of vertex operators associated with a given pair (Z'~", ¢), where
q is a (v — 1)-tuple of nonzero complex numbers. These vertex operators together
with the Heisenberg algebra form a Lie algebra V(Z'™', ¢). The case v = 1 is trivial
as the resulting Lie algebra represents the affine Lie algebra gln itself. If v =2
and (Z'"!, g) is generic (see Section 3 for definition), by enlarging the Fock space,
we obtain an irreducible representation of an extended affine Lie algebra of type
A,_1 coordinatized by a quantum torus of v variables. What it means to say the
pair (Z'~!, g) is generic is that one variable in C, has utmost control over the other
variables. This assumption makes the lifting of the Lie algebra V(Z'', ¢) on the
enlarged Fock space possible. A representation for such a Lie algebra of type
A; with a quantum torus of 2 variables was given by [BS] in a different form.

We will consider a more general situation than was done in [G] for the homo-
geneous construction. The key point is to use the principal gradation on the associ-
ative matrix algebra M,(C) to have a principal realization for our extended
affine Lie algebras coordinatized by quantum tori. This is nontrivial if the quantum
torus is not commutative. The idea for our construction of vertex operators comes
from [KKLW].

Throughout this paper, we denote the field of complex numbers, real numbers and
the ring of integers by C, R and 7, respectively.

1. Basics

Motivated by the work [KKLW], we shall realize the n x n matrix algebra M,(C) as
the quotient of a quantum torus. This will provide us with a nice basis for M,(C)
under the principal gradation.

Let v be a positive integer and Q = (g;;) be a v x v matrix, where

g5 € C\{0}, i =1, gz =q;'. for 0<ij<v-—L. (1.1)

A quantum torus associated to Q (see [M]) is the unital associative C-algebra
C,leg', -+, 621 Cor, simply C,) with generators ', ---, !, and relations

s by—

_ -1
i =1

t;t ti=1 and litj = qijtji; (12)
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for 0 <i,j<v—1. Write t*=1¢y---£;| for a=(ap,---,a,-1) € Z'. Then

et =TT a5 | (13)
0<j<i<v-1
where a,b € 7', and C, =}, ., ®Cr".
Note that if Q is a 1 x 1 matrix, then Cy is just the algebra C[zg, 7;'] of Laurent
polynomials.

Let n be a positive integer and n > 2. Let M,,(C) be the n x n matrix algebra and
L =gl,(C) = M,(C)” be the general linear Lie algebra over C.
Consider the Lie algebra g/,(Clt, 1y 1]). Define a central extension as follows:

L = gl (Clto, 15" ® Cey (1.4)
with the Lie bracket

o1 (2g)), x2(25)] = [, X20(25' ™) + 110 0,010 (X1X2) 0 (1.5)

where x1, X, € L,ny,ny € 7, ¢y is a central element of Z, and tr denotes the matrix
trace. We denote

L=T1a Cd, (1.6)

a semi-direct product of T with the degree derivation dy = to(d/dty). L (or Z) is called
the affinization of L.

We shall work with the principal realization of L (or L) based on the 7Z,-gradation
of L.

Let ~ : Z — 7, = 7,/n7Z be the quotient map. Let ¢ be an nth primitive root of
unity. We shall fix ¢ throughout this paper. Next we shall realize the n x n matrix
algebra as the quotient of a quantum torus. This way will give the motivation
for the principal realization of M, (C).

Consider the quantum torus Ce[ug!, ui'], where & = (] i])). Define 7: C: — C
to be a C-linear function as

w. a |1, if both ag, a; € nZ,
T(uy'uy’) = {0, otherwise.

(1.7)

Then the form (-, -) determined by (x,y) = T(xy), for x,y € C¢, is a symmetric
invariant form. The radical J of the form is the two-sided ideal of C: generated
by uy — 1 and u] — 1. Define

M, = Ce/J (1.8)
to be the quotient of C; by J and identify uy and u; with their images in M,,.

PROPOSITION 1.9. M, is a simple associative C-algebra of dimension n*. The
induced form (-,-) on M,, is a symmetric invariant nondegenerate C-bilinear form.
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Proof. Note that M,, is spanned by u’ou{, 1 <i,j <n. LetZ be an ideal of M,, and
Z aijugu{ = ij(uo)u{ e,
1<ij<n j=1

where fj(ug) = Y 1, ayub, a; € C. We have

uy (Zf,-(uo)u{) ul = Z eikj_‘;(uo)u{ el
Jj=1 j=1
for 1 < k < n. It follows that ﬁ(uo)u-{ € 7 and so fj(up) € Z, for 1 <j < n. Again,

n
ull‘ﬁ(ug)ul_k = Z 8ikaiju6 el
i=1

implies that a;u) € Z and so a;; € Z, for 1 <i,j < n. Therefore Z = {0} or M,,.
The above procedure also shows that

Z ajubu] = 0 if and only if a; =0, for 1 <i,j <n.

1<ij<n

Hence, {uf)u{ 11 <i,j <n} form a basis for M,.
The rest of the proof is obvious. O

Let Ej; be the n x n matrix which is 1 in the (i, j)-entry and 0 everywhere else. Let

E=Ep+---+E,_1,+E; and F =diagle, &, ---, ¢"). (1.10)
Clearly,
E'"=F"=1 and EF =¢FE. (1.11)

We thus have

COROLLARY 1.12. There is a unique algebra homomorphism ¢: M, — M,(C)
such that ¢(uy) =F and ¢(uy) = E. Moreover, ¢ is an isomorphism with
tr(¢p(x)) = T(x), for x € M,,. Therefore,

M(C)= Y @CFE. (1.13)

1<ij<n

Remark 1.14. Identifying M,,(C) with M,, has been implicitly used in [KKLW] (see
also [Ma)).

LEMMA 1.15 M,(C) has the following 7.,-gradation:
M}’Z(C) = @j_'eZ”MH(C)(;)’

where M,(C)g = 31 ®CF'E/, for j € Ly
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It is easy to see that the above gradation coincides with the ‘principal gradation’
given by degEj; = j — i. This gradation on M,,(C) is really needed later when we deal
with the matrix Lie algebra with entries in a non-commutative quantum torus C,.

Clearly, L = gl,(C) = @;., L is Z,-graded as well, where L; = > @CF'E/.
Note that the matrix 4; in Example 1 of [KKLW] is exactly Y 7, F'E/, for
I<i<n-1

Set

L,= Z > @CFE/(r)) (1.16)

i=1 jeZ

and form the one-dimensional central extension

o~

L,=L,® Ce (1.17)

with the Lie bracket

[x1(76"), x2(15)] = [x1, x20(5" ™) + %5n1+n2,0tr(x1x2)007 (1.18)
where x1,x, € L,ny,n € 7, ¢y is a central element of Zp. We denote

L,=L® Cdy. (1.19)

Note that E; € L;_;. The following result can be easily verified. Later in Proposition
3.10 we shall prove a more general result.

LEMMA 1.20. The Lie algebra Lis isomorphic to Zp and the isomorphism is given
by

i i
Ei/(flé) = Ei(ty l+kn) 0 0ii0%,0€05
1 n
col—>co, doi——|dy+ ZiEi,» ,
n
i=1

where 1 <i,j<n, kel

Zp (or Zp) is called the principal realization of L (or Z). It has a principal

subalgebra
H=Cea) aCE()). (1.21)
i€Z
Define
== )" oCE(1). (1.22)
i€t/
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where Z, = {i € Z : i > 0}, and write E(i) = E'(¢}), for i € Z. Then
H=H"®(Ccy®d CEO0)®H"
and
s=H"® Ceod H™ (1.23)
is a Heisenberg algebra. Let
S(H )= CIEG): i€ 7] (1.24)

denote the symmetric algebra of H ~, which is the algebra of polynomials in infinitely
many variables E(i),i € —7Z.. Let H = H & Cdy. S(H™) is an H-module in which ¢
acts as 1, dy acts as the degree operator (i.e. dy E(i) = iE(i)), E(0) acts as a scalar. Then

[E(@), E()] = i0i+).0, [do, E(D)] = iE(i) (1.25)
for i,j € 7.
We define
E(z) = ZE([)Z‘-’ € (EndS(fI‘))[[z, z‘l]]. (1.26)
JEZ

Finally, we set

8z) =) 2/ e Cllzz""]. (1.27)

JeZ

formally the Fourier expansion of the J-function, and

(DO)(2) = Di(z) = Y _jz, (1.28)

jez

where D = z(d/dz).

2. Construction of Vertex Operators

Let (A, g) be a pair, where ¢ =(q1, -, q,) is a fixed N-tuple of nonzero complex
numbers and A is a sub-semigroup of RY (i.e., a subset of R" containing 0 and
closed under addition). Write ¢" = ¢/’ ~ooqy for R=(ry,---,ry) eV, We shall fix

one choice for Ing; such that ¢" =214 for all ¢ A.
Set Ay ={reA:q" =1}

ASSUMPTION 2.1. Given a pair (A, g), we always assume that

{¢":reA)n{e 1 <i<n}=({1}.
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Remark 2.2. The above assumption is equivalent to saying that ¢ = ¢’ if and only
if ¢" =¢' = 1. Namely,

g #¢ ifand only if i20 and re A, or i =0 but r € A\ Ag;

¢" = ¢ if and only if r € Ag and i = 0.

For r € A, 1 <i < n, we define the vertex operator X' (;)(r, z) as follows.

X G)(r, z)
i _ g . i g ‘ 2.3
=exp <_ Z %E(j)z‘-’) exp <_ Z #E(j)z‘-’). (2.3)
Jje—7y J JEL J
Clearly, we have XO(r, z) € (EndS(H™))[[z, z~!]] and so we have
X0, 2) =" 50, j)z 7, (2.4)
JjeZ

where xO(r, j) € EndS(H-), for | <i<n,jeZ and r € A.

Remark 2.5. In the definition of the vertex operators (2.3), XO(r + ¥, z) = XO(r, 2)
whenever ¥ € Ag, where r € A, 1 <i<n. Also, X(r,z) =1 when ¢" = &(= 1).

Next we shall derive the commutator relations for our vertex operators. The tech-
nique follows from [LW], [KKLW], [FK], [S] and [FLM].

PROPOSITION 2.6. For any 1 <i<n, keZ,rel, we have

[E(R), XO(r, 2)] = (% — ¢®)F X O, 2), 2.7)
[do, XO(r, 2)] = —DXO(r, 2). (2.8)

The normal ordering can be defined as usual, see for example [FLM] in the twisted
case. Thus

X0, 2) = XO(r, 2). 29

Remark 2.10. dy can be rewritten as

do=—3 3" E(-EG) = — Y EC-DEG) € EndS(H").

JEZ Jely
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We define

PUCEN SICENE
_exp (_ 3 = aEDe e - qW)E(f)z;’) y
J

Jje—Z+

X €Xp (_ Z (8_[/ — q_"l_/)E(].)Z;j + (S_kj _ q—rzj)EO.)Zz_j)

Jje€ly J

for ri,r, € A, 1 < i,k <n. Then one has
X0y, 20)X P, 22) 1= X P2, 2) XDy, 21) (2.12)

We have the following basic result.

LEMMA 2.13. For 1 <i,k<n, r;,rn €A,

/A SV AR kgl

JE€Ly je=74
g g _.) ( gl g
—exp(— 3T ) exp( - )« (2.14)
( je—Z+ J ez, J
(B ()]
&'z1 q"z; q"z; &'z1

in the formal power series algebra (EndS(fI‘))[[zl‘l,zz]] - (EndS(ﬁ‘)){zl, z3} (for
notation see [FLM]). So

X(;)(l’l s Zl)X(ic)(VZs ZZ)
=: Xy, 2)X P2, 25) : x (2.15)

«(1-%= |2 1—8]{22“11—‘1"_222_1
ezy q"z; q"z; ez

Proof.
N/ JY A —kj _ g
-y g ]
Jel+ J Jje=Z+ J
Z (677 — qgI)(EM — ) (Zz>j
B J 1

JeZy
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_ Z 1 (8’622)‘/+<qr222>‘/ <8k22 >./ <qr222>j
i \\an) \gna) \gnz &z
k " k r2
(122 pm(1-L2) (1= E2) (1 -222),
elzy q"zy q"zy ez

which immediately implies the lemma. O

To calculate the commutators of vertex operators, we need some more notation
and identities.
Set

0)
R (r1sr2, 21, 22)

- - k %) | (216)
::X(’)(rl, Zl)X(k)(l’z, Zz) : (1 - 8A22> (1 - c 22) 4z

&'zy q"z; ekzy "

Then

Xy, 2)XP(ry, 22)
_ k ko N -1 oy 1 (2.17)
:R(l)(rl,rz,21,22)822 (1—822> <l—q.22> .

(k) gz gz gz

One may easily show that

Rg)(rl N AN 22) = Rg))(rz, ry, zz, Z]). (218)

Moreover, we have

LEMMA 2.19. For ri,rm e A, 1 <i,k<n,

lim X0, 2)X O (1, 20) 1= X0y + 10, 675 2)) (2.20)

zy—ekg 7
and

lim Ry (r1 12,21, 22)
kg B @.21)
=1 —-cg1 - g’kq"z)X(Hk)(Vl +ra, fkal)-

The following basic result is similar to (3.34) in [G] whose proof is straightforward.
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LEMMA 2.22. If ¢"'*"™ # &K, then
1 HkZZ ! | qr222 -1 q"‘zl 8i21 1 SiZI = | q"‘zl -1
q"zy iz ekzy g2y gz ekz,
=(1- eIk r1+rz)71 q"z S ngZ _s &'z
B 1 ekzy q"z q"z

Now we are in the position to show our first commutator relation:

PROPOSITION 2.23. If ¢"*" # ¢+*, then
XDy, 20). XDy, 22)]
— (1 _ S—iqm)(l _ g—quz)(l _ S—i—qu1+r2)—l %

Tk k &2 itk ‘ €21
x (X(’+ 1+ 1,6 21)5<1—> — X + 1y, 8_122)5< ))
q" 21

q"z

Proof. By (2.15), (2.18) and Lemma 2.22, we have

[XG)(h ) Z1)s X(];)(Vz, 27)]
= X001, 2)X Py, 20) — XB (g, 2) XDy, 21)

i k k -1 PN
7 &I &2 q-zs
= R\ 12,21, 2) (1—(1,12) (1— o ) -
1 1 1
RO Sl PG A
—R='(ra, 11,27, 2 — —
@2 e q"za q"zs ekzy

k

_ p® & 22
= Rp)(ri,r2, 21, 22) o

8k22 - q*z; - q" 21 eizl aizl - q" 21 -1
((o-2) (%) -=e0-2) (-52) )
q"z; &lzy &zy qzy q"zy &k zy
- ) k i
= RO (1, 1y, 21, 22)(1 — =gy (o £22) — 5( 221 ).
(k) q’lzl qYZZz

Applying Lemma 2.19 completes the proof. O

(2.24)

Next, if ¢"+" = % (so ¢ = ¢~ and & = ¢ ) we have
XD, 21), X1, 25)]

7 8k22 SkZZ -2
= R (11,12, 21, 22) 1 - -
) q"z; q"z;
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o\ -2
—R( (1’2,1’1 22, 21) i (1 1 Zl)

q"zy ekzy

k k -2 ry ¥y -2
&2y &z q'z q z1
—R( r,r,z1, 2 1— — 1—
BARE 2)< "21( quzl) 81‘22( 8k22> )

&z
= R rnrsz 20052

I‘lZl

here we use the following well-known identity:
z(1 =272 =271 =272 = (Dd)(2). (2.26)
By Proposition 2.2.4 in [FLM] and (2.25), we obtain
X0, 21), XD (e, 22)]

o
_ng)("'lv"%zl, k“Zl)(D5)( Zz>—

)]Zl

—(D RE;))(I’l,rz,Z], 5 -k ”21)5(8 Zz)

llzl

k
_ GI(D(S)<8 ZZ) - Gzé(grzz),
Z1 q"'z1

where

G, = (k)(Vl,Vz,Zl, ;K q"z1) (2.28)

and
G, = (D R(k))(rl,rz,zl, “kgnz)). (2.29)
From (2.5) and (2.21), we have

Gi = (1 — e ig")(1 —e7%¢g™). (2.30)

To compute G,, we first have

D, (k)(Vl,VLZl,Zz)

= (Z (g—kj —rz/)E(])z_/> Rzk)(rl ¥, 21, 22)+

je—Z+

() —kj —ryj ~N_—J
+ Ry (1,1, 21, 22) > — g EG) +

JeZy
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= - k 2
+ X0y )X Py, 2y (—E2) (1 = C2) 2,
gz q’lzl ekzy
- _ k ) r
+ ZX(I)(Vl,Zl)X(k)(Vz,Zz)I (1 —Sﬁ) <—q Zz) quI+
&'zy q"zy) €z

- - k ¥ ¥
+: X, 2)X Py, 20): =22y (1= (12,
&iz) q"zy ekz,

Thus, it follows from (2.5) and Lemma 2.19 that

(D, RDY(r1. 12, 21, 75 21)

(k)
=1 —e'gM(1—eFg™) Y (7 — g EG) g z) T+
Jje—Zy
+( 71 ”)(1 7k Pz) Z(a kj _ 7,2})E(])(8 k llzl)*j_'_
JeZy

+ (e — ) + (=g (e )
+ (=g — g1
= (1 =&7'q")(A—e75¢™) ) E(G)g "z~

JeZ

+—(1— ot g1 — *kql‘z) ZEU)SijI_j’ (2.32)

JEZ

and so

k
Gza(8 Zz)
q"zy

_ (1 _ 6,_l ;])(1 —k l';)

< E(s_kzl)5< )—l—E(s_’z )5( Zl)).
225

Therefore, we have proved our second commutator relation:

PROPOSITION 2.33. If ¢t = ¢~k =1, then

X0y, 21), XP(ry, 22)]

— (1 —&7ig")(1 — & ”’)(E(.s_kzl)5< ) E(e™ z)é(if‘>>+
)

+(1 =g - ’2)(05)( 1)
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Define

- 1 -
YO(r, z) = = X, 2), (2.34)

&'q
where i £ 0 and r € A, or i =0 but r € A\ A,. Summarizing the above, we have
PROPOSITION 2.35.

[E(), YO, 2)] = (6% — ¢%)F YO, 2), (2.36)

[do, YO(r, 2)] = —DYO(r, 2). (2.37)
]Jrqr1+r2 + 8i+k, then

YOy, 21), YO(ry, 22)]

TR k 7 .
= YO0 41, 8_k21)5<—8,122) — YOy 4y, 3_’22)5<
q"z

e, ) (2.38)

4"z
If ¢"+" = g7 K(= 1), then

(YO, 21), YOy, 2)],
&

. | ; v (2.39)
E(s_kzl)é( ,ZZ> - E(s-’zZ)5< ° ) + (Dé)(g,zz).
q"zi qz> q"z

To conclude this section, write

YO, 2) =Yy, )z, (2.40)
J€Z

and let V(A, ¢g) be the C-linear span of operators E(j), dp, 1 and yO(r, j), where
jeZ,iZ0andre A, ori =0 but r € A\ Ay. From Proposition 2.35, we see that

PROPOSITION 2.41. V(A, q) is a Lie subalgebra of gl(S(?I’)).

The following lemma will be used later. Its proof is easy.

LEMMA 2.42. For any r € A\ Ay,

1

7O, 0)1 = ——
1—¢

1.

Remark 2.43. Notice that our vertex operators Y(;)(O, z),forl <i<n-—1,aresame
as the vertex operators in (4.8) of [KKLW].
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3. Realizations

In this section we will find a realization for the Lie algebra V(A, g). If (A, g) is generic,
we further lift V(A, ¢g) to a Lie algebra W(A, ¢q) on the enlarged Fock space
W = C[A]®@c S(H™).

Let R=C[A]=),.A®Ce" be the semigroup algebra of A. Let o be the
automorphism of R given by a(e") = ¢"¢", for r € A. Then we can form skew poly-
nomial algebras:

R0, tgl; Z EBZOR and R]so, So ;0"] Z GBSOR 3.1
i€Z, i€Z

with multiplication defined as ar} = t)o'(a) (resp. as}) = shyo"(a)), for a e R,i € Z.
That is,

e'th = q"the" (resp.e’sy = ¢""she"), forre A,ieZ. (3.2)

Define x, y : R|to, Zg ; o] (resp.R[so, So ;6"]) — C to be the C-linear functions given
by

. . 1, ifi=0andreA,
r(tye")(resp.rc(spe”)) =

0, otherwise;
{1, ifi=0andr=0
0, otherwise.

(3.3)
2(the")(resp.x(she")) =

Let dy, d; be the degree operators on Rz, f;'; o] (resp. R[so, sy'; 6"] ) defined by

do(lée") = jlée", d,-(lée') = ritée'w (resp.do(sée") = jsée’, d,-(sée’“) = r,-sée’)

forjeZ, r=(@,---,ry)eAand 1 <i<<N.

For any associative algebra A, we have the matrix algebra M, (A) with entries
from A. Let g/,(A) be the Lie algebra M,(A)~ as usual.
Now we form an (N + 1)-dimensional central extension of gl (R[so, 55 L. g")),

@A) = gly(Rlso, s5"; 6") ® Czo ® Cz1 @ - -- @ Cxz, (3.4)
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with Lie bracket

[E;(site"), Ex(syre™)]
= E,j(sg‘e’)Ek;(sgze’/) — Ekg(sgze"/)E,-j(sg‘e")—i-

N
+ Sdur((dosg' €)sg e )zo + ddi Z 1( sy )5y e)z

m

L m+ny r4r 7 m:;: +ny p4r (3_5)
= Ojkq ™" Ei(sg' "2 €™™) — 0ug""" Eig(sy e )+

n. o
+ 110jx0i10p, 4,09 " (€™ )z +

N
N :+ o
+ 5jk5i15n1+n2,0qn2m/f(e’ ' ) Z T'mZm,

m=1
forr=(r,---,r,))eN V¥ eAn,me”Z,1<ijkl<n.
Let
G(A) =G A) @ Cdy® Cdy & --- & Cd, (3.6)
be the semi-direct product of G°(A) and the degree derivations dy, di, - - -, d,,, where
29, 21, '+ +, z, are central elements of Gj.

Note that C[so,s;'] is a subalgebra of R[so,s;'; ¢”]. Correspondingly, the
affinization gl of gl is a subalgebra of G(A).
Define

N

AW = Y > eE(, "R e aCq (3.7)
1<ij<nkeZ i=0

with Lie bracket

[Ej(1'e"), Exi(tye")]
= Ey(t81el')Ek/(tgzer/) — Ek/(lgzer/)Ejj(lgler)-i—

1 o
+ p K(tr((do E(£y &) Er(ti2€"))co+

N
+ Zl X(tr((deij(l‘g] er))E,/d(l‘gze'w Mem 59)
m=
= Siq" En(ty ™) — 6uq™" Eyy(f5 e )+

+n néjkéil(snl +n2$0qn2rk(er+r )CO+

N
+ 5jk5il5n1+n2,0(]n2rX(ey+r/) Z T'mCm,

m=1

where r=(r,---,r,), ¥ € A,ni,mpeZ and 1<ijkI<n, coc,---,c, are
central elements of gg(/\). We form the semi-direct product of gﬁ(/\) and the degree
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derivations dy, dy, -+ -, d,.
Go(A) = GoN) & Cdy & Cdy & - - & Cd,. (3.9)

PROPOSITION 3.10. The Lie algebra G*(A) ® Cdy is isomorphic to gg(A) @ Cdy
with the isomorphism given by the C-linear map ¢.

I3 ir j—i+kn p [ ir r
Ej(she") 1> Ey(d e — 3004 (& )eo,

1 L
zo1—>co, dol— <_ (dO + E iE; |, zmi—>cm,
n
i=1

for 1 <i,j<n keZ, reAand 1 <m<N. If (A,q) is generic, then ¢ can be
extended to an isomorphism from G(A) onto G,(A) by defining ¢(d,) = dy for
I<m<N.

Proof. It is sufficient to show that ¢ preserves Lie bracket in the following two
cases:

PLE;(s5'€"), Era(s2¢ )] = [@Ey(sg'e"), pEr(se”)], (3.11a)

ldo, Eyj(sy' )] = [@do, Eij(s' €], (3.11b)

for 1 <i,j,k,l<n,n,meZ,rreA.
We first have

[Ey(ty """, Ega(ty "e")]
= 51‘](q(l_j"""Z”)”Eﬂ(l{)*ivL(nl+n2)ney+,,/)_
_ 5ﬂq(/'—l+n1n),.f Ekj ( t{;k+(n1+nz)ne,. +,/)+
— i+ nmn - ) »
+% 5jk5ilq(l ) K(t(0n1+n2)ne;+r Yot

N
B S

m=1
= &g TR Ey(ty T — 06 sy 01(€ T )co)—
i " i—k oy . oy
— 3y g (B (T Y i S s 01 o)+

+ 118010, 1,06 T 1e(" Y e+

N
1—i . .r
+5jk5i15n1+n2,0q( j+n2n):X(er+») E "'mCm-
m=1
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Thus,

4" Ey(ty "), ¢ Exa(i*+""e")]
= 5,97 1(r+1) E: [—i+(m+n)n p+r'y - S5ud ot _
= 0jkq q ( ll(t() e ) noj n1+n2,0K(e )CO)
— 5i1q"‘""/q" ("Jr"/)(Ekj(l{)ikJr(nl+n2)n€r+r/) —jn§;k5n1+n2,0K(€r+'J)Co)+
+ 1185010y 06" ¢ T 1 o+

N
+ 000 06" (€)Y Py

m=1

and (3.11a) follows from the fact that ¢/™i(e"") = k(") and ¢/t y(e" ") =

2(e" ).
Next we have

k=1

1 1 - j—i+mn _p
[Zdo + ;ZkEkk, Ej(£) " )}

f—i+mn i R itnin oy
=] . 1 Ey(t6 [+nln€)+22[kEkkinj(t6 1+11ne )]
k=1

'—l‘+l’lll’l j—i+mn i—j j—i+mn
Z%Ezy(fﬁ . e)+T]E,;,-(t{) el

= m Ey(ty """,

which shows (3.11b). ]

Remark 3.12. The homomorphism ¢ is not uniquely determined. Actually, given
acCandce Zfio @®Cc;, one may define a homomorphism ¢ as follows:

i+a

Eij(éjéer) — quElf/'(f(;Hk"e”) as

3i0k.04" k(€")co,
1 n
zZo \—co, doi— Z(do + Z iEi +¢), zmi—cm,
i=1
forl<i,j<n keZ,reAand 1 <m<N.

Note that Y75 ; ; ®CE; = Yl ®CF'EF, for 1 <k < n. This will enable us to
choose a new basis for G,(A) as in the following lemma. The verification of the com-
mutator relation is a routine matter.

LEMMA 3.13.
n o N
G =Y @FE@R)® Y aCa, (3.14)
i=1 jeZ, i=0
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with the Lie bracket
[FIEN (¢]e"), FRER(t¢")]
— q7" Fitk gh -4-./'2(;61 +2 €V+"’)
+- Kk(tr(doF EM (8]} ") EF F2(£2€")))co+
+ Y 2 tr(dn F EM (8 ) EFF2 (5 "))
m=1
— ki q'ffz Fitk g +2( 161 +2 er+r’)

: - 1N\ K1 1
+ /1671097 +7,06(e" e g7 ¢

N
N Ky 1
+ 07,7 5074020V GT Y .
m=1
Set

AG)(V, Z) — ZF'iEj(l«éer)z—j7
Jjez

for r € A, 1 <i < n. Then we have

PROPOSITION 3.17. In G,(A), we have

LE(), A(;)(r, 2)] = (s’j — q’7')szG)(r, z) —+—jsij§;’61c(er)cozj,

[do, AV(r, 2)] = —DAV(r, 2), [y, AV(r, 2)] = 1 AV(r, 2).

Moreover,
[4O(r, 21), AP, 2,)]

- - k
— A(l+/€)(r+y!’ 8k21)5<8 Zz) _
q'z1

<7 . ol
_A(l+k)(l’+r/,8_l22)5<szl>_|_

q"z>

k
+ 5i+k‘0;c(e )(DI) <qr21>co+

k N
7 &Iy
+ ”52+1_¢,(_)X(er+r )5 <61’Z1) E "'mCm,
m=1

where r = (r1,---,ry) e A, ¥ e A1 <ik<njeZ, 1<m<N.
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Proof. We only check (3.20). It follows from (3.15) that

[AD(r, 21), APW, 25)]

= Z [FiEjl(tg el‘)’ F/(E/'z(tgzer’)]zl—jl 22—]2
J12€Z

— ki v gitk gt gt ey =i 2

— Z g qr]zFl BN jz(t{)l Zel )Zl 122 2
J12€Z
_ Z & q"'jl Fi-‘rkE./l +j2(f61 +jzer+r’)zr11 Zz—jz

Ji2€Z
+0ng D Sty e gz 2 e
J12€Z

+n 1+k0 Z 7(t/1+/2 t+r’)8kjl v/zZ Zrmcm

J12€Z m=
. P a7 o i1—J qrzl -
_ Z Fl+kE]l+]2(t8 +./26,r+: )(S—kzl)—Jl —J2 (E)
Ji:2€Z o
q,,/z J
) o S 2
= D0 PR e e ) (—)

~ ez
Jih€Z 1

R G )Z]l(
1 N
1+k 0/{(6 " ) Z(s 22)1 Z 'mCm

/167
/1EZ
as wanted. |

Comparing Proposition 3.17 with Proposition 2.35 and using Remark 2.5, one can
easily show that the following result holds true.

THEOREM 3.21. The linear map from the subalgebra gg(A)ee Cdp of G,(A) to
V(A, q) given by
F’E](tje')|—>y(’)(r N, forl<i<n—1,reA, jeZ;
E@), forrely, jeZ,
y((’)(r,j), forre A\ Ny, jeZ;
co—1, dy—dy
cn—0, forl<m<N,

E/(t)e") 1~

is a Lie algebra homomorphism.

Remark 3.22. In the above theorem, if A = {0}, we obtain an irreducible vertex
operator representation for the affine Lie algebra gl,.
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Recall that Ay = {r € A : ¢" = 1}. The pair (A, ¢) is said to be generic if Ay = {0}.

To get a module for G,(A), we need to assume that (A, ¢) is generic. So from now on
we suppose that (A, g) is generic. That is Ay = {0}.

Define

Wa = C[A]®c S(H), (3.23)
and f ® X € gl(Wy) as

fRX)g®w) =[fg®Xw

forf,ge C[A], X e V(A,q),w € S(?I‘). Let W(A, ¢) be the linear span of operators

ey ), l<i<n—1,jeZ reh

e @y j), jeZ, reA\ (O]

1® EG), je 7 (3.24)
1®1, 1®d,

d,®1, forl <m < N.

Then it follows from Proposition 2.35 that those operators satisfy the same derived
relations from (2.36) through (2.39). Hence, W(A, g) is a Lie subalgebra of
gl(Wy). This Lie algebra W(A, ¢) is the lifting of V(A, ¢).

Now we can state our main theorem.
THEOREM 3.25. The linear map n : G,(A) — W(A, q) given by

n(FiEj(l'ée")) =¢ ®y®(r,j), forl1<i<n—1,jeZ,rel;
1® E(), forjeZ,r=0,

e @y, j), forjeZ, re A\ {0}

m(c)) =1® 1, n(dy) =1® db;

w(cm) =0, n(dy) =d,®1, forl <m<N,

n(E/(t)e") =

is a Lie algebra homomorphism. If A is a group, then Wy is irreducible as G,(A)
module.

Proof. 1t follows from (2.35) and (3.17) that wis a Lie algebra homomorphism. Let
us check the irreducibility when A is a group.

Let U be a nonzero submodule of W) = C[A] ®¢ S(I/-i 7). Since the Heisenberg
algebra s = H* + Cco+ H™ is a subalgebra of G,(A), Lemma 9.13 in [K] (or
Theorem 1.7.3 in [FLM]) implies that U is completely reducible as s-module
andsoU=V® S(ﬁ ~) for some subspace ¥ of C[A]. Thanks to the degree operators
dy for 1 <m < N, weseethat U=),_, B ® S(ﬁl‘)) for some subset A’ of A.
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Assume that ¢® ® 1 € U, then for r € A and r # ry, we have

@ @y —r, 0)(e" @ 1)
='Q® (y(())(r —rp,0)1)

1 .
:7“€'®1€U
1_q;—10

by Lemma 2.42. We thus obtain that r € A’ for all r € A and so U = Wj. O

4. Extended Affine Lie Algebras

The notion of extended affine Lie algebras was first introduced in [H-KT] (under the
name of irreducible quasi-simple Lie algebras) and systematically studied in
[AABGP] and [BGK]. They can be roughly characterized as complex Lie algebras
which have a nondegenerate invariant form, a finite-dimensional Cartan subalgebra,
a discrete irreducible root system, and ad-nilpotency of nonisotropic root spaces.
This new class of Lie algebras is closely related to the extended affine root systems
introduced in [Sa] for the study of elliptic singularities, the intersection matrix
algebras in [SI], and the Lie algebras graded by finite root systems studied by [BM],
[BZ], [Se] and [N].

In this section, we will apply the results in Section 3 to obtain irreducible
representations of extended affine Lie algebras of type 4,_; coordinatized by certain
quantum tori with v variables.

Let (A, ) = (Z'7", ¢), where ¢ = (¢1, - - -, ¢»_1). Note that we still assume (A, ¢) is
generic.

Let ¢; be the vector in Z'~! which is 1 in the ith entry and 0 everywhere else, for
1 <i<<v-—1. Write ¢ = ;. Then

Rlso, s5": 0"1 = Gy, [s" 65, ---, 624] @4.1)
and

Rlto, ty' 0] = C L5, 7', -+, 4], 4.2)
where Q = (g;;) with

gio = qi, for l <i<v—1 (4.3)
and

gij =1, for all other iand j, 0 <i,j <v—1,

and Qn = (Q;})
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Let G°(A) and G(A) be defined as in (3.4) and (3.6) respectively. The nondegenerate
invariant form on G(A) can be defined as

(Eyj(u), E(v)) = 0jxdipic(uv),
(Cm» dr) = 5}11}‘7

foru,ve Cop,,1 <i,jk,I<n 0<mr<v-L.
G(A) has the Cartan subalgebra

v—=1 v—1
H=ha) &Cue ) oCd (4.5)
i=0 i=0

where h =" | ®CE};.
Define 1; € H* as follows:

hytece, = 1) = @9

for 0 <1i,j <v—1. Then the root system of G(A) with respect to H is
v—1 v—1
R= <A +y Zrl) U (Z @Zr,-), 4.7)
i=0 i=0

where A = {0; — 0; : 1 <i+#j < n}istherootsystem of type 4,_1, and the root space
decomposition is as follows:

GA) =) @G, (4.8)
a€eR
where
Go ="H;
g0i70/+moro+~--+mv,lr‘,,l = CE[/‘(ngt),
forl<i#j<n myeZ,=(my,- --,m_1) eA=7"",

n
gmgroﬂ—----&—m\_lr\,,l = Z ®CEii(5810l),
i=1
for my € 7, € A but (myg,) # (0, 0).

This Lie algebra G(A) is an extended affine Lie algebra of nullity v (see [AABGP] and
[BGK)). Z;;ol @7, are called isotropic roots while A + Z;;ol 7; are nonisotropic
roots.

Now from Proposition 3.10 we see that G,(A) 22 G(A). Theorem 3.25 immediately
gives us the following result.

PROPOSITION 4.10. For (A, ¢) = (Z'7", q), Wa is an irreducible G(A)-module.
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Remark 4.11. Note that the coordinate algebra in G,(A) is the quantum torus C,
while the coordinate algebra in G(A) is G, , where Q is given in (4.3).

Remark 4.12. 1t is not difficult to see that W, has a weight space decomposition
with respect to the Cartan subalgebra H. Moreover, ecach weight space is
finite-dimensional.

Next we further consider a subalgebra of G(A) which is the so-called tame extended
affine Lie algebra. The tameness was introduced in [BGK] in order to classify all
extended affine Lie algebras (see also [AABGP])).

Set s1,(C,,) = {X € gh(C,) : tr(X) € [C,,, C,, ]} to be the subalgebra of gl,(C, )
which is generated by Ejj(u), ue C, , 1 <i#j < n. Define

v—1
LdA) = 51(Co) @Y ®Ce (4.13)

i=0

to be the subalgebra of G°(A), and let

v—1
L) =LN @Y oCd (4.14)

i=0
be the subalgebra of G(A). The restriction of the invariant form on £(A) is also
nondegenerate. This Lie algebra L£(A) is a tame extended affine Lie algebra.
It has the same root system R as G(A) and the following root space

decomposition:
L(A) = ®yer Ly, (4.15)
where

n—1 v—1 v—1
Ly = Z ®C(E; — Eir1,i41) @ Z oCe; @ Z o Cd;
i=1 ‘= pary
is the Cartan subalgebra of L(A),
*Coz = gac
for o€ A+ Y}~ Z;, and

Emo‘fo+'“+mv—1 Ty—1

n=l (4.16)
= Y @C(Ey — Errin)5°0) ® L0 NGy, Cy )
i=1
for (myg,) = (mg, my, ---,my,_1) € 7"\ {0}, where I, is the n x n identity matrix.

By taking the restriction, we know that W, is an £(A)-module.
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THEOREM 4.17. Wy is an irreducible L(A)-module.

Proof. To check the irreducibility, we need to show that 7, /" € [C,, C,], for
i€ Z\{0}andr € A\ {0}. Indeed, if ; € [C,,, C,] for € Z \ {0}, then the Heisenberg
subalgebra s is contained in p(L(A)). If " € [C, C,], then we will be able to use the
operator YO (r — ry, 0) to prove the irreducibility as was done in Theorem 3.25. Since

(1 — g)th = (7Dt — i (dyey) and (1 — ¢ = 1oty 1) — (25" ), (4.18)

the proof is thus completed. ]

Remark 4.19. Note that if (A, ¢) = (2", g) is generic, then G(A) = L(A) & CI,, if
and only if v = 2.
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