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Geometric Interpretation of Lagrangian
Equivalence

Shyuichi Izumiya

Abstract. As an application of the theory of graph-like Legendrian unfoldings, relations of the hid-
den structures of caustics, and wave front propagations are revealed.

1 Introduction

Lagrangian equivalence among Lagrangian submanifold germs in the cotangent bun-
dle was introduced for the study of oscillatory integrals on caustics (cf. [1, 3, 4]). It
is known that caustic equivalence (i.e., diòeomorphic caustics) does not imply La-
grangian equivalence. _is is one of the main diòerences from the theory of Leg-
endrian singularities. In the theory of Legendrian singularities, wave front equiv-
alence (i.e., diòeomorphic wave fronts) implies Legendrian equivalence generically
[11]. _erefore, Legendrian equivalence is geometric equivalence in this sense. In
the real world, the caustics given by re�ected rays are visible. However, the wave
front propagations are not visible. _erefore, we can say that there are hidden struc-
tures behind the picture of caustics (cf. [10]). In fact, caustics are a subject of classical
physics (i.e., geometric optics). However, the corresponding Lagrangian submanifold
is deeply related to the semi-classical approximation of quantum mechanics.

On the other hand, the notion of graph-like Legendrian unfoldingswas introduced
in [5]. It belongs to a special class of big Legendrian submanifolds (wave front propa-
gations) that Zakalyukin introduced in [11]. _ere have been some developments on
this theory during past two decades[5–7,9]. Several equivalence relations among big
Legendrian submanifolds appeared in these articles for diòerent purposes. However,
the relation to Lagrangian equivalence is not yet clear. _emain results in this paper
are _eorems 4.3 and 4.5, which reveal the relation between caustics and wave front
propagations. For the proof of_eorem4.3,we show Propositions 4.1 and 4.2. Propo-
sition 4.1 was actually proved in [7] by using the notion of generating families which
is a strong tool for the study of Lagrangian equivalence. Proposition 4.2 is the key
assertion in this paper. We avoid using the notion of generating families to shorten
the paper.
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2 Lagrangian Singularities

We brie�y describe the basic notions of the local theory of Lagrangian singularities
due to [2]. We consider the cotangent bundle π∶T∗Rn → Rn over Rn . Let (x , p) =
(x1 , . . . , xn , p1 , . . . , pn) be the canonical coordinates on T∗Rn . _en the canonical
symplectic structure on T∗Rn is given by the canonical two form ω = ∑n

i=1 dp i ∧ dx i .
Let i∶ L ⊂ T∗Rn be a submanifold. We say that i is a Lagrangian submanifold if dim L =
n and i∗ω = 0. In this case, the set of critical values of π ○ i is called the caustic of
i∶ L ⊂ T∗Rn , which is denoted by CL .

We now deûne a natural equivalence relation among Lagrangian submanifold
germs. Let i∶ (L, p) ⊂ (T∗Rn , p) and i′∶ (L′ , p′) ⊂ (T∗Rn , p′) be Lagrangian
submanifold germs. _en we say that i and i′ are Lagrangian equivalent if there
exist a diòeomorphism germ σ ∶ (L, p) → (L′ , p′), a symplectic diòeomorphism
germ τ̂∶ (T∗Rn , p) → (T∗Rn , p′), and a diòeomorphism germ τ∶ (Rn , π(p)) →
(Rn , π(p′)) such that τ̂○ i = i′○σ and π○ τ̂ = τ○π,where π∶ (T∗Rn , p)→ (Rn , π(p))
is the canonical projection. Here τ̂ is said to be a symplectic diòeomorphism germ if
it is a diòeomorphism germ such that τ̂∗ω = ω. We also say that i and i′ are caustic
equivalent if CL and CL′ are diòeomorphic. By deûnition, if i and i′ are Lagrangian
equivalent, then i and i′ are caustic equivalent. In general, the converse does not hold.
_is is the reason we have no geometric interpretation of Lagrangian equivalence so
far. _ere is the notion of Lagrangian stability of a Lagrangian submanifold germ (cf.
[2]). Here, we do not need the exact deûnition, so we omit it.

3 Theory of the Wave Front Propagations

In this section we describe the basic notions of the theory of wave front propagations
(for details, see [2,5,11,12], etc). We start to consider the general theory of Legendrian
singularities. Let π∶ PT∗(Rm) → Rm be the projective cotangent bundle over Rm .
_is ûbration can be considered as a Legendrian ûbration with the canonical contact
structure K on PT∗(Rm). We have the trivialization PT∗(Rm) ≅ Rm × P(Rm∗),
and we call (x , [ξ]) homogeneous coordinates, where x = (x1 , . . . , xm) ∈ Rm and
[ξ] = [ξ1 ∶ ⋅ ⋅ ⋅ ∶ ξm] arehomogeneous coordinates of the dual projective space P(Rm∗).
Let Φ∶ (Rm , 0)→ (Rm , 0) be a diòeomorphismgerm. _enwe have a unique contact
diòeomorphism germ Φ̂∶ PT∗Rm → PT∗Rm deûned by Φ̂(x , [ξ]) = (Φ(x), [ξ ○
dΦ(x)(Φ−1)]). We say that Φ̂ is a contact diòeomorphism if dΦ̂((x ,[ξ])(K((x ,[ξ])) =
KΦ̂(x ,[ξ]) . We call Φ̂ the contact li� of Φ. A submanifold i∶L ⊂ PT∗(Rm) is said to
be a Legendrian submanifold if dimL = m − 1 and d ip(TpL ) ⊂ K i(p) for any p ∈ L.
We also call π ○ i = π∣L ∶L → Rm a Legendrian map and W(L ) = π(L ) a wave
front of i∶L ⊂ PT∗(Rm). We say that a point p ∈ L is a Legendrian singular point
if rank d(π∣L )p < m − 1. In this case, π(p) is the singular point ofW(L ). We say
that two Legendrian submanifold germs L andL ′ are Legendrian equivalent if there
exists a diòeomorphism germ Φ∶ (Rm , 0) → (Rm , 0) such that Φ̂(L ) = L ′ as set
germs.

We now consider the case where m = n + 1 and distinguish space and time co-
ordinates, so that we write Rn+1 = Rn × R and coordinates are denoted by (x , t) =
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(x1 , . . . , xn , t) ∈ Rn ×R. For the projective cotangent bundle π∶ PT∗(Rn ×R)→ Rn ×
R, we have homogeneous coordinates ((x1 , . . . , xn , t), [ξ1 ∶ ⋅ ⋅ ⋅ ∶ ξn ∶τ]) of PT∗(Rn ×
R) ≅ (Rn ×R) × P((Rn ×R)∗).
For a Legendrian submanifold i∶L ⊂ PT∗(Rn×R), the correspondingwave front

π ○ i(L ) =W(L ) is called a big wave front. We call

Wt(L ) = π1(π−1
2 (t) ∩W(L )) (t ∈ R)

a momentary front (or, a small front) for each t ∈ R, where π1∶Rn × R → Rn and
π2∶Rn ×R→ R are the canonical projections deûned by π1(x , t) = x and π2(x , t) = t
respectively. In this sense, we call L a big Legendrian submanifold. We say that a
point p ∈ L is a space-singular point if rank d(π1 ○ π∣L )p < n and a time-singular
point if rank d(π2 ○ π∣L )p = 0, respectively. By deûnition, if p ∈ L is a Legendrian
singular point, then it is a space-singular point of L . _e discriminant of the fam-
ily {Wt(L )}t∈R is deûned as the image of singular points of π1∣W(L ) . In the general
case, the discriminant consists of three components: the caustic CL = π1(Σ(W(L )),
where Σ(W(L )) is the set of singular points ofW(L ) (i.e., the critical value set of
the Legendrian mapping π∣L ), the Maxwell stratiûed set ML , the projection of the
closure of the self intersection set of W(L ); and also the critical value set ∆L of
π1∣W(L )∖Σ(W(L )) . We now consider an equivalence relation among big Legendrian
submanifolds that was independently introduced in [6, 12] for diòerent purposes: Let
i∶ (L , p0) ⊂ (PT∗(Rn×R), p0) and i′∶ (L ′ , p′0) ⊂ (PT∗(Rn×R), p′0) be big Legen-
drian submanifold germs. _en we say that i and i′ are strictly parametrized+ Legen-
drian equivalent (S .P+-Legendrian equivalent) if there exists a diòeomorphism germs
Φ∶ (Rn ×R, π(p0))→ (Rn ×R, π(p′0)) of the form Φ(x , t) = (ϕ1(x), t+α(x)) such
that Φ̂(L ) = L ′ as set germs,where Φ̂∶ (PT∗(Rn×R), p0)→ (PT∗(Rn×R), p′0) is
the unique contact li� of Φ. We can also deûne the notion of stability of Legendrian
submanifold germs with respect to the above equivalence relation, which is analo-
gous to the stability of big Legendrian submanifold germs with respect to Legendrian
equivalence (cf. [2, Part III]).

On the other hand, concerning the discriminant, we deûne the following equiv-
alence relation among big wave front germs. Let i∶ (L , p0) ⊂ (PT∗(Rn × R), p0)
and i′∶ (L ′ , p′0) ⊂ (PT∗(Rn × R), p′0) be big Legendrian submanifold germs. We
say that W(L ) andW(L ′) are S .P+-diòeomorphic if there exists a diòeomorphism
germ Φ∶ (Rn ×R, π(p0))→ (Rn ×R, π(p′0)) of the form Φ(x , t) = (ϕ1(x), t+α(x))
such that Φ(W(L )) = W(L ′) as set germs. We also call Φ a S .P+-diòeomorphism
germ. We remark that S .P+-diòeomorphism among big wave front germs preserves
the diòeomorphism types of CL ∪ ML ∪ ∆L . Since the Legendrian submanifold
germ is uniquely determined on the regular part of the wave front set, we have the
following proposition as an easy corollary of the result in [11].

Proposition 3.1 Let

i∶ (L , p0) ⊂ (PT∗(Rn ×R), p0) and i′∶ (L ′ , p′0) ⊂ (PT∗(Rn ×R), p′0)
be big Legendrian submanifold germs such that the sets of critical points of π○ i , π○ i′ are
nowhere dense respectively. _en i and i′ are S .P+-Legendrian equivalent if and only if
(W(L ), π(p0)) and (W(L ′), π(p′0)) are S .P+-diòeomorphic.
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4 Graph-like Legendrian Unfoldings

In this section we explain the theory of graph-like Legendrian unfoldings and prove
themain theorems. _e notion of graph-like Legendrian unfoldings was introduced
in [5]. A graph-like Legendrian unfolding belongs to a special class of big Legendrian
submanifolds.

We remark that PT∗(Rn ×R) is a ûber-wise compactiûcation of the 1-jet space as
follows. We consider an aõne open subset Uτ = {((x , t), [ξ ∶τ])∣τ /= 0} of PT∗(Rn ×
R). For any ((x , t), [ξ ∶τ]) ∈ Uτ , we have

((x1 , . . . , xn , t), [ξ1 ∶ ⋅ ⋅ ⋅ ∶ ξn ∶τ]) = ((x1 , . . . , xn , t), [−(ξ1/τ) ∶ ⋅ ⋅ ⋅ ∶ − (ξn/τ) ∶ − 1]) ,

so that we can adopt the corresponding aõne coordinates

((x1 , . . . , xn , t), (p1 , . . . , pn)) ,

where p i = −ξ i/τ. On Uτ we have θ−1(0) = K∣Uτ , where θ = dt − ∑n
i=1 p idx i .

_is means that Uτ can be identiûed with the 1-jet space, which is denoted by
J1GA(Rn ,R) ⊂ PT∗(Rn × R). We call the above coordinates a system of graph-
like aõne coordinates. _roughout this paper, we use this identiûcation. A big
Legendrian submanifold i∶L ⊂ PT∗(Rn × R) is said to be a graph-like Legen-
drian unfolding if L ⊂ J1GA(Rn ,R). We call W(L ) = π(L ) a graph-like wave
front of L , where π∶ J1GA(Rn ,R) → Rn × R is the canonical projection. We de-
ûne a mapping Π∶ J1GA(Rn ,R) → T∗Rn by Π(x , t, p) = (x , p), where (x , t, p) =
(x1 , . . . , xn , t, p1 , . . . , pn). In [7] we have shown that Π∣L ∶L → T∗Rn is immersive,
so that Π(L ) is a Lagrangian submanifold in T∗Rn . Moreover, the discriminant of
the family of momentary fronts is CL ∪ ML for a graph-like Legendrian unfolding
L ⊂ J1GA(Rn ,R). By using the notion of generating families,we can show that for any
Lagrangian submanifold germ (L, z) ⊂ T∗Rn , there exists a graph-like Legendrian
unfolding germ (L , p) ⊂ J1GA(Rn ,R) such that (Π(L ),Π(p)) = (L, z). We now
compare the equivalence relations between graph-like Legendrian unfoldings and in-
duced Lagrangian submanifold germs. By using the notion of graph-like generating
families of graph-like Legendrian unfoldings and generating families of Lagrangian
submanifold germs respectively, we showed the following proposition from [7].

Proposition 4.1 ([7]) Let (L1 , p1), (L2 , p2) be graph-like Legendrian unfoldings. If
(Π(L1),Π(p1)) and (Π(L2).Π(p2)) are Lagrangian equivalent, then (L1 , p1) and
(L2 , p2) are S .P+-Legendrian equivalent.

_is proposition asserts that Lagrangian equivalence is a stronger equivalence re-
lation than S .P+-Legendrian equivalence. _e S .P+-Legendrian equivalence relation
among graph-like Legendrian unfoldings preserves both the diòeomorphism types of
caustics andMaxwell stratiûed sets. On the other hand, ifwe observe the real caustics
of rays, we cannot observe the structure of wave front propagations and theMaxwell
stratiûed sets. In this sense, there are hidden structures behind the picture of real
caustics. By the above proposition, Lagrangian equivalence preserves not only the dif-
feomorphism type of caustics, but also the hidden geometric structure of wave front
propagations. I have long believed that the converse assertion of Proposition 4.1 does
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not hold. Actually, [8] showed the converse assertion only for the case where Π(L1)
and Π(L2) are Lagrange stable. _erefore, we have not tried to show the converse
assertion so far. However, we have the following result.

Proposition 4.2 Let (L1 , p1), (L2 , p2) be graph-like Legendrian unfoldings. If
(L1 , p1) and (L2 , p2) are S .P+-Legendrian equivalent, then (Π(L1),Π(p1)) and
(Π(L2),Π(p2)) are Lagrangian equivalent.

Proof In order to simplify the arguments, we use x = (x1 , . . . , xn), ξ = (ξ1 , . . . , ξn)
and p = (p1 , . . . , pn). With this notation, we write that ξ ⋅ x = ∑n

i=1 ξ ix i and θ =
dt − p ⋅ dx = dt −∑n

i=1 p idx i etc.
Without loss of generality, we assume that Π(p1) = Π(p2) = 0 ∈ Rn . By the

assumption, there exists a diòeomorphism germ Φ∶ (Rn ×R, 0)→ (Rn ×R, 0) of the
form Φ(x , t) = (ϕ1(x), t + α(x)) such that Φ̂(L1) = L2. _en we have Φ−1(x , t) =
(ϕ−1

1 (x), t − α(ϕ−1
1 (x))) so that the Jacobi matrix is

JΦ(x)Φ−1 =
⎛
⎜
⎝

∂ϕ−11
∂x (ϕ1(x)) 0

− ∂α○ϕ−11
∂x (ϕ1(x)) 1

⎞
⎟
⎠
.

It follows that

Φ̂((x , t), [ξ ∶τ]) = (Φ(x , t), [ ξ ⋅ ∂ϕ
−1
1

∂x
(ϕ1(x)) − τ

∂α ○ ϕ−1
1

∂x
(ϕ1(x)) ∶τ]) .

Since τ /= 0,

[ ξ ⋅ ∂ϕ
−1
1

∂x
(ϕ1(x)) −

∂α ○ ϕ−1
1

∂x
(ϕ1(x)) ∶τ] =

[− ξ
τ
⋅ ∂ϕ

−1
1

∂x
(ϕ1(x)) +

∂α ○ ϕ−1
1

∂x
(ϕ1(x)) ∶ − 1] .

We consider the graph-like aõne coordinates ((x , t), p) ∈ J1GA(Rn ,R), where p =
− ξ

τ . _en we have Φ̂(J1GA(Rn ,R)) = J1GA(Rn ,R) and

Φ̂((x , t), p) = (ϕ1(x), t + α(x), p ⋅
∂ϕ−1

1

∂x
(ϕ1(x)) +

∂α ○ ϕ−1
1

∂x
(ϕ1(x))) .

We now deûne amap ϕ̃1∶T∗Rn → T∗Rn by

ϕ̃1(x , p) = (ϕ1(x), p ⋅
∂ϕ−1

1

∂x
(ϕ1(x)) +

∂α ○ ϕ−1
1

∂x
(ϕ1(x))) .

Since Φ̂ is a contact diòeomorphism germ, there exists a function germ

µ∶ J1GA(Rn ,R)Ð→ R

with µ(x , t, p) /= 0 such that Φ̂∗θ = µθ . _erefore, we have

dt + dα − ϕ̃1
∗(p ⋅ dx) = µ(dt − p ⋅ dx) = µdt − µ(p ⋅ dx)

so that µ ≡ 1. It follows that −p ⋅ dx = dα − ϕ̃1
∗(p ⋅ dx). _us, we have

ϕ̃1
∗(ω) = ϕ̃1

∗(d(p ⋅ dx)) = dϕ̃1
∗(p ⋅ dx) = d(p ⋅ dx) = ω.
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_is means that ϕ̃1 is a symplectic diòeomorphism germ (i.e., Lagrangian diòeomor-
phism germ). Since Π ○ Φ̂∣J1GA(Rn ,R) = ϕ̃1 ○ Π∣J1GA(Rn ,R), we have Π(L2) =
Π ○ Φ̂(L1) = ϕ̃1(Π(L1)).

By Propositions 4.1 and 4.2, we conclude the following theorem.

_eorem 4.3 _e graph-like Legendrian unfoldings (L1 , p1) and (L2 , p2)
are S .P+-Legendrian equivalent if and only if the Lagrangian submanifold germs
(Π(L1),Π(p1)) and (Π(L2),Π(p2)) are Lagrangian equivalent.

As a corollary of the above theorem, we have the following result.

Corollary 4.4 ([9]) _e graph-like Legendrian unfolding (L , p) is S .P+-Legendrian
stable if and only if the Lagrangian submanifold germ (Π(L ),Π(p)) is Lagrangian
stable.

In [9] we apply the inûnitesimal characterization of S .P+-Legendrian stability.
However, the assertion of Corollary 4.4 follows directly from _eorem 4.3.

On the other hand, by Corollary 4.4 and the fact that π ○Π = π1 ○π, the set of Leg-
endrian singular points of a graph-like Legendrian unfolding L coincides with the
set of Lagrangian singular points of π∣Π(L ). Moreover, for generic graph-like Leg-
endrian unfolding germ (L , p), the set of singular points of π∣L is nowhere dense.
Hencewe can apply Proposition 3.1 to our situation and obtain the following geomet-
ric interpretation of Lagrangian equivalence as a corollary of_eorem 4.3.

_eorem 4.5 Let (L1 , p1) and (L2 , p2) be graph-like Legendrian unfolding germs
such that the sets of singular points of π∣L1 , π∣L2 are nowhere dense respectively. _en
the following conditions are equivalent:
(i) (Π(L1),Π(p1)) and (Π(L2),Π(p2)) are Lagrangian equivalent.
(ii) Graph-like wave fronts (W(L1), π(p1)) and (W(L2), π(p2)) are S .P+-diòeo-

morphic.

We remark that condition (i) implies condition (ii) in the above theorem without
any assumptions.

Let (L , p) be a graph-like Legendrian unfolding germ. We consider a represen-
tative L̃ of (L , p) on π−1(W), where W ⊂ Rn × R is an open neighborhood of
π(p) ∈ Rn ×R. _en we have a representativeW(L̃ ) =W(L̃ )∩W of the set germ
(W(L ), π(p)).
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