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Abstract

Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such
faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under
certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information
to observers. These spot pair events are not particle pair events—they are the sudden creation or annihilation of a pair
of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the
scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only
when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when
a real spot’s speed toward the observer drops below c, while a virtual spot pair annihilation event will be observed when
a real spot’s radial speed away from the observer rises above c. Superluminal spot pair events might be found angularly,
photometrically, or polarimetrically, and might carry useful geometry or distance information. Two example scenarios
are briefly considered. The first is a beam swept across a scattering spherical object, exemplified by spots of light moving
across Earth’s Moon and pulsar companions. The second is a beam swept across a scattering planar wall or linear filament,
exemplified by spots of light moving across variable nebulae including Hubble’s Variable Nebula. In local cases where
the sweeping beam can be controlled and repeated, a three-dimensional map of a target object can be constructed. Used
tomographically, this imaging technique is fundamentally different from lens photography, radar, and conventional lidar.
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1 INTRODUCTION

Although light and all radiations are constrained to travel at
the local speed of light c or below, such a limit does not ap-
ply to spots of light and boundary shadows that sweep across
common scattering surfaces. Such locally superluminal mo-
tions do not violate special relativity and cannot be used as
a means of local communication (see, for example, Griffiths
1994, or Steane 2012). The observation of superluminal spot
pair events, however, may signal to a distant observer that a
specific geometry is present.

Superluminal motions for images, spots, and projected
boundaries are not new to physics or astrophysics. It is
well known that objects, in particular blobs emanating from
quasars, moving less than but close to c toward the ob-
server can appear to separate superluminally (Blandford,
McKee, & Rees 1977). Superluminal spot pair creation
from a sweeping beam was discussed previously in the
context of quasars and AGN by Cavaliere, Morrison, P.,
& Sartori (1971) and mentioned more recently by Baune

(2009). Another system where images may appear to ex-
ceed the speed of light is gravitational lensing, in par-
ticular when images appear near the Einstein ring (Ne-
miroff 1993) or the source approaches or crosses a lens
caustic.

In this paper, the general case of how sweeping beams can
create superluminal spots on scattering surfaces will be ana-
lyzed, with emphasis on observable spot pair events. Section
2 will discuss general kinematic aspects of superluminal spot
pair motion, while in the next two sections, two geometric
scenarios will be specifically considered. Section 3 will give
an analysis of a superluminal beam sweeping across a dis-
tant sphere, while Section 4 will analyze a sweeping beam
scattering off of a planar wall or linear filament. In each case
the focus will be on the occurrence of spot pairs with a fol-
lowing discussion of astronomical settings where such pairs
might be found. Section 5 will give a discussion that includes
the possibility that superluminal spot pair events might be
used to create three-dimensional images of local objects, and
conclusions.
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2 GENERAL KINEMATICS

Sweeping beams occur in many astronomical settings in-
cluding eclipses, precessing jets, rotating pulsars, expanding
AGN clouds, and dust clouds moving in front of stars. The
speed of reflected spots and shadows from sweeping beams
can be arbitrarily high. For example, although light takes
about 0.0116 s to cross the Moon, a person can sweep a laser
pointer across the Moon’s surface in less time. How such
superluminal motions appear to an observer can be counter-
intuitive.

Reflecting surfaces discussed here are assumed not to be
mirrors but appear dull and so have reflection properties com-
mon for arbitrary scattering surfaces in the universe. Such
surfaces will typically be assumed to scatter incoming light
in accordance with Lambert’s law so that no direction is
preferred, although precise Lambertian adherence is not es-
sential to the logic of the analyses. Therefore, to be clear, an
observer is assumed to be able to detect a spot on a scatter-
ing surface even if they are not at the angle of exact mirror
symmetry.

It will be assumed here that light travels only in straight
lines. Therefore, locations on a scattering surface become
illuminated only by the exact number of times that a beam
source points directly at them. For example, no single place
on a scattering surface will be illuminated—nor will appear
to any observer be illuminated—twice by a beam that sweeps
past only once.

The example case most commonly assumed here will be
for a small bright spot moving across a large and opaque scat-
tering surface. Although, these zero-dimensional spots could
be a one-dimensional boundary—for example, the divider of
a truncated plane of light advancing along a dark body—it is
typically assumed here that a small spot is created by a lo-
calized beam. Common visualizations of this include bright
spots resulting from the scattering of a flashlight beam or
a laser. The formalism and results presented here will usu-
ally work equally well for extended light boundaries or dark
spots—for example shadows.

Two types of spots will be described here. ‘Real’ spots are
actual locations on the scattering surface illuminated by the
sweeping beam. An observer situated on the scattering sur-
face could detect real spots. ‘Virtual’ spots, contrastingly, are
spot locations perceived as illuminated by a distant observer.
Virtual spots are observer dependent and could be considered
images of real spots.

Three types of velocities will be referred to here. The
first velocity will be designated w⊥ = ωD where ω is the
angular speed of the sweeping beam and D is the distance
between the source and the scattering surface. This speed
may not describe any actual spot motion and corresponds
to the theoretical spot speed on a spherical shell of radius
D centered on the beam source. The second velocity will
be designated v and refers to the real velocity of the real
spot on the reflector. It is useful to break up v into two
components. The component radially toward the observer

will be designated vr and the component perpendicular to
the observer will be designated v⊥, such that v2 = v2

r + v2
⊥.

For simplicity in the cases described herein, a positive value
of vr will be attributed to radial motion toward the observer,
while a negative vr will describe radial motion away from the
observer. The third velocity will be designated u⊥ and will
refer to the transverse speed of a virtual spot perceived by
the observer on the scatterer. Due to finite light travel times
between the scatterer and the observer, in general, u⊥ �= v⊥ �=
w⊥. All three velocities are depicted in Figure 1.

A single sweeping beam may create locations on a scat-
tering surface where an actual pair of spots is created. Such
a ‘real’ spot pair is defined as occurring when two places
on the scattering surface become illuminated simultaneously
in the inertial frame of the scattering surface. At a real spot
pair creation location, the real spot speed on the scattering
surface v will formally diverge. These locations can be found
by local extrema in the time of illumination from the beam
relative to an arbitrary temporal zero point. There are surely
many geometric situations that lead to such a speed diver-
gence, but only two general scenarios are discussed below:
scattering by a sphere and by a plane.

A simple but interesting case occurs when a spot moves
across a scattering surface such that its speed toward the
observer always exceeds the speed of light: vr > c. In this
case, parts of the scattering surface that are actually illu-
minated earlier will appear to the observer to be illumi-
nated later. This is a simple kinematic effect—for a given
point on the scatterer, the path along the scatterer and then
toward the observer has the first part moving superlumi-
nally toward the observer and the second part at c toward
the observer. In comparison, light taking the path from the
given point directly to the observer always moves at speed c,
and is therefore observed later. The situation is depicted in
Figure 2. One result is that superluminal spots with vr > c to-
ward the observer will always appear to move away from the
observer. Furthermore, were information coded temporally
in these spots, that information would appear in the oppo-
site time order to the observer than it sent from the beam
source.

When the projected speed toward the observer of a real
spot goes from above c to below c, the observer will always
perceive a virtual spot pair creation event to occur at the
vr = c location. To see this, consider a location on the scat-
tering surface just a bit nearer to the observer than the vr = c
location. Here, by definition, vr < c. Light will necessarily
take longer to reach the observer from this location than from
the v = c location because of the relative (subluminal) slow-
ness of the spot on the surface. Therefore, the spot is seen
first at the v = c location.

Next, consider a location on the scattering surface just a bit
further from the vr = c location. Here, by definition, vr > c.
Light will also necessarily take longer to reach the observer
from this location than from the v = c location because of
the extra distance it needs to travel to reach the observer.
Therefore, again, the spot is seen first at the v = c location.
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Figure 1. A diagram illustrating the three velocities used in the analysis: w⊥, v, and u⊥. Here,
w⊥ = ωD is the transverse speed of the sweeping beam at the distance D of the scattering
surface. Next, v is the speed of the real spot on the scattering surface with a component vr
toward the observer and v⊥ perpendicular to the observer. Last, u⊥ is the transverse speed of a
virtual spot on the scattering surface, as perceived by the observer. The diagram indicates that
although one real spot exists at this hypothetical time, two virtual spots appear to the observer
on either side of the vr = c location.
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Figure 2. A real spot is depicted moving superluminally along a scattering
surface with vr > c. Two locations of the spot are shown. Although the real
spot is moving toward the lower left, the virtual image of the spot appears
to the observer to be moving ‘backward’ toward the upper right.

This leads to the perceived ‘backward’ motion of the spot
from the same geometry depicted in Figure 2.

Combining these two parts, it is clear that of the three
locations, the vr = c location is seen first by the observer.
Since just after this, locations on both sides of vr = c become
visible, it can be concluded that spots at these locations are
both seen by the observer after vr dropped from superluminal
to subluminal. This spot pair creation event is virtual in the
sense that no real spot pair creation event occurs at the vr = c
location.

Whenever a virtual spot pair appears, the observer per-
ceives one spot from this pair to move along the scatterer
in the same direction that the real spot is moving, so that
u⊥ shares a component moving along the surface in the
same direction as v, while the other spot from this pair is
perceived by the observer to move in the opposite direc-
tion, with u⊥ sharing a component moving along the sur-
face in the opposite direction as v. The ‘forward’ moving
spot is perceived initially to move at formally infinite trans-
verse speed u⊥, but drops in magnitude as it moves along.
Also, the ‘backward’ moving spot starts at formally infinite
u⊥ but in the opposite direction. As indicated above and in
Figure 2, the backward moving spot appears time-reversed—
if the real spot contained a beamed video, for example, then
the observer would see this video playing backwards on the
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virtual spot moving away from the observer. The forward
moving virtual spot does not appear to be time-reversed to
the observer.

Analogous logic to that given above can be used to show
that when vr increases from subluminal to superluminal,
a pair of existing virtual spots is seen by the observer to
be annihilated. Here, the vr = c location on the scattering
surface can then be shown to be a temporal maximum so
that spots on either side are always seen at an earlier time.
This spot pair creation event is also virtual in the sense
that no real spot pair creation event occurs at the vr = c
location.

3 A SWEEPING BEAM SCATTERED FROM A
SPHERE

3.1 Sweeping beam with constant angular speed

The first canonical scenario involving superluminal spot pair
events considered here will be that of a beam sweeping across
a spherical body of radius R at distance D from an observer,
with R � D, and with scattered light observed from very
nearly the same direction as the outgoing beam. Assume that
the angular size of the sphere is much larger than the angular
size of the beamed spot on the sphere. Further, assume that
the beam sweeps linearly across the sphere once, through
the central point of its projected disk, at a constant angular
speed ω on the observer’s sky. This projected hypothetical
speed across a flattened disk at the distance of the sphere
will be labeled w⊥ = ωD. Let φ be the angle between the
incoming beam and a given point on sphere in the beam
illumination path, with the angle vertex being at the center of
the sphere. Here, x labels the coordinate distance on the plane
of the sky at distance D from the observer along the sweeping
beam, while y labels a radial coordinate distance into the sky
at distance D from the observer. The origin of these (x, y)

coordinates is the center of the sphere, while x = R sin φ and
y = R cos φ. As the beam sweeps across the sphere, φ goes
from −π/2 to π/2, x goes from −R to R, while y goes from
zero to R and back to zero. The geometry is diagrammed in
Figure 3.

Considering the sphere a flat disk, the time it takes for the
light beam to sweep across half the disk is tsweep = R/w⊥.
Assuming that sweeping begins pointing at tdelay = 0 toward
φ = −π/2 radians, then the time it takes for the light beam
to point toward the location φ on the sphere can be quantified
to be tdelay = (R + x)/w⊥ = R(1 + sin φ)/w⊥.

Flying direct, the time it takes for light to cross half
the sphere is t = R/c. The time it takes for light to go from
the beam source to a location with coordinate y on the sphere
is tpath = D/c + (R − y)/c, where the first term is the time
it takes for light to reach the closest point on the sphere,
and the second term is the time it takes for light to cross
distance (R − y) of the sphere. Written in terms of φ, then
tpath = D/c + R(1 − cos φ)/c and so the total time it takes

φ

R

To the Observer

x

y

Spot

Sweeping Direction 

Figure 3. The geometry of a sweeping beam that creates a spot or spots on
a sphere.

before position φ is illuminated will be

treal = tdelay + tpath = R(1 + sin φ)/w⊥ + D/c + R(1 − cos φ)/c.
(1)

Which part of the sphere is illuminated first? In gen-
eral, this is not φ = −π/2 but rather is found from set-
ting dtreal/dφ = 0. The first illuminated point is therefore at
φreal

f irst = arctan(−c/w⊥). When w⊥ � c then φreal
f irst goes to

zero, the closest point on the sphere to beam source. When
w⊥ � c then φ f irst goes to −π/2, the location on the sphere
where the beam points first. When w⊥ = c, then φreal

f irst goes
to −π/4.

Since every φ will be illuminated eventually, φ values
on either side of φreal

f irst are illuminated later, with pairs of φ

locations being illuminated simultaneously. Therefore φreal
f irst

is also φreal
pair, and the first illuminated place on the sphere is

actually a diverging pair of spots!
The real illumination pattern of a beam sweeping across

a sphere can now be described. A real pair of beam spots
is first illuminated at φreal

pair with each spot moving in oppo-
site directions. One spot moves toward the closest limb and
disappears there, while the other spot crosses the rest of the
sphere.

How fast do these spots move across the surface of the
sphere? The speeds are computed from

v = R
dφ

dtreal

= w⊥c

c cos φ + w⊥ sin φ
. (2)

It is easily shown from the above Equation (2) that the surface
speed v diverges at φreal

pair, with one spot moving out with
initially infinite surface speed toward the φ = −π/2 limb,
with the other spot moving with initially infinite surface speed
in the other direction—toward φ = 0.

To find the perceived illumination pattern by an observer,
it will be useful to decompose v into radial and perpendic-
ular components. Then, v⊥ = v cos φ perpendicular to the
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observer and

vr = −v sin φ = −w⊥ c sin φ

c cos φ + w⊥ sin φ
, (3)

radially toward the observer. Just as v is unlimited in magni-
tude, the magnitude of v⊥ and vr can exceed c.

Starting from the time the light beam begins its journey at
the source toward the sphere, to when the beam is measured
back at the source by the observer, the time that angular
position φ is observed to be illuminated is when

tobs = tdelay + 2tpath

= R(1 + sin φ)/w⊥ + 2D/c + 2R(1 − cos φ)/c.
(4)

Also tobs = treal + tpath. Which φ on the sphere is observed
to be illuminated first? This will be when dtobs/dφ = 0,
which occurs when φvirtual

pair = arctan(−c/2w⊥). The super-
script ‘virtual’ highlights that no real spot pairs are created
on the scatterer at this φ location. In general, the observed
perpendicular speed of a spot will be

u⊥ = R
dφ

dtobs

= w⊥ c cos φ

c cos φ + 2 w⊥ sin φ
. (5)

Note that when φ = φvirtual
pair , then u⊥ formally diverges. Con-

sequently, when φ is slightly less than φvirtual
pair then u⊥ has a

very large negative value, meaning that the observed spot is
initially moving very rapidly in the opposite direction than
w⊥. Alternatively, when φ is slightly greater than φvirtual

pair , then
u⊥ has a very large positive value, meaning that the observed
spot is initially moving very rapidly in the same direction
as w⊥.

No matter how small the angular sweep speed across the
observer’s sky ω, so long as it is finite, there is a location near
the edge of the sphere where vr drops from greater than c to
less than c. Therefore, in all cases, an observer can perceive,
in theory, a virtual spot pair creation event. This will also be
the first light of any kind that an observer will see from the
sweeping beam.

The angle φvirtual
pair where a virtual pair of spots is first per-

ceived is straightforward to compute. In Equation (3), vr is
set equal to c. One then finds that φvirtual

pair = arctan(−c/2w⊥),
as indicated above. When the angular sweep speed ω is large,
the arctangent goes to zero and therefore, so does φ, meaning
that the spot pair creation event appears near the projected
center of the sphere, the nearest point as seen by the ob-
server. Conversely, when the sweep speed ω is low, then the
arctangent goes to −π/2 meaning that the virtual spot pair
creation event is perceived to occur near the limb of sphere
first pointed toward by the source.

The illumination pattern perceived by the observer of a
beam sweeping across a sphere can now be adequately de-
scribed. The very first thing the observer sees is a spot
pair creation event with two spots simultaneously created
at φvirtual

pair . One spot of this pair moves toward the nearby
first-pointed-toward edge, counter-intuitively in the opposite
direction from the actual motion of the sweeping beam. Si-
multaneously, a second spot moves toward the last-pointed-

toward edge, in the same direction as the actual sweeping
beam. The spot moving toward the first edge disappears at
that limb before the spot moving toward the last edge. There
is no spot pair annihilation event in this scenario.

A perhaps surprising feature is that one virtual spot ap-
pearing at φvirtual

pair will subsequently be perceived to pass over

φreal
pair, the φ location where real spot pair creation occurred,

without anything unusual appearing to happen. Even though
two real spots were created at φreal

pair, one of the virtual spots
appears to move smoothly across. Therefore, the only spot
pair creation event witnessed by the observer is the one at
φvirtual

pair . The observer sees nothing unusual happen at φreal
pair.

Information about the angle of virtual spot pair creation,
φvirtual

pair , is recoverable, theoretically, in at least three ways.
The first detection method is by using both angular and tem-
poral information—by angularly resolving the spot pair cre-
ation event with sufficiently high speed imaging. The second
method is purely temporal, by measuring the resulting light
curve with sufficient detail. The third detection method uti-
lizes polarization measurements of sufficiently high temporal
sampling, discerning the changing polarization content of the
scattered light.

3.2 Sweeping beams across spheres in astronomical
settings

As alluded to above, a popular example of a beam sweeping
a spot across a sphere is a laser sweeping across Earth’s
Moon. The angular radius of the Moon is about 0.25◦, while
the Moon’s physical radius is about 1740 km. An easily
noticeable spot pair creation event should occur when the
linear sweep speed at the average distance of the Moon is
w⊥ = c ∼ 300 000 km s−1. Were the Moon a flat disk, the
time it would take for a laser to sweep across the Moon at
this speed would be tsweep = 2RMoon/c ∼ 0.0116 s, which is
just the light travel time across the Moon. At this rotation
rate, a laser could sweep from one Earth horizon to the other,
180◦ , in about 4.2 s. Creating spot pair events on the Moon
with the average laser point is therefore simple and does not
require expensive apparatuses.

The relative brightness of spots created by a single beam
sweep across the Moon is now estimated given three assump-
tions. The first assumption is that the Moon is a Lambertian
reflector such that it returns the same brightness at all viewing
angles, the second is that the beam size is large compared to
surface scattering features such as craters and mountains but
small compared to the Moon itself, and the third is that the
beam sweeps with a constant angular speed on the observer’s
sky. Given these assumptions, the observed instantaneous
brightness of a sweeping spot is proportional to u⊥. The the-
ory behind this simple relation starts by noting that each lo-
cation along the swept path is both illuminated uniformly and
scatters uniformly. Were the Moon a flat disk, it would just
return a spot of unchanging brightness. The Moon’s depth
does not change the integrated brightness of each φ value.
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Figure 4. A light curve of the instantaneous brightness of the spots created by a beam swept with
constant angular speed across the Moon, as measured back on Earth. The curve labels refer to the spot
sweep speed across the closest lunar point, where φ = 0. The high initial brightnesses derive from
perceived spot pair creation events being the first light that reaches the observer.

However, the depth of the truly three-dimensional Moon
changes the timing and duration of when different φ values
are illuminated and subsequently seen to be illuminated by
the observer. Therefore, relatively, some illuminated swaths
appear instantaneously bright for a short time, while others
appear instantaneously dim for a long time.

Perceived instantaneous spot brightness on a sphere is de-
picted in Figure 4, which plots this brightness as a func-
tion of time for a beam sweeping with the speeds w⊥ =
0.1c, 0.2c, and 1.0c , respectively. Figure 4 was created un-
der the assumption that no angular information is recovered
and so gives the gross light curve measured instantaneously
over the entire Moon. The faster sweeps show a higher early
brightness—formally infinite at t = 0—just as a superlumi-
nal virtual pair creation of spots is perceived. The slow-
est sweep speed w⊥ = 0.1c takes longer but still shows the
initial virtual spot pair peak. The light curve then quickly
flattens out to the brightness intuitively expected for a flat
two-dimensional Moon, where u⊥ = w⊥, which is also the
normalized value.

The formally infinite brightness appears because u⊥ in
Equation (5) diverges for φ angles that make the denominator
zero. In reality, the divergence would be muted by several
factors including the infinitesimal amount of time that u⊥
diverges, the finite size of the spot, and the limited amount
of energy emitted and scattered by the beam.

Unfortunately, as indicated in Figure 4, the time scale for
the virtual spot pair creation episode at the start of the light
curves is a bit too brief to be discernable with the human

eye. Still, effects of superluminal spot pair events should
be discernable rapid imaging and a powerful laser sweeping
past the lunar reflectors left by the NASA Apollo missions
(Bender et al. 1973). Although, these reflectors are too small
to show a significant length of any sweeping beam, precisely
kept times when specific discrete reflections are seen would
test an underlying tenant of this analysis.

A large spot boundary commonly observed to sweep across
the Moon is the shadow of the Earth during a lunar eclipse.
Given the above analysis, it should be clear that a lunar
eclipse actually starts out as a virtual pair of dark shadow
edges that suddenly appear very near a limb of the full Moon.
One of these dark edges is perceived to move ‘backwards’
toward the closest limb and quickly disappears there, while
the other appears to move progressively across the Moon
as usually depicted. Towards the end of a lunar eclipse there
occurs a creation event of a virtual pair of bright edges, again
very near the Moon’s limb. Again, one of the bright edges
is perceived to move ‘backwards’ to the closest limb and
very quickly disappears there, while the other edge appears
to move progressively across the Moon as usually depicted.
Unfortunately, all of this occurs within a small fraction of a
second (∼10−8 s) after a given eclipse edge begins to cross
the Moon and numerous effects including the fuzziness of
Earth’s shadow, due to the Earth’s atmosphere, likely make
the effect practically unobservable. In principle, this scenario
works for other eclipse situations, for example eclipses of
Jupiter by its moons. At Jupiter, the effect would last longer
but still only be visible for the order of microseconds.
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A controlled sweeping beam could be used, in theory, to
determine geometric surface characteristics of passing ob-
jects, including, for example, asteroids and comet nuclei,
to determine how non-spherical they are. Most discerning
would be a rapid series of sweeps, possibly in the radio or
microwave bands, cycling through a range of orientations
and stepping through an array of useful sweeping speeds.
Each sweep in the series might itself be repeated numerous
times to increase signal strength and to allow detection with a
matched-frequency chopped or strobed detector. It may also
be possible to change the shape and width of the sweeping
beam to optimize sensitivity to surface characteristics slightly
larger than the beam size.

Regarding more distant astronomical settings, the beam
of a pulsar may sweep a spot across the spherical surface
of a companion star and hence create superluminal virtual
spot pair creation events. As suggested by Milgrom & Avni
(1976) and further analyzed by Chester (1979), some of the
X-rays from the binary pulsar 3U 0900-40 may be scattering
off the surface of the primary companion and creating a
signal possibly misinterpreted as orbital eccentricity. Recent
theoretical work modeling this effect subluminally has been
done by Dementyev (2014).

4 A SWEEPING BEAM SCATTERING FROM A
PLANAR WALL OR LINEAR FILAMENT

The second canonical case considered here involves superlu-
minal spot pair events created by a beam sweeping across a
planar reflecting wall. Since a sweeping beam itself defines
a plane, and the intersection of two planes is a line, then the
sweeping beam creates a straight line path on the wall. This
case is conceptually equivalent to a large sweeping beam il-
luminating a smaller linear filament. For simplicity, unless
stated otherwise, it will be assumed that the plane of the
sweeping beam is perpendicular to the wall.

4.1 Sweeping beam with constant linear speed

A simple but informative scenario is that of a single spot
moving with a constant linear speed v across a scattering
wall. The distance between the observer and a given point
on the line of illumination will be labeled D with minimum
distance Dmin. It will be assumed that v > c so that superlu-
minal spot pair effects can be demonstrated. The direction
with a component toward the observer will be considered the
positive v direction. The angle between the closest position
on the sweeping beam line to the observer and the position of
the beam on the line will be designated φ, and the beam will
be defined as moving from φ = −π/2 to π/2. The geometry
is diagrammed on the right of Figure 5.

The illuminated spot will start its motion at the φ = −π/2
infinitely distant end of the swept line. The spot will then
move along a line with a radial component toward the ob-
server, pass the φ = 0 point closest to the observer, and then
move toward the φ = +π/2 infinitely distant end of the line.

Source

Observer

φ

θ

H

D

min

min

D
H

Spot
Sweeping Direction

Figure 5. The geometry of a sweeping beam that creates a spot or spots on
a planar wall.

Initially, almost the entire spot velocity is directly radially
toward the observer, so vr ∼ v. This is depicted in Figure 6.
Given that v > c, then vr > c at the start, but vr will decrease
monotonically with increasing φ such that vr = −v sin φ.
Clearly, vr = 0 when φ = 0. Therefore, at some point, vr
must cross from being greater than c to being less than c,
passing a location where vr = c. This location is defined
by φvirtual

pair = arcsin(−c/v). When v � c, then φvirtual
pair goes

toward zero, the closest point on the sweeping beam line to
the observer.

Speed vr becomes equal to c only once on this line. When
the spot on the filament is at its closest to the observer, at
φ = 0, then by definition all of its speed is tangential, so
that v = v⊥ and vr = 0. After the spot has passed φ = 0, its
projected speed is away from the observer and so vr < 0. For
the rest of this spot’s trip, φ will be greater than zero, and
vr < 0 since the spot is headed away from the observer. In
fact, for all positive and higher φ values, the spot’s radial
speed will always be negative. At some point vr will drop to
below −c, but nothing unusual will be seen by the observer
at the vr = −c location. As the spot finally approaches the
end of the infinite filament, its speed is directly entirely away
from the observer, so that vr ∼ −v.

To better quantify what an observer would see, it is useful
to find the light travel times to the observer from different
locations on the spot’s path. The time it takes for a photon
to go from a point on the spot’s path to the observer will be
designated tpath and is equal to the path length of the light
divided by c. At angle φ, the distance between the observer
and the spot is D = Dmin/ cos φ. Therefore, tpath = D/c =
Dmin/(c cos φ).

Next, define the delay time tdelay as the time between when
the spot starts down the filament and the time when the fil-
ament element at angle φ is illuminated. Distance from the
closest point to the observer to the point being considered
along the filamentary line can be parameterized as D filament =√

D2 − D2
min = Dmin tan φ. It is further assumed that the

filament has total length L which may be infinite. Then,
tdelay = L/2v − D filament/v = L/2v + Dmin tan φ/v, where a
negative φ indicates the spot is seen during approach.
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Scattering surface

Observer

Real spot
v

v
r

v┴

Figure 6. The geometry of a spot moving with constant linear speed when the spot is far from the observer. Note that in
this situation, most of the spot’s speed v is radially toward the observer, so that v ∼ vr .

From the time the spot started down the filament to reach
φ, to the time light reaches the observer from the spot at φ is
tobs = tdelay + tpath such that

tobs = L

2v
+ Dmin

c cos φ
+ Dmin sin φ

v cos φ
. (6)

The observer will first see the spot at the φ location where
the total time it takes for light to reach the observer, tobs, is at
a minimum. Mathematically, this occurs when dtobs/dφ = 0.
Since v > c, this does not occur infinitely far up the filament,
and since it is a temporal minimum, spots will be perceived
by the observer on both sides of this location at future times.
Therefore, the φ value at this location will be referred to as
φvirtual

pair . One spot of the pair appears to the observer to move
along the filament with a component toward the observer,
while the other appears to move in the opposite direction.
These two spots will appear to diverge to opposite ends of
the filament.

The transverse speed of the spot will be observed to be

u⊥ = D
dφ

dtobs

= c v cos φ

v sin φ + c
. (7)

This transverse speed diverges when φ = φvirtual
pair . Specifi-

cally, when φ is slightly less than φvirtual
pair then u⊥ is negative

and very large, meaning that one image of the spot is seen to
start its motion away from the observer quite quickly. Also,
when φ is slightly greater than φvirtual

pair , u⊥ is very large and
positive, meaning that a second image of the same spot also
appears to start its motion quite quickly, but in this case
toward the observer.

In sum, even though only a single superluminal spot ever
existed on the wall, the first thing the observer sees is a spot
pair creation event at φvirtual

pair . The two perceived spots move
away from each other, each, at first, with infinite angular
speeds, but each quickly slowing. These two virtual spots will
always remain visible to the observer, each always moving
toward opposite ends of the filament. Note that when v < c
then φvirtual

pair is not defined, meaning that subluminal real spots
are never seen to create virtual pairs. In the above v > c case,
there is never any real spot pair creation event—the existence
of virtual spot pairs in this case is purely perceptual.

4.2 Sweeping beam with constant angular speed

Another useful example occurs when a beam sweeps across
a planar scattering wall at a constant angular speed, here
parameterized as ω. As before, the beam swept line on the
wall is conceptually similar to an illuminated filament. The
source of this spinning beam is considered at rest with respect
to the scattering wall and the observer. With respect to the
beam source, distances along the filament are given by the
parameter H, with Hmin being the closest point on the filament
to the source. With a vertex at the beam source, angles on the
filament are labeled with the parameter θ , with the furthest
point on the filament in the initial direction of the beam to
be θ = −π/2, the closest point to the source as θ = 0 and
the furthest point opposite the initial direction of the beam
to have θ = π/2. Note that ω = θ̇ . The geometry is shown
diagrammatically on the left part of Figure 5.

This scenario starts with the light beam pointing parallel
to the wall. As the beam tilts toward the wall, the first illu-
minated part of the wall will not be infinitely far from the
source, at θ = −π/2, because it will take an infinite time for
light to reach that far from the beam source. Starting from
the time when the beam points toward θ = −π/2, the delay
time it will take for the rotating beam to point toward position
θ on the filament will be tdelay = (π/2 + θ )/ω. The time it
takes for light to travel from the source to position θ on the
filament will be the path length divided by the speed of light,
so that tpath = Hmin/(c cos θ ). From the start, the time that a
filament position at θ will be illuminated (and so host a ‘real’
spot) will be

treal = tdelay + tpath = π/2 + θ

ω
+ Hmin

c cos θ
. (8)

Now, the first illuminated point of the filament oc-
curs when dtreal/dθ = 0, which occurs when 1/ω +
(Hmin/c)(sin θ/ cos2 θ ) = 0. Therefore, the θ of first illu-
mination occurs when

sin θ

cos2 θ
= −c

Hmin ω
, (9)

which has solution

θ real
pair = arcsin

⎛
⎝Hminω

2c
−

√
H2

minω
2

4c2
+ 1

⎞
⎠ . (10)

PASA, 32, e001 (2015)
doi:10.1017/pasa.2014.46

https://doi.org/10.1017/pasa.2014.46 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2014.46
https://doi.org/10.1017/pasa.2014.46
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Figure 7. The absolute value of the speed of real spots moving across a
planar wall or linear filament is plotted against the beaming angle, for the
case when the spots are created by a single fixed beam rotating with a
constant angular speed in a plane perpendicular to the wall. The beam first
points toward θ = −90◦, moves to point toward the closest point on the
scatterer at θ = 0◦, and ends at θ = 90◦. A divergent spike results from a
real spot pair creation event and occurs for a beam with any finite angular
speed. The superluminal spots mark the first section of the wall actually
illuminated by the beam. The plot labels refer to the real spot speed at
θ = 0.

Since θ locations on either side of θ real
pair will be illuminated

after θ real
pair , a spot on one side of θ real

pair will become illuminated
at the same time as a spot on the other side. For this reason,
θ real

pair is considered the location of the creation of a real pair of
spots. Interrogation of the treal Equation (8) above indicates
that the further that θ is from θ real

pair , the later in time it becomes

illuminated. Therefore, the spots created at θ real
pair will move on

the filament away from θ real
pair and each other. The analogous

quantity to θ real
pair in the previous section on beam-illuminated

spheres is φreal
pair.

The speed of the beamed real spot on the filament perpen-
dicular to the direction to the source is Hdθ/dtreal . Therefore,
the speed of the beamed real spot on the scattering wall is
v = (H/ cos θ )dθ/dtreal which gives

v = c Hmin ω

c cos2 θ + ω Hmin sin θ
. (11)

When θ = θ real
pair , v diverges. Also, v changes sign on either

side of θ real
pair , meaning that each real spot in the created pair

moves in opposite directions on the filament, as indicated
above. Even if v at θ = 0 is subluminal, v may exceed c at
other values of θ .

A plot of the absolute value of real spot speed on the
wall as a function of θ is shown in Figure 7 for three values
of the speed across the closest section. Formally, vclosest =
ω Dmin. In general, the lower the sweep speed, the closer
the spot pair creation event will be to θ = −90◦ = −π/2

rad. Conversely, the higher the sweep speed, the closer the
real spot pair creation event will be to θ = 0. The two lines
on each plot depict the speed of each spot during a single
sweep of constant angular speed. The real spot with the most
negative θ will move in the opposite direction to that of the
sweeping beam. This real spot is created at θ real

pair with formally
infinite speed and will always drop toward | v |= c as θ drops
to −π/2 radians, formally reaching | v |= c at θ = −π/2.

The real spot with the larger θ will move in the same
direction as the sweeping beam and will also be created at
θ real

pair at formally infinite speed and at the same time as the
other spot. Although, this real spot will at first have its speed
drop below | v |= c as θ further increases, its speed will
rise toward | v |= c as θ rises toward π/2 radians, formally
reaching | v |= c at θ = π/2.

What does an observer see? For the didactic purpose of
enhancing the prevalence of superluminal spot pair effects,
the observer is considered to be closest to the later part of
the beam sweep, at positive θ , as depicted in Figure 5. As
seen by the observer, angular placement of the illuminated
sections of the filament will be labeled φ with φ starting
at −π/2 and extending to +π/2. The distance between the
observer and position φ on the filament is labeled D. The
minimum distance between the observer and the illuminated
filament on reflecting wall is labeled Dmin which occurs at
φ = 0. The spot’s velocity along the filament can be broken
up into components perpendicular and radial to the observer
such that

v⊥ = c Hmin ω cos φ

c cos2 θ + ω Hmin sin θ
, (12)

and

vr = c Hmin ω sin φ

c cos2 θ + ω Hmin sin θ
. (13)

Note that θ and φ are not independent. Given positions of
the source and observer, one can compute φ given θ and
vice versa. Also, when φ is near −π/2 or +π/2 then θ will
approach the same value, and vice versa.

To decipher what an observer would see, it is important
to first find how vr changes as the beam sweeps through
one cycle. First considering when φ is near −π/2, vr will
be negative, meaning that a spot is perceived moving away
from the observer. As φ increases, there will be discontinuous
jump in vr where vr suddenly goes from negative infinity
to positive infinity. For yet larger φ values, vr is positive,
as a spot is moving toward the observer, but decreasing in
magnitude. Eventually, as a spot’s vr decreases, it will drop
from being superluminal to subluminal. This vr = c location
will be referred to as the spot ‘virtual pair creation’ location:
φvirtual

pair . As φ increases further, vr will continue to decrease to
zero and then past zero into negativity. Since as φ continues
to increase, vr will only become more negative, then never
again will vr drop from (positive) superluminal to subluminal.
Therefore, no more virtual spot pair events will be observed.
As φ approaches π/2, vr will continue to drop asymptotically
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10 R. J. Nemiroff

Figure 8. The instantaneous perceived brightness of virtual spots perceived
moving across a planar wall or linear filament, as observed from the beam
source, is plotted against the beaming angle. Here, the spots are created
by a single fixed beam rotating with a constant angular speed in a plane
perpendicular to the wall. The beam first points toward θ = −90◦, moves
to point toward the closest point on the scatterer at θ = 0◦, and continues
on to 90◦. The divergent spike results from a virtual spot pair creation event
and occurs for a beam with any finite angular speed. The virtual spot pair
creation event is the first light seen by the observer. The plot labels refer to
the spot speed at θ = 0.

toward −c as the illuminating beam becomes increasingly
parallel to the planar scattering wall.

To better quantify what the observer will see, the timing
of arriving photons will be calculated. Starting from the time
when the source first started releasing photons as it pointed
toward θ = −π/2, the time it takes for a photon to reach the
observer is

tobs = tdelay + tillum
path + tobs

path = treal + tobs
path

= π/2 + θ

ω
+ Hmin

c cos θ
+ Dmin

c cos φ
, (14)

where tdelay is the time it takes, since the start, for the beam
to point at position θ , tillum

path is the time it takes for light to
go from the beam source to illuminate the scattering wall
at position θ , and tobs

path is the time it takes for light to go
from position φ to the observer. The location of the observed
(and hence virtual) spot pair event will be the φvirtual

pair angle
that satisfies dtobs/dφ = 0. Detailed inspection of how tobs
changes with φ reveals what the observer will see and when.

Assuming that the wall is a Lambertian scatterer, it is
straightforward to compute the relative brightness changes
of the virtual spots visible to the observer. For increased sim-
plicity, it will be further assumed here that the observer is at
the source so that θ = φ. Specifically, using reasoning sim-
ilar to the above lunar scenario, the instantaneous perceived
brightness of a sweeping virtual spot as a function of θ is pro-
portional to b ∝ u⊥(Dmin/D)2. This instantaneous perceived
brightness is depicted in Figure 8. In this Figure, the unusual

peak in brightness is caused by the perceived virtual spot
pair creation event at φvirtual

pair . The high instantaneous per-
ceived brightness is essentially caused by the relatively short
time scale during which a relatively large part of the (nearly)
uniformly bright scattering surface is scattering back light.

Given all of this detail, what an observer sees in this ro-
tating beam scenario is surprisingly simple. The first phe-
nomenon observed is a spot pair creation event at φvirtual

pair .
The two virtual spots appear to move away from each other,
each, at first, with infinite angular speeds, but each quickly
slowing. These two virtual spots will always remain visible
to the observer, each always moving toward the opposite dis-
tant ends of the wall or filament, and fading. This case is
descriptively similar, as seen by the observer, to the previous
case where the real spot speed was constant.

4.3 Sweeping beams across walls or filaments in
astronomical settings

Similar but more complex scenarios than those considered
above include eclipse light boundaries moving across the
surface of reflection nebulae. Such mechanisms are thought
to be the root cause of variable nebulae. Possibly the most
notable variable nebula is Hubble’s Variable Nebula (HVN:
NGC 2261). The HVN, first noted by Hubble (1916), lies at a
distance of about 2 500 light years, estimated by an assumed
association to the nearby open cluster NGC 2264 (Jones and
Herbig 1982). Changes in the nebula’s brightness have been
attributed to shadows of opaque clouds moving between the
bright star R Monocerotis and a reflection nebula (Johnson
1966, Lightfoot 1989). Seeming shifts in angular structure
on the order of 0.5 arcmin have been recorded over the time
scale of tens of days. If attributable to single occulting events,
these shifts indicate spot motions on the order of one light
year per year, equivalent to c. This speed is an estimate of
v⊥ and not v or vr and so does not directly reveal the key
vr parameter that determines the perceived spot pair creation
and annihilation events. Nevertheless, it seems reasonable to
assume that given a long enough reflection train, virtual spot
pair creation or annihilation events do occur as described
above in the planar reflecting model. Additionally, sloping
or bumpy terrain on the reflection nebula could well give rise
to one or more vr = c crossings, and so yield virtual spot pair
creation or annihilation events similar to that described in the
spherical reflecting model.

Although, observers may be unlikely to see a spot pair cre-
ation event on the HVN without prior warning, pairs of spots
moving away (toward) from each other might be observable
from which a virtual spot pair creation (annihilation) event
might be inferred. So long as the geometry of the scattering
surface and the direction to the beam source remains rela-
tively unchanged, the location of one spot pair event may
also be the location of future spot pair events. For example,
eclipses may show both ingress and egress events, and a sin-
gle cloud moving near the source star might have multiple
areas of high and low opacity.
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Other variable nebulae with potentially similar geome-
tries that might show superluminal spot pair events include
Hines Variable Nebula (see, for example, Moore 2005), Gyul-
budaghian’s Variable Nebula (the variable nebula associated
with the variable star PV Cephei; Boyd 2012), infrared vari-
able nebula IN L483 (Connelley, Hodapp, & Fuller 2009),
and NGC 6729 (the rapidly variable nebula associated with
the star R Coronae Australis; see, for example Graham &
Phillips 1987). Additionally, the system UW Cen is a can-
didate for observerd virtual spot creation and annihilation
events as it features an R Coronae Borealis star hypothe-
sized to act as a lighthouse shining through gaps in thick dust
clouds near its surface, illuminating changing portions of a
surrounding reflection nebula (Clayton 2005).

High frequency monitoring of variable nebulae might be
able to find locations where virtual spot pair creation and
annihilation events are occurring, and use these to build up
information about the geometry of the surrounding reflect-
ing surfaces. It is beyond the scope of this work to model
these nebulae in detail but rather to raise the possibility
that such effects might be occurring, discoverable in prac-
tice, and could yield information about the nebulae. A more
specific investigation will be given in Zhong and Nemiroff
(2015).

Besides variable nebulae, another astronomical system that
might show superluminal spot pair events are planetary neb-
ulae. In particular, knots of optically thick dust in plane-
tary nebulae are thought to cast shadows from the central
star creating regions where specific ionizations do not oc-
cur. These shadows may move quickly as ionization fronts
cross background gas, and could, in theory, move superlu-
minally. Prominent possibilities include the NGC 7293 the
Helix Nebula (O’Dell, Henney & Ferland 2007), NGC 6543
the Cat’s Eye Nebula (Balick 2004), and bi-polar planetary
nebula M2-9 (van den Bergh 1974; Trammell, Goodrich,
& Dinerstein 1995; Corradi, Balick, & Santander-Garcı́a
2011).

Another system type that might show superluminal spot
pair events are circumstellar disks. Specifically, a bright star
could create a silhouette of an opaque disk onto more distant
reflecting material, enabling a shadow magnified in angular
size by as much as a factor of 100 (Pontoppidan & Dulle-
mond 2005). Potentially, rapidly moving but subluminal in-
homogeneities in the interior circumstellar disk could cast
shadows moving superluminally onto a background. One ex-
ample system is the Serpens Reflection Nebula and Ced 110
IRS 4 in the Chamaeleon I molecular cloud (Pontoppidan &
Dullemond 2005). Another is the case of HH 30 where an in-
ner circumstellar disk is casting a large and variable shadow
on an outer disk (Watson & Stapelfeldt 2007).

Pulsars surrounded by ionized shells provide yet another
type of candidate system to cast superluminal shadows. In
the radio, unusual ‘moving’ pulses from the Crab pulsar
have been seen during several epochs and interpreted to be
reflections of the beam off of ionized shell(s) in the outer part
of the nebula (Lyne, Pritchard, & Graham-Smith 2001).

5 DISCUSSION AND CONCLUSIONS

Given present knowledge of the geometry of several astro-
nomical settings, it seems virtually certain that superluminal
spots, shadows, and spot pair events do occur out in the
universe. Possible venues include the Moon, nearby planets,
passing comets and asteroids, variable nebula, pulsar jets, and
jets in Herbig–Haro objects. What is less certain is whether
virtual spot pair phenomena can be found in practical observ-
ing programs from Earth, and whether they can, in practice,
reveal useful information.

If found, superluminal virtual spot pair events could pro-
vide information that, theoretically, is not available from ob-
servations of subluminal spots: the radial real spot speed
vr = c. Given an independent measurement of the spot’s
transverse speed, this new radial component could yield an
angular tilt measurement of the scatterer at the virtual spot
pair event location. Conversely, modeling spot pair motion
and flux changes may yield a good estimate of v⊥, the true
perpendicular velocity of the real spot near the virtual spot
pair event location. Additionally, u⊥ could be measured di-
rectly by a series of consecutive images. Since v⊥ = D u⊥,
comparing modeled v⊥ to observed u⊥ values may lead to
an independent distance estimate D to the scattering sur-
face. Given the observed angle between the surface and the
source, further constraints on the relative distances and an-
gular speeds of opaque occulting clouds moving near bright
sources might be recoverable.

Sweeping beams are not confined to optical light, and in
some systems other wavelength bands might yield more eas-
ily discernable virtual spot pair events. For passing asteroids,
for example, beams in the radio and microwave bands – oth-
erwise used for radar – might be better utilized. Were beam
sizes smaller than surface structures deployed, the identifi-
cation of virtual spot pair creation sites would encode infor-
mation about the shape and size of these surface structures.
Beyond illuminating beam spots and shadows, were a bright
source of ionizing radiation considered, superluminal pairs
of ionization fronts might be observable.

To date, no clear superluminal spot pair creation or an-
nihilation event has ever been reported. One reason is that
the entire phenomenon is virtually unknown. Another rea-
son is that discovery typically requires repeated observa-
tions of angularly extended systems. Dedicated monitoring
of candidate systems has been typically sparse, to date. Po-
tentially, the ability to detect superluminal spot pair events
could be an impetus to increase monitoring, particularly if
these events could yield discerning cloud dynamics or inde-
pendent distance estimates. Developing and future sky survey
projects such as Pan-STARRS (Panoramic Survey Telescope
and Rapid Response System) and LSST (Large Synoptic
Survey Telescope) may record multiple images in due course
from which differential comparisons could reveal superlumi-
nal spot pair events.

If the observer is able to control and repeat the sweeping of
superluminal beams across a local target, a three-dimensional
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map of the target object could be made, in principle. This is
because any part of an object that scatters light can be swept
with a beam multiple times, with multiple speeds, and at mul-
tiple angles until that part of the object shows superluminal
spot pair events. Given a projected angular sweeping speed
w⊥ in the sweeping direction and that vr = c at the spot pair
creation location, one can solve for the tilt φvirtual

pair that this
part of the scattering surface must have relative to the plane
of the sky. The azimuthal direction of the tilt at this deflector
location can be found by noting the sweep direction with the
slowest w⊥ that returns spot pair events. This whole process
can then be repeated, in principle, for every observable parcel
of the target object. The entire procedure can be considered
a kind of superluminal pair spot tomography.

A simple example of the potential utility of superluminal
spot detection is in learning attributes of a sphere. Sweep-
ing the sphere across its center at a given angular speed ω

will generate a spot pair creation event at a φ = φvirtual
pair that

can be input to Equation (2) to find w⊥, hence determining
the distance D to the sphere from only angular information.
Conversely, D can even be recovered by noting the shape
of the light curve, and hence using only temporal informa-
tion. Imagine now that this sphere itself has a small spherical
bump on it – the location and size of this bump can also
be found by angular or temporal analyses of superluminal
sweeps. Sweeping the sphere with a one-dimensional line
(of spots) may even return all of this information without
even knowing, at first, the precise angular location of the
sphere.

The recoverable information from superluminal spot pair
event analyses is different from the strictly angular infor-
mation that occurs for single exposure photography and
the strictly depth information that is obtained by single-
illumination radar. Although the indicated use of an opti-
cal laser may indicate to some that this method is a type of
lidar, the continuous sweeping beam and the reliance on su-
perluminal spot pair events makes this method significantly
different than standard timing-differential lidar.

It is of interest to recognize that due to superluminal spot
pair events, the kinematics and observed motions of scattered
spots from sweeping beams are, in general, not time symmet-
ric. Consider, for example, a real superluminal spot moving
along a wall. Only when moving toward the observer – when
its radial speed drops from superluminal to subluminal—will
an observable spot pair creation event occur. The same real
spot does not create a virtual spot pair event after it passes
the observer. Therefore, given a movie of a spot moving on a
wall, one can use the virtual spot pair creation event to discern
if the movie is being shown time-forward or time-backward.
The creation and observation of superluminal spots moving

on walls are therefore some of the more simple physical
systems that shows a clear direction of time.

Sweeping beams are not the only mechanism that can
create superluminal spot pair events. Another mechanism is
the reflection of a spherically expanding flash of light off
existing material.
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