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On the modelling of ice-thickness redistribution
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ABSTRACT. An ice-thickness distribution model based on physical ice classes is
formulated. Pack ice is subdivided into open water, two different types of undeformed ice,
and rafted, rubble and ridged ice. Evolution equations for each ice class are formulated and
a redistribution between the ice classes is calculated according to a functional form depending
on the ice compactness, thickness and velocity divergence. The ice-thickness distribution
model has been included in a coupled ice-ocean model, and numerical experiments have
been carried out for a simulation of the Baltic Sea ice season. The extended ice classification
allows separation of thermally and mechanically produced ice. Inherent thermodynamic
growth/melting rates of the ice classes can be introduced into the model, giving a more
detailed seasonal evolution of the pack ice. In addition, the model provides more information
about the surface properties of pack ice.

Numerical experiments for the Baltic Sea show that both the sub-basin and inter-basin
ice characteristics were realistically simulated by the model. Deformed-ice production
was related to storm activity. Most of the deformation was produced in the coastal zone,
which 1s also an important region for thermodynamically produced ice because of the ice
growth in leads. The modelled mechanical growth rates of ice were 0.5-3cmd ' on a
basin scale, close to the thermodynamic ice-production rates. The deformed-ice fraction
was 0.2 in mid-winter and increased to 0.5—1.0 during spring.

1. INTRODUCTION

The sea surface in polar regions is composed of open water,
level ice and deformed ice. Undeformed ice is produced by
the thermodynamic growth of sea ice as a result of the freez-
ing of sea water. The dynamics of the ice pack is responsible
for the production of deformed ice. During convergent ice
motion, ice floes are compressed together, forming rafted,
rubble and ridged ice, which are all types of deformed ice.
On a geophysical scale the ice-thickness variability in a
specific region is described by the ice-thickness distribution
function (Thorndike and others, 1975). In addition to advec-
tion and thermodynamic growth, the evolution of ice-thick-
ness distribution is due to production of deformed ice and
open water. Production of deformed ice is called a redistri-
bution of ice thickness, and this is the most problematic term
in the evolution equation of the ice-thickness distribution.
The physical behavior of sea ice is highly related to the ice-
thickness distribution. It is known that the ice-velocity field
depends on the ice-thickness distribution and vice versa,
and previous model studies (Shinohara, 1990; Lepparanta
and others, 1998; Arbetter and others, in press) suggest the
need for a better description of ice thickness to improve
dynamic ice-model simulations.

Ice strength, albedo, surface temperature and roughness
are dependent on ice type (cf. Squire, 1998), and a detailed
description of ice-surface characteristics is necessary for
coupled models to calculate realistic fluxes of heat and
momentum at the ocean—ice—atmosphere interface (Vihma,
1995). For example, the atmosphere—ice drag coefficient
varies from 1.2 x 10 *(very smooth first-year ice) to 6.7 x10
(extremely rough multi-year ice (Guest and Davidson, 1991),
and the ice—ocean drag coefficient varies from 1.0 x 10 to
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34.8 x10 * (Omstedt, 1998). Tremblay and Mysak (1997) and
Steiner and others (1999) have shown that the ice thickness
and roughness-related drag coefficient improve numerical
simulations.

As simple a problem as the calculation of the total mass
of sea ice cannot be solved accurately with either observa-
tional techniques or existing ice models alone, because of
the uncertainties in determining the deformed-ice portion.
The fraction of deformed ice has been estimated to be about
one-third of the total ice mass in the Baltic (Lewis and
others, 1993) and one-third to two-thirds in the Arctic (Flato
and Hibler, 1995). Because of the critical importance of a
proper description of the ice-thickness distribution in sea-
ice modelling, Thorndike and others (1975) developed a gen-
eral ice-thickness distribution theory, which was implemen-
ted in a pan-Arctic model by Hibler (1980). However, these
contributions have not received much attention, and the
two-level model of Hibler (1979) has become the most widely
used sea-ice model. Gray and Morland (1994) and Gray and
Killworth (1996) pointed out that the classic formulation of
ice-thickness and -compactness evolution equations without
any ridging terms leads to a physically unrealistic growth in
ice area. Harder and Lemke (1994) extended the Hibler
(1979) model to include evolution equations for ridged-ice
thickness and compactness with ridging terms, and applied
the model to the Weddell Sea, Antarctica. Flato and Hibler
(1995) extended the general ice-thickness distribution theory
of Thorndike and others (1975) to include ridged ice and
modelled the Arctic pack ice. In that model it is assumed that
a constant fraction (15-20%) of the thinnest undeformed ice
forms ridged ice. An important improvement made by the
Flato and Hibler (1995) model is that the ice strength is
taken as a function of the energy consumed for ridge genera-
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tion. Hibler (1980), Flato and Hibler (1995) and Arbetter
and others (in press) have shown that an explicit calculation
of deformed- and new-ice production improves the results of
climate models of Arctic sea ice.

Leppdranta (198la) distinguished between undeformed
and deformed ice in a Baltic Sea ice forecasting model. The
prognostic variables of the model were the level-ice thickness,
ridge density, ridge sail height and total ice concentration.
This scheme, with minor modifications, has been used in
recent Baltic Sea ice models (Zhang and Leppéranta, 1995;
Haapala and Leppéranta 1996; Schrum 1997). Some short-
comings of the Leppdranta (198la) ice-redistribution scheme
are that the model does not include separate equations for
level-ice and deformed-ice concentrations, and that it
assumes that ridging occurs only when ice concentration
reaches unity during convergence.

This paper presents an ice-thickness distribution model
based on physical ice classes. Gray and Morland’s (1994)
evolution equations for the ice concentration and thickness
have been extended and an ice-thickness distribution model
has been formulated where the pack ice is subdivided into
open water, two different types of undeformed ice, and
rafted, rubble and ridged ice. The ice-thickness distribution
model has been included in a coupled ice—ocean model, and
numerical experiments have been conducted which
simulate Baltic Sea ice conditions.

2. THEORY

Pack ice contains open water and several different types of
ice (Fig. 1). The ice-thickness variability in a region is a result
of the ice motion and the varying age of the sea ice. Firstly,
ice 1s classed as undeformed or deformed (WMO, 1970).
Undeformed ice is generally called level ice and is sub-
divided according to its phase of development. In this paper,
level ice refers to undeformed ice in general. The lead-ice
class is used to describe new ice growth in fractures or leads.
Subdivisions of the deformed ice are rafted ice, rubble ice
(or hummocked ice) and ridged ice (WMO, 1970). The

LEAD ICE

LEVEL ICE

= | KM
Fig. 1. Aerial photo of a deformed-ice field in the Bay of Bothnia,
March 1994 (courtesy of the Swedish National Defence
Research Establishment ).

428

https://doi.org/10.3189/172756500781833106 Published online by Cambridge University Press

deformed-ice types are produced when the ice field experiences
convergent motion. If the ice is thin enough, it forms rafted ice,
L.e. ice floes partly override each other. Ridges are stripe-like
formations produced by pressure between colliding ice floes.
In the Baltic, the heights of the ridges are typically 5-15m,
and the maximum thickness is about 30m (Palosuo, 1974;
Kankaanpad, 1991; Leppdranta and Hakala, 1992). Rubble
fields are a conglomeration of small ice pieces oriented
randomly but forming a fairly constant-thickness layer of ice.
This layer is frozen together after an ice field breaks up into
pieces with a diameter of the order of 1m which are then
pushed together by the ice pressure. Very few data are found in
the literature about the formation and the detailed morpho-
logical characteristics of rubble fields. Parmeter (1975) and
Hopkins (1998) suggested that the rubble fields are an extension
of ridged ice and rubble and are created after ridge formation
for as long as convergent motion continues and there is any
undeformed ice left. The present model cannot take account of
such a process, so a crude approximation of the generation of
rubble fields is made in this study. We assume that the rubble
fields are formed from lead ice which is neither thick enough
to form a ridge nor thin enough for rafting.

Gray and Morland (1994) derived evolution equations
for ice concentration and thickness which explicitly state
that local changes of ice compactness and thickness are due
to advection, redistribution of mass and the thermodynamic
growth or decay of the ice cover. An alternative derivation is
presented by Shinohara (1990) and Schulkes (1995). The
formulae are

DA

ﬁ‘f‘(l—’r‘)AdiVU:@A (1)
D
D—]Z+ rhdiva = 0", (2)

where A is the ice compactness, h is the mean ice-floe thick-
ness, 7 is the ice-thickness redistribution function, div % is the
divergence of the horizontal ice-velocity field, and ©4 and ©"
are the thermodynamic growth rates of the ice compactness
and thickness, respectively. These equations are reduced to
the same evolution equations as those solved in the Lepparanta
(198la) model by choosing the redistribution function to be
unity during convergent ice motion for compact pack ice. In
other conditions, the function is zero.

In addition to direct discretization of the ice-thickness
distribution (Thorndike and others, 1975; Flato and Hibler,
1995; Arbetter and others, in press), the ice-thickness
distribution can be approximated with a model based on ice
classes. The primary classification is a separation of the ice
mass into an undeformed and a deformed part (Leppéranta,
198la; Harder and Lemke, 1994; Haapala and Leppéranta,
1996). In this paper, undeformed ice is further separated into
two classes called level ice (A, b)) and lead ice (A, hie).
Deformed ice is classified as rafted ice (Aya, Ara), rubble ice

(Apy, hyy) and ridged ice (A, hyi). Formally,
A= Al + Ale + Ara + Aru + Ari (3)
h = (Alhl + Alehle + Arahra + Aruhru + Arihri)/A . (4)

Note that the mean ice thickness per unit area is h = Ah, and
the mean level-ice thickness per unit area is ﬁl = Ahy, etc.
The primary deformation mechanism is that the weakest
ice class experiences deformations, 1.e. level or lead ice is the
source of deformed ice (Fig. 2). In addition, rafted ice can form
double-rafted ice or ridges, but those mechanisms are neglected
in this paper. Firstly, the ice-thickness redistribution function is
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g, 2. Schematic figure of the wce-thickness redistribution of
the ice classes. Solid lines indicate mechanical, and dashed
line thermodynamic transformation processes of the ice mass
described in the present work.

separated into the parts which denote the origin of the
deformed ice,

r="r+"7"e, (5)

where 7 and 7} are the redistribution functions of the level
ice and lead ice, respectively. Redistribution functions are
further separated into the parts which generate the rafted
and the ridged ice. Rubble fields are generated only from
the lead ice.

= (6)

ne =i o+ 7)
Evolution equations

The evolution equations of the ice classes are based on Gray
and Morland’s (1994) equations, but mass flux due to re-
distribution occurs only from undeformed ice to deformed
ice, 1.e. redistribution of ice is a source of the deformed ice
and a sink of the undeformed ice. The quantity of the mass
flux depends on the deformation mechanism. Rubble and
ridged ice are generated from an ice sheet, and the mass flux
is directly proportional to undeformed ice thickness
(hy divl). The mass flux due to rafting is proportional to
twice the thickness of undeformed ice (2h, divw’) because
the ice sheets are overriding during rafting. The equations
for level ice are:

DA ~ |

o= (= = AT — 1 — 1110+ ] (8)
Dh o i

Ttl = (27"1a + Tfl)hl dive + Al@?, (9)

where tilde characters denote mean quantities per unit area.
C., and C; are the rate of loss of level-ice concentration due
to rafting and ridging. Tor the lead ice we have similar
equations:

DA .-
= (= = D) A di T
— 1T Chy — 11 Chy — 111G + 65 (10)
Dh o
e _ (o0 iy o) b iV + AO) (1)

Cy 1s the rate of loss of lead-ice concentration due to the
formation of a rubble field. The principle of the above
equations is that thermodynamically produced level and
lead ice are the source of the deformed-ice mass. The first
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terms on the righthand side of the ice-concentration
equations describe the compaction of the ice pack during
convergence, and the other terms indicate the decrease in
the undeformed-ice concentration due to deformation. The
redistribution functions link the evolution equations of the
deformed-ice classes to the evolution equations of the level
and lead ice. Equations for the rafted ice are:

DAra

S = (7 1) G + O, (12)
Dh,, » -
o= 20 1) hedivW + 4,0, (13)

The deformed-ice classes are not expected to further
redistribute to other deformed-ice classes, so there is no
divergence term in the ice-compactness equations nor a
mechanical sink term in the ice-thickness equation.
Formulas for the rubble ice are:

DA, ru A

Dt = Me Cry + @ru (14)
Dh,

Dtu = —nghle leﬁ + Aru@fu' (15)

Finally, the equations for the ridged ice are:

DA, i i

op = (1 +7)C + 6 (16)
Dhy;i i i) di

D = —(mhi+rehe) div + A0 (17)

The key problems in the above equations are to determine the
redistribution and formation functions. The redistribution
functions 7 describe the intensity and type of deformed-ice
production. The formation functions C' describe the growth
rate of the deformed-ice area. Two essential constraints for
the redistribution functions are that (r,+1,) — 1 when
A —1,and (r] + 7¢) — O when A — 0.

Redistribution functions

Although there is no unequivocal relationship between the
properties and deformations of the pack ice (Tuhkuri and
Lensu, 1998; Hopkins and others, 1999) the following points
are generally accepted: (1) deformations occur only during
convergence; (ii) the rate of deformation depends on the ice
compactness; and (iii) the type of deformation depends on
the ice thickness. The first point is self-evident and can be
handled by introducing the Heaviside function for horizontal
divergence (Gray and Morland, 1994). The ice-compactness
dependence is also clear, but an exact form of the function is
not known. Harder and Lemke (1994)and Flato and Hibler
(1995) used an exponential form similar to that in the ice-
strength equation of Hibler (1979), and that form is also used
here. According to field observations, the type of the deform-
ation depends on the undeformed ice-thickness. If the ice 1s
thin, it forms rafted ice. The critical ice thickness for rafting
(hera) can be determined by the Parmeter (1975) law. On this
basis we can formulate the redistribution functions ad hoc,
where the ice-thickness dependence follows the logistic curve
and the ice-compactness dependence follows the exponential
form. The logistic curve is used because it is more suitable for
numerical calculations than the numerically ill-behaved step
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function. The redistribution functions for level ice deform-
ations are :

nt = [1 — (1 + hcraeB(h]hm.a)>l/hcra}

e O (—divd) H (b — hie) (18)
1 = (1 Bt

. e*C(lfA)H(fdiVﬂ})H(hl — hie), (19)

where hey is critical thickness for ridging, assumed to be
equal to hepa, B is a parameter which determines how quickly
the redistribution function changes with the changing ice
thickness, C is the ice-compaction constant, H(—div) is
the Heaviside function of divergence of the horizontal
velocity field, and H(h; — hy.) is the Heaviside function for
the thickness difference between the level and lead ice and
determines whether the level or lead ice deforms.

Tor lead-ice deformation we have similar equations
except that H(hj, — h) takes the opposite form and we
assume that the critical ice thickness for ridging is larger
than hep,. By this assumption rubble ice is formed when the
undeformed-ice thickness range is ficya to heyi. The redistri-
bution functions for lead-ice deformations are:

71/hcm
rlra = |:1 - <1 + hcraeiB(hlih"“‘)) :|

e YA H(—divd ) H (he — i) (20)
‘ —1/heri
= <1 + hcrie_B(}”_h““))
e OO F(—divT ) H (e — ), (21)

T (e*CU*AO — - rf;)H(—diva’)H(hle — ). (22)

The above formulation states that only the thinnest un-
deformed ice experiences deformations. If both of the ice
classes are expected to deform at the same time, the
H(hy — hj) function can be replaced by a function which
shares deformation between the level and lead ice.

For the Baltic Sea, the Parmeter (1975) law gives 8 cm as
the critical ice thickness for rafting (Leppdranta, 1981a). For
lead-ice deformation, we assume that the minimum thick-
ness for forming a ridge is 12 cm. Figure 3 illustrates the
dependence of the redistribution function on undeformed-
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Fig. 3. Dependence of the redistribution functions for the rafling
(ra), rubbling (ru) and ridging (ri) on the lead-ice thickness
used in this study, heya = 8 cm, heyi = 12cm.
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ice thickness with these values. B and C are set at 50 and
20, respectively.

In addition to the mechanical redistribution functions, a
mass flux of ice between the ice classes results from thermo-
dynamic growth of ice. In the present work the lead ice is
redistributed to level ice using a linear function when the
lead-ice thickness is 20-30 cm (7" in Fig. 2).

This approach does not take into account shear effects
on the deformations. In the Arctic, shearing deformations
contribute to the opening and closing of leads (Stern and
others, 1995). Such observations are lacking in the Baltic,
and the parameterization of the shear effects depends
greatly on the scale and has uncertainties (Flato and Hibler,
1995). In a further development of the present model, the
deformed-ice production due to shear is taken into account
when appropriate field data are available.

Formation functions

The growth rate of the deformed-ice area depends on the
shape and porosity of the deformed ice. If we assume that
the horizontal divergence of the ice velocity is fully
consumed by the wvertical velocity needed for the
deformations and deformed-ice thickness is constant, then
according to the mass-conservation law, the growth rate of
the deformed-ice area Cy, for a rectangular-shaped ridge is
generally in the following form:

1y
(1—k) ha’

where 1 is the mass flux of ice from undeformed ice to

Cae = — (23)

deformed ice, k is the porosity of the deformed ice, and hq
is the thickness of deformed ice. k and hgq are unknown,
and additional equations are needed to close the system.
Several field observations have shown that the porosity of
the deformed ice can be kept constant and the deformed-ice
thickness is related to the undeformed-ice thickness
(Kankaanpai, 1991; Timco and Burden, 1997).

The mass flux 9 during the rafting is 2h, diva, the
rafted ice thickness is 2hy, and its porosity is 0. The growth
rate of the rafted-ice area is simply reduced to:

Cro = —div. (24)

In the Baltic there are no measurements for the rubble ice, so
we assume that the porosity of the rubble field is 0.3, the
same as for the ridges (Leppdranta and Hakala, 1992), and
the thickness of the rubble is four times the undeformed-ice
thickness. The mass flux is h, diva, so the growth rate of
the rubble-ice area becomes

Cry = —0.36 divT. (25)

We assume that the ridges are fully developed and their
sizes follow a morphological model where the sail and keel
heights are proportional to the undeformed-ice thickness
(Timco and Burden, 1997). Observations from the Baltic
suggest that ridge heights are rather constant in a length
scale of 10km (Leppéranta, 1981b; Lewis and others, 1993;
Lensu, 1998), which implies that the ridges are regionally
rather similar and their sizes are limited by the characteristic
undeformed-ice thickness. An empirical fit to the Baltic Sea
ridges gives the following relationship: hq = 17.64 h%
(Kankaanpad, 1991). Equation (23) is derived for a rectangu-
lar-shaped ridge, but if we assume that ridges are triangular
the equation must be multiplied by a factor 2. Furthermore,
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if the porosity of the ridges is 0.3 (Leppdranta and Hakala,
1992), the growth rate of the ridged ice area becomes

Cyi = —0.16 K% divw’. (26)

Momentum balance

Using the ice-class approach has implications for the ice
dynamics also. The momentum balance of the sea ice in a
two-dimensional plane is:

D—> r a w
m(D—qz—i—fk‘xﬂ’) =AT"+7")+mgVH + V -0,

(27)

where m is the total ice and snow mass,  is the horizontal
ice-velocity vector, f is the Coriolis parameter, k is the
upward unit vector, 7" is the air-stress vector, 7 is the
water-stress vector, g is the gravitational acceleration, H is
the sea-surface tilt and o is the internal-stress tensor. When
we know the areal fraction of the ice classes, we can separate
air and water stresses between the undeformed-ice and the
deformed-ice fractions. This is particularly important when
the surface and ice internal stresses are low and the main
forcing for the ice dynamics comes from the ocean stress.

AT = (A4 Ao+ A) Thg + (A + A T (28)
A?w = (Al + Ale + Ara)?:rd + (Aru + Al’i)?gc’ (29)

where ?id and ?gd are surface and bottom stresses represen-
tative of the undeformed ice (smooth surface) and ?Ze and
?ge are surface and bottom stresses of the deformed ice
(rough surface). Note that rafted ice is included in the un-
deformed-ice portion because the rafted-ice surface acts as a
smooth surface. If different drag coefficients for the rubble
and ridged ice are known, the deformed-ice portion can be
further separated.

3. NUMERICAL EXPERIMENTS

The numerical model is based on the Baltic Sea model de-
scribed by Haapala and Leppéaranta (1996). The model
solves the momentum balance of sea ice, the ice-thickness
redistribution and the thermodynamic growth and decay
of ice and is coupled to a simple thermodynamic ocean-sur-
face layer model (Haapala and Leppdranta, 1996). For the
Baltic Sea ice simulations the momentum advection terms
and the sea-surface slope effect are neglected in the momen-
tum balance (Equation (27)). The internal stress of ice is cal-
culated according to viscous—plastic rheology. The ice-
strength parameter is constant and and the momentum
balance is solved by the overrelaxation method (Hibler,
1979). Thermodynamic growth and melting of ice is cal-
culated according to the Semtner zero-level model (Semtner,
1976). All model parameters are the same as in Haapala and
Lepparanta (1996). Equations (8—17) are calculated without
the shear effects.

The size of the numerical grid is 10 in latitude and 20" in
longitude, and the grid covers the whole Baltic Sea. The western
boundary is closed at the Skagerrak (9°30" E). Vertically the
thermodynamics are solved in sigma coordinates. In these
simulations four equally spaced levels were used (0, 0.33, 0.66,
1.0). The model topography is based on the Institut fiir
Ostseeforschung (IOW) database (Seifert and Kayser, 1995).

The model is forced with fluxes of heat, moisture, radi-
ation and momentum which were calculated from the Baltic
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Sea meteorological database of the Swedish Meteorological
and Hydrological Institute. The database includes air tem-
perature, pressure, relative humidity, precipitation and
geostrophic wind components interpolated into a 1°x 1°
grid over the Baltic Sea region. The time interval of the
database is 3 h. The surface wind was calculated from the
geostrophic wind using mean values for the magnitude ratio
and the ageostrophic turning angle which were 0.6 and 17,
respectively (Bumke and others, 1998).

Atmosphere—ice and ice—ocean stresses were calculated
according to Equations (28) and (29), and drag coeffients
were based on the tables of Guest and Davidson (1991) and
Omstedt (1998). For undeformed-ice types we used drag co-
efficients 1.2 x10 * and 1.0 x10 * for air-ice and ice-ocean
stresses, respectively. Drag coefficients for deformed ice were
6.7 %10 * and 84.8 x10 ®. The parameterization methods of
the surface heat and radiation fluxes are similar to those of
Lehmann and Hinrichsen (2000). The initial conditions for
the sea-water temperature and salinity were calculated from
the 1961-90 climatology (Haapala and Alenius, 1994).

The model simulation was made for the ice season 1993/94.
Three annual cycles were calculated before the actual simu-
lation period in order to avoid the effect of initial conditions
on the model results.

4. MODEL RESULTS

In this section we analyze when, where and how much
deformed ice is produced by the model. Model results are
compared to ice-chart information, satellite ice-concentra-
tion data and level-ice thickness observations. Deformed-ice
thickness observations, such as sonar data, are not available.

The ice season 1993/94 was an average winter in the Baltic
(Seind and others, 1996). The initial freezing occurred in the
northernmost areas at the end of October. The northern Bay
of Bothnia and the eastern Gulf of Finland were ice-covered
at the beginning of January. On 1 February the whole Bay of
Bothnia and most of the Gulf of Finland were frozen. The
annual maximum ice extent occurred on 3 March 1994, with
the ice edge located around 59° N. At that time, ice occupied
206 x 10° km” (49% of the Baltic Sea area). Final ice disap-
pearance occurred in the Gulf of Finland in early May and
in the Bay of Bothnia at the end of May.

The model results show that the overall evolution of the
ice season can be reproduced well. Modelled ice extent and
the level-ice thickness (Fig. 4) follow fairly well the ice-chart
information (FIMR, 1994), except that the model slightly
overestimates the ice extent during the whole season.

Observed and modelled ice concentration and thickness
in two locations, the Bay of Bothnia (65°27' N, 23°33" E.) and
the Bothnian Sea (62°47"N,19°36" E), are shown in Figures 5
and 6. Observed ice concentration is based on Special Sensor
Microwave/Imager (SSM/I) data (NSIDC, 1994), and ice
thickness is based on the ice charts of the Finnish Institute
of Marine Research (FIMR, 1994). The SSM/I observations
clearly show the ice-covered period, but SSM/I data give
rather low concentrations during mid-winter (0.7-0.9), much
lower than those given in the ice charts (FIMR, 1994). This
may be because very thin ice is interpreted as open water.
The beginning and end of the ice season are fairly correctly
modelled, but the model gives a higher ice concentration
than the SSM/I data. The SSM/I data show large variations
in ice concentrations due to dynamic and thermodynamic
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1 Jan 1994 Level—ice thickness 1 Feb 1994
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Irg. 4. Modelled mean level-ice thickness of I January, I February, 1 March and 1 May 1994.

effects, and some of these events are reproduced by the the model does not produce any open water as observations
model at both the Bay of Bothnia and the Bothnian Sea sites. show, probably because ice conditions in the model are too
Especially good agreement is evident during the two immobile . In a relatively small basin like the Bay of Bothnia
episodes at the end of March and April. During mid-winter the viscous—plastic ice model tends to underestimate ice
432
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velocity or even have the ice remain stationary when mild or
moderate winds are acting (Leppdranta and others, 1998).
As a result, the modelled ice concentration at the Bay of
Bothnia site is >95% most of the time. During early winter
and spring the lead-ice concentration increases occasionally
up to 20%. At the Bothian Sea site, representing more mobile
ice conditions, the lead-ice concentration is 5-15% throughout
the season.

The annual cycle of the level-ice thickness is rather well
captured by the model (Figs 5 and 6). The difference
between the ice-chart information and the modelled ice
thickness is 210 cm. The modelled ice-thickness time series
show rapid changes due to redistribution and advection of
the ice not evident from the ice-chart data. The ridged-ice
thickness (mean thickness per unit area) shows a stepwise
evolution. At the Bay of Bothnia site the ridged-ice thickness
was about 5 cm during early winter and increased rapidly to
20 cm during a stormy period in early March. At the end of
March the ridged-ice thickness was 30 cm, or about half of the
level-ice thickness. The ridged-ice thickness at the Bothnian
Sea site varied from a few centimeters in mid-winter to 10 cm
in spring (one-quarter of the level-ice thickness).

The above time series show the difference in ice conditions
between the Baltic Sea sub-basins, but many details are also
apparent at the basin scale. The observed ice condition
during the annual maximum ice extent in winter 1994 is
depicted in Figure 7a. Apparent ice conditions reflect the
life history of the ice season. The Bay of Bothnia became
ice-covered in mid-January, and the ridged- and rafted-ice
region in the western sector of the basin was generated at the
end of January (FIMR, 1994; Leppdranta and others, 1998).
The Bothnian Sea became ice-covered in mid-February. At
the end of February the westerly winds prevailed, and a lead
generated on the western side of the basin and the eastern
side experienced heavy deformations. Three classes of ice
are clearly noticeable from the ice chart in the Bothnian
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Sea (Fig. 7a): a zone of 10-20cm thick lead ice on the
western side, 10-25 cm thick rafted ice in the middle, and a
ridged-ice region on the eastern side of the basin. The ridge
areas are concentrated in the eastern and southern areas in
the Gulf of Finland. Figure 7b—d present the modelled lead-,
rafted- and ridged-ice mean thicknesses at the same date,
and show that the observed features are apparent in the
model results. The model-produced ice classes are located
correctly, particularly in the Bothnian Sea, where the model
produced lead ice on the western side, rafted ice in the
middle and ridged ice on the eastern side of the basin.
Regions of the modelled ridged-ice areas are located on the
opposite coastal areas of the Bay of Bothnia and the
Bothnian Sea. This indicates that the timing of the
simulated deformed-ice production is also correct.

The ice-production rate for each ice class integrated over
the Bay of Bothnia shown in Figure 8 reveals much about
the thermodynamics and deformation processes of the ice
pack. Positive ice-production rates for the level and lead ice
indicate thermodynamic growth of ice. Negative production
rates indicate melting or the redistribution of undeformed
ice, with redistribution yielding positive production rates
for rafted, rubble or ridged ice. Negative production rates
for the deformed-ice classes indicate simply melting of the
ice. The maximum thermodynamic growth rate of level ice
is 5-6 cmd . The lead-ice production rate is less, about 12
emd || because the lead-ice production is integrated over
the whole basin. Locally it exceeds 5cmd . Deformed-ice
production is a stepwise process because it occurs mainly
during stormy periods. Rafted and rubble ice are produced
mostly during early winter. As the undeformed ice thickens,
the ridged-ice production dominates deformed-ice produc-
tion. The average ridged-ice production rate during ridging
events is about 05cmd . The maximum deformed-ice
production rate is 3.5 cmd | close to the maximum thermo-
dynamic growth rates. The production rate of rafted ice occa-
sionally reaches 0.2 cmd ' but most of the time is <0.1cmd .
The rubble-ice production rate is only about one-tenth of the

Bothnion Sea

)

100

lce concentration (%
o
o

NOV DEC JAN

1993 1994
0 .
o~
= 10
L2
o 301
o ST
QC’ 40+ e
£ *
Q50
s
+ g0
8 201
80 T T T v T
NO! pEC JAN fEB MAR APR MAY
1993 1994

Time

Fig. 6. Time series of observed and modelled mean ice thickness
and concentration for the Bothnian Sea. The symbols are as in
Figure 5.

433


https://doi.org/10.3189/172756500781833106

Journal of Glaciology

Lead ice

T T

EEEEEEEEREENEE)
A 60-75
50-7G ’

40-70

TR LY

o

ICE CHART 3 MARCH 1994
" FINMNISH INSTITUTE OF MARINE RESEARCH

2040 BERY  EB compootice (910/10)
Le3 X ¥ [4a] Risged oo 43
["AR Rafied e

B tevaiion

FEuN 4 I K, P
Pty 545 | [ Fostios
y/ESERE YHa3} Yery open ice (1-3/10)
FR] Nowkce

oreiel Crack
ety Jee thickness {cm)
i

Longitude (N)
L

- = Esmotedico adge
=1= Seq surface temperaysy
g 45-70

30-80

e

10-20

B 19 0 0 2 B U B B 0 B K

Latitude (F)

Rafted ice

Fig. 7 (a) Observed ice situation, and modelled mean ice thickness of (b) lead, (¢ ) rafted and (d) ridged ice on 3 March 1994.

Unats are cm.

ridged-ice production rate. After the stormy periods in
January 1994, the model produces almost no deformed ice
during mid-winter. March and April are again times of
deformed-ice production because of the higher mobility of
the ice pack.

Figure 9 shows the response of the model to strong winds.
During the period 5-7 March a strong southwesterly wind
prevailed, driving the ice pack northwards and causing
ridging along the northern coasts of the basin, and opening
of theice pack in the southern regions. A north—south transect
of the modelled level- and ridged-ice thickness before and
after the event gives an estimate of the ridging processes.
The central pack moved as a rigid body without significant
deformations. It was advected northward and experienced
deformation when it hit the coastline. The deformation-zone
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width was about 50 km in the Bay of Bothnia and 100 km in
the Bothian Sea. The ridged-ice thickness was about 5-10 cm
at the beginning, but after the strong wind events the amount
of ridged ice doubled. The ratio of the ridged-ice to level-ice
mass increased from 0.15 to 0.4 in the ridged regions of the
Bay of Bothnia.

Although the response of the model is realistic, it over-
estimates the deformation during this period. According to
the ice-velocity information from European Remote-sensing
Satellite synthetic-aperture radar (ERS-1 SAR) images
(Leppéranta and others, 1998), deformation occurred in
even narrower coastal zones than predicted by the model.
Also, the modelled ice velocities are higher than observed,
leading to larger deformation rates. Figures 5 and 8 show
that the model simulated rather immobile conditions
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during the whole of the month before the storm, although
some deformation was observed during that time. Thus the
model calculates too high an internal stress for the ice pack
when mild or moderate forcing is acting and the model
remains in the immobile mode. When strong forcing is
applied, the modelled ice pack begins to move, but with
too high a velocity. Also the plastic ice model broadens the
deformation zone.

The ratio of the deformed ice to the total ice mass is of
particular interest because it directly expresses the accumu-
lation and significance of the deformed ice. Locally, the ratio
canbe 1, and on a large scale it is about 1: 3 (Lewis and others,
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Fig. 9. Transect of the mean level- and ridged-ice thickness on
1 March 1994 (solid line) and 10 March 1994 (line with
symbols ).
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1993). Figure 10 shows modelled time series of the deformed-
ice fraction integrated over the Bay of Bothnia, the Bothnian
Sea and the northern Baltic proper and the Gulf of Finland.
The different characteristics of the basins and an increase in
the deformed-ice mass over time are evident. There are two
phases of deformation in the Bay of Bothnia. In early winter
the deformed-ice fraction increases to 0.2. During mid-winter
it slightly decreases because of the faster thermodynamic
growth rate of undeformed ice. The ratio increases during
spring due to new deformations and the melting of the unde-
formed ice. Finally, there is only deformed ice left. This seas-
onal evolution of the deformed-ice fraction is typical for the
Baltic. All observations at the end of the ice season show that
the deformed ice melts later than undeformed ice. In the
Arctic the situation seems to be reversed (Wadhams, 1992;
Flato and Hibler, 1995).

Finally, the mean ice thicknesses of the lead, rafted,
rubble and ridged ice during winter are shown in Figure 11
which indicates the importance of the coastal region in the
sea-ice mass balance. Coastal regions are the areas where
thin lead ice is continuously produced under divergent
conditions and is redistributed into the deformed ice classed
during convergent ice motion. The ice mass 1s larger in the
coastal regions than in the open sea and in the fast-ice areas
of the basins.

Model results are not very sensitive to the model param-
eters. The total undeformed- and deformed-ice masses are
controlled by the surface fluxes, the ice-velocity divergence
and the redistribution functions. The redistribution functions
of the present model utilize a well-established dependence of
the deformation processes on the undeformed-ice thickness
and compactness. Some uncertainties exist in the modelled
ice velocities because of the constant ice strength used in the
model. The model tends to underestimate the production of
deformed-ice mass during mid-winter, and to overestimate
the deformation during stormy periods. Determination of
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Fig. 11. Mean lead, rafted, rubble and ridged model ice thickness in the Baltic Sea, winter 1994. Units are cm.

the growth rate of ridged-ice compactness (Equation (26))
contains some uncertainties because of the simple geometric
model and the empirical functions used in the model.

5. CONCLUSIONS

Existing ice models are not good at resolving when, where
and how much deformed ice is generated on a seasonal
scale. The only exceptions are the Harder and Lemke
(1994) model, which is an extension of the Hibler (1979)
two-level model, and the Flato and Hibler (1995) model,
which
separately for the undeformed and deformed ice. This paper
presents a simplified approach based on physical ice classes.

solves the ice-thickness distribution function

An ice-thickness redistribution model has been formulated
where the pack ice is composed of open water, two different
types of undeformed ice, and rafted ice, rubble ice and ridged
ice. The benefits of the physically based ice-thickness distri-
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bution model are that ice classes are prognostic variables, and
inherent thermodynamic growth and decay are calculated for
each ice class. The main advantage of the model is that it
separates thermally and mechanically produced ice.

Numerical experiments for the Baltic Sea show that the
model produces a realistic seasonal evolution of the pack ice.
Both sub-basin and inter-basin ice characteristics were
realized by the model. Deformed-ice production is a stepwise
process related to storm activity. About ten active deformation
episodes were modelled in the Baltic for winter 1994. Most of
the deformation was produced in the coastal zone, which is
also an important region for thermodynamically produced
ice because of the ice growth in leads. Modelled mechanical
growth rates of ice were 0.5—-3 cm d 'onabasin scale, which 1s
close to the thermodynamic ice-production rates. The
deformed-ice fraction increased during the season. In early
and mid-winter it was about 0.2, and during spring it increases
to 0.5-1.0 due to new deformations and the melting of the
undeformed ice.
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The ice-class approach gives more information on the
surface properties of the ice pack than the widely used two-
level model of Hibler (1979). The ice concentration, surface
temperature, albedo and surface roughness are the primary
factors governing the atmospheric and oceanic boundary
layers, and since these parameters are explicitly resolved
for each ice class, it allows detailed calculation of the
exchange of heat and momentum between the atmosphere/
ice/ocean interfaces.

In the near future it will be possible to make much greater
use of remote-sensing and model data for sea-ice research,
since remote-sensing ice-classification algorithms now also
resolve ice classes. Hence, remote-sensing data can be used
to verify the redistribution functions, and can even be used
for data assimilation into the ice model.

ACKNOWLEDGEMENTS

I am grateful to M. Leppéranta for discussions and
guidance relating to this study. Comments by J. Tuhkuri, R.
Timmermann and an anonymous referee were very helpful
in improving the manuscript. The Swedish Meteorological
and Hydrological Institute is thanked for providing the
meteorological forcing data, and the ice-concentration data
were provided by the Earth Observing System Distributed
Active Archive Center at the U.S. National Snow and Ice
Data Center, University of Colorado, Boulder. This work
was supported by the Baltic Sea System Study of the
European Commission Marine Science and Technology
program MAST III, under contract MAS3-CT96-0058.

REFERENCES

Arbetter, T. E., J. A. Curry and J. A. Maslanik. In press. Effects of rheology
and ice thickness distribution in a dynamic-thermodynamic sea ice
model. 7. Phys. Oceanogr.

Bumke, K., U. Karger, L. Hasse and K. Niekamp. 1998. Evaporation over
the Baltic Sea as an example of a semi-enclosed sea. Contrib. Atmos. Phys.,
71(2), 249-261.

Finnish Institute of Marine Research (FIMR). 1994. Baltic Sea ice charts.
Helsinki, Finnish Institute of Marine Research.

Flato, G. M. and W. D. Hibler, III. 1995. Ridging and strength in modeling
the thickness distribution of Arctic sea ice. J. Geophys. Res., 100(C9),
18,611-18,626.

Gray, J. M. N. T. and P. D. Killworth. 1996. Sea ice ridging schemes. 7. Phys.
Oceanogr., 26(11), 2420—-2428.

Gray, J. M. N.'T. and L.W. Morland. 1994. A two-dimensional model for the
dynamics of sea ice. Philos. Trans. R. Soc. London, Ser. A, 347(1682), 219-290.

Guest, P. S. and K. L. Davidson. 1991. The aerodynamic roughness of different
types of sea ice. J. Geophys. Res., 96(C3), 4709-4721.

Haapala, J. and P. Alenius. 1994. Temperature and salinity statistics for the
northern Baltic Sea, 1961—69. Finn. Mar. Res. 262, 51—121.

Haapala, J. and M. Leppdaranta. 1996. Simulating the Baltic Sea ice season
with a coupled ice-ocean model. Tellus, 48A (5), 622-643.

Harder, M. and P. Lemke. 1994. Modelling the extent of sea ice ridging in the
Weddell Sea. InJohannessen, O. M., R. D. Muench and]. E. Overland, eds.
The polar oceans and their role in shaping the global environment: the Nansen Centen-
nial volume. Washington, DC, American Geophysical Union, 187-197.
(Geophysical Monograph 85,

Hibler, W. D,, III. 1979. A dynamic thermodynamic sea ice model.  Phys.
Oceanogr., 9(7), 815—-846.

Hibler, W. D, III. 1980. Modeling a variable thickness sea ice cover. Mon.
Weather Rev., 108(12),1943—1973.

Hopkins, M. A. 1998. Four stages of pressure ridging. J Geophys. Res.,
103(C10), 21,383—21,891.

Hopkins, M. A., J. Tuhkuri and M. Lensu. 1999. Rafting and ridging of thin
ice sheets. 7. Geophys. Res., 104(C6), 13,605—13,613.

Haapala: Modelling of ice-thickness redistribution

Kankaanpaa, P. 1991. Distribution, morphology and structure of sea ice
pressure ridges in the Baltic Sea. Fennia, 175(2), 139-240.

Lehmann, A. and H. H. Hinrichsen. In press. On the thermohaline variability
of the Baltic Sea. J. Mar. Syst.

Lensu, M. 1998. Laser profilometer measurements in the Bay of Bothnia during the
LIP-97 experiment. Otaniemi, Helsinki University of Technology. Ship
Laboratory. (Report Series M-232)

Lepparanta, M. 198la. An ice drift model for the Baltic Sea. Zellus, 33(6),
583-596.

Lepparanta, M. 1981b. On the structure and mechanics of pack ice in the
Bothnian Bay. Finn. Mar. Res. 248, 3-86.

Leppéranta, M. and R. Hakala. 1992. The structure and strength of first-
year ice ridges in the Baltic Sea. Cold Reg. Sct. Technol., 20(3), 295-311.
Leppéranta, M., Yan Sun and J. Haapala. 1998. Comparisons of sea-ice
velocity fields from ERS-1 SAR and a dynamic model. ¥ Glaciol,

44(147), 248-262.

Lewis, J. E., M. Leppiranta and H. B. Granberg. 1993. Statistical properties
of sea ice surface topography in the Baltic Sea. Zellus, 45A(2),127-142.
National Snow and Ice Data Center (NSIDC). 1994. Nimbus-7 SMMR polar
radiances and Arctic and Antarctic sea ice concentrations on CD-ROM.: user’ guide.
Boulder, CO, University of Colorado. Cooperative Institute for Research
in Environmental Sciences. National Snow and Ice Data Center. (Special

Publication 3,

Omstedt, A. 1998. Freezing estuaries and semi-enclosed basins. /n Leppdranta,
M., ed. Physics of ice-covered seas. Vol. 2. Helsinki, University of Helsinki.
Department of Geophysics, 483-516.

Palosuo, E. 1974. The formation and structure of ice ridges in the Baltic. Helsinki,
University of Helsinki. Finnish Institute of Marine Research. Winter
Navigation Research Board. (Research Report 12,

Parmerter, R. R. 1975. A model of simple rafting in sea ice. J Geophys. Res.,
80(15), 1948-1952.

Schrum, C. 1997. An ice/ocean model for North and Baltic Sea. In Ozsoy, E.
and A. Mikaelyna, eds. Sensitivity of the North Sea, Baltic Sea and Black Sea to
anthropogenic and climatic changes. Dordrecht, Kluwer Academic Publish-
ers, 311-325. (NATO ASI Series 27)

Schulkes, R. M. S. M. 1995. A note on the evolution equations for the area
fraction and the thickness of a floating ice cover. J. Geophys. Res., 100(C3),
5021-5024.

Seifert, T. and B. Kayser. 1995. A high resolution spherical grid topography
of the Baltic Sea. Warnemiinde, Institut fur Ostseeforschung, 74-88.
(Marine Science Reports 9)

Seina, A., H. Gronvall, S. Kalliosaari and J. Vainio. 1996. Ice seasons 1991-1995
along the Finnish coast. Mert, 27,3-77.

Semtner, A. J., Jr.1976. A model for the thermodynamic growth of sea ice in
numerical investigations of climate. 7. Phys. Oceanogr., 6(5), 379—389.

Shinohara, Y. 1990. A redistribution function applicable to a dynamic sea
ice model. J. Geophys. Res., 95(C8), 13,423—13431.

Squire, V. A. 1998. The marginal ice zone. In Lepparanta, M., ed. Physics of
tce-covered seas. Vol. 1. Helsinki, University of Helsinki. Department of
Geophysics, 381-446.

Steiner, N., M. Harder and P. Lemke. 1999. Sea ice roughness and drag
coefficients in a dynamic—thermodynamic sea ice model for the Arctic.
Tellus, 51A,964-978.

Stern, H. L., D. A. Rothrock and R. Kwok. 1995. Open water production in
Arctic sea ice: satellite measurements and model parameterization. f
Geophys. Res., 100(C10), 20,601-20,612.

Thorndike, A.S., D. A. Rothrock, G. A. Maykut and R. Colony. 1975. The
thickness distribution of sea ice. J. Geophys. Res., 80(33), 4501—4513.

Timco, G.W. and R. P. Burden. 1997. An analysis of the shapes of sea ice
ridges. Cold Reg. Sct. Technol., 25(1), 65-77.

Tremblay, L.-B. and L. A. Mysak. 1997. The possible effects of including
ridge-related roughness in air—ice drag parameterization: a sensitivity
study. Ann. Glaciol., 25,22-25.

Tuhkuri, J. and M. Lensu. 1998. Ice tank tests on ridging of non-uniform ice sheets.
Espoo, Helsinki University of Technology. Ship Laboratory. (Report M-236.)

Vihma, T. 1995. Sub-grid parameterization of surface heat and momentum
fluxes over polar oceans. 7. Geophys. Res., 100(Cl1), 22,625-22,646.

Wadhams, P. 1992. Sea ice thickness distribution in the Greenland Sea and
Eurasian Basin. 7. Geophys. Res., 97(C4), 5331-5348.

World Meteorological Organization (WMO). 1970. WMO sea-ice nomenclature:
terminology, codes and illustrated glossary. Geneva, Secretariat of the World
Meteorological Organization. (WMO/OMM/BMO Report 259, TP 145,

Zhang, Z. and M. Leppéranta. 1995. Modeling the influence of ice on sea
level variations in the Baltic Sea. Geophysica, 31(2), 31-45.

MS recerved 23 Fuly 1999 and accepted in revised form 13 March 2000

https://doi.org/10.3189/172756500781833106 Published online by Cambridge University Press

437


https://doi.org/10.3189/172756500781833106

