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Abstract

Let u(n) and v(n) be the number of representations of a nonnegative integer n in the forms x2 + 4y2 + 4z2

and x2 + 2y2 + 2z2, respectively, with x, y, z ∈ Z, and let a4(n) and r3(n) be the number of 4-cores of n
and the number of representations of n as a sum of three squares, respectively. By employing simple
theta-function identities of Ramanujan, we prove that u(8n + 5) = 8a4(n) = v(8n + 5) = 1

3 r3(8n + 5). With
the help of this and a classical result of Gauss, we find a simple proof of a result on a4(n) proved earlier
by K. Ono and L. Sze [‘4-core partitions and class numbers’, Acta Arith. 80 (1997), 249–272]. We also
find some new infinite families of arithmetic relations involving a4(n).
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1. Introduction

A partition λ is said to be a t-core if and only if it has no hook numbers that are
multiples of t; or if and only if λ has no rim hooks that are multiples of t. If at(n)
denotes the number of partitions of n that are t-cores, then the generating function for
at(n) is given by [3, Equation (2.1)]

∞∑
n=0

at(n)qn =
(qt; qt)t

∞

(q; q)∞
;

here and throughout the paper, we assume that |q| < 1 and use the standard notation

(a; q)∞ :=
∞∏

n=0

(1 − aqn).

In particular, the generating function for a4(n) is given by

∞∑
n=0

a4(n)qn =
(q4; q4)4

∞

(q; q)∞
. (1.1)
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In [4, 5], Hirschhorn and Sellers used some elementary generating function
manipulations to find congruences and the following infinite families of arithmetic
relations involving 4-cores: for k ≥ 1,

3ka4(3n) = a4

(
32k+1n +

5 × 32k − 5
8

)
, (1.2)

(2 × 3k − 1)a4(3n + 1) = a4

(
32k+1n +

13 × 32k − 5
8

)
, (1.3)(3k+1 − 1

2

)
a4(9n + 2) = a4

(
32k+2n +

7 × 32k+1 − 5
8

)
, (1.4)(3k+1 − 1

2

)
a4(9n + 8) = a4

(
32k+2n +

23 × 32k+1 − 5
8

)
. (1.5)

Again, if h(−D) denotes the class number of primitive binary quadratic forms with
discriminant −D and a4(n) denotes the number of 4-cores of n, then, for a square-free
integer 8n + 5, Ono and Sze [7] proved that

a4(n) = 1
2 h(−32n − 20). (1.6)

Employing (1.6) and the index formulas for class numbers, Ono and Sze [7] proved
(1.2)–(1.5) and some general identities conjectured by Hirschhorn and Sellers [5].

The main purpose of this paper is to use Ramanujan’s simple theta-function
identities to prove that u(8n + 5) = 8a4(n) = v(8n + 5) = 1

3 r3(8n + 5), where u(n) and
v(n) denote the number of representations of a nonnegative integer n in the form
x2 + 4y2 + 4z2 and x2 + 2y2 + 2z2, respectively, with x, y, z ∈ Z, and r3(n) denotes the
number of representations of n as a sum of three squares. With the aid of this, we
find new proofs of (1.2)–(1.5) as well as some analogous new infinite families of
identities for a4(n). We note that Hirschhorn and Sellers [6] also proved the identity
8a4(n) = 1

3 r3(8n + 5) from which (1.2)–(1.5) can easily be deduced with the help of
the other results in [6].

2. Preliminary results

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined by

f (a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2.

Jacobi’s famous triple product identity [1, p. 35, Entry 19] takes the form

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.1)
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The three most important special cases of f (a, b) are

ϕ(q) := f (q, q) = 1 + 2
∞∑

n=1

qn2
= (−q; q2)2

∞(q2; q2)∞, (2.2)

ψ(q) := f (q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (2.3)

and

f (−q) := f (−q, −q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞, (2.4)

where the product representation in (2.2)–(2.4) arises from (2.1).
We note that, by (2.3) and manipulation of the q-products, (1.1) reduces to

∞∑
n=0

a4(n)qn = ψ(q)ψ2(q2). (2.5)

In the following lemmas, we state some theta-function identities of Ramanujan
which will be used in our subsequent sections. (The first three are trivial.)

L 2.1 [1, Entry 25 (i) and (ii), p. 40]. We have

ϕ(q) = ϕ(q4) + 2qψ(q8). (2.6)

L 2.2 [1, Entry 25 (v) and (vi), p. 40]. We have

ϕ2(q) = ϕ2(q2) + 4qψ2(q4). (2.7)

L 2.3 [1, p. 49, Corollary (i)]. We have

ϕ(q) = ϕ(q25) + 2q f (q15, q35) + 2q4 f (q5, q45). (2.8)

L 2.4 [1, p. 262, Entry 10(iv)]. We have

ϕ2(q) − ϕ2(q5) = 4q f (q, q9) f (q3, q7). (2.9)

3. Main theorems

In this section, we present the relations among u(n), v(n), r3(n) with a4(n).

T 3.1. If u(n) and v(n) denote the number of representations of a nonnegative
integer n in the forms x2 + 4y2 + 4z2 and x2 + 2y2 + 2z2, respectively, where x, y, z ∈ Z,
and a4(n) is the number of 4-cores of n, then

u(8n + 5) = 8a4(n) = v(8n + 5). (3.1)
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In the following process of proving (3.1), we also find some other results involving
u(n) and v(n).

P. First we prove the first equality in (3.1). Clearly, the generating function for
u(n) is given by

∞∑
n=0

u(n)qn = ϕ(q)ϕ2(q4).

With the aid of (2.6), we rewrite the above as
∞∑

n=0

u(n)qn = ϕ2(q4)(ϕ(q4) + 2qψ(q8))

= ϕ3(q4) + 2qϕ2(q4)ψ(q8).

(3.2)

Extracting the terms involving q4n, q4n+1, q4n+2 and q4n+3 respectively in (3.2),
∞∑

n=0

u(4n)qn = ϕ3(q), (3.3)

∞∑
n=0

u(4n + 1)qn = 2ϕ2(q)ψ(q2), (3.4)

u(4n + 2) = 0,

u(4n + 3) = 0.

Now, with the help of (2.6), we can rewrite (3.3) in the form
∞∑

n=0

u(4n)qn = ϕ3(q4) + 6qϕ2(q4)ψ(q8) + 12q2ϕ(q4)ψ2(q8) + 8q3ψ3(q8). (3.5)

Equating the coefficients of q4n, q4n+1, q4n+2, q4n+3 respectively from both sides
of (3.5),

u(16n) = u(4n),
∞∑

n=0

u(16n + 4) = 6ϕ2(q)ψ(q2), (3.6)

∞∑
n=0

u(16n + 8) = 12ϕ(q)ψ2(q2), (3.7)

∞∑
n=0

u(16n + 12) = 8ψ3(q2). (3.8)

From (3.8), it further follows that
∞∑

n=0

u(32n + 12) = 8ψ3(q), (3.9)

u(32n + 28) = 0.
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Again, from (3.4) and (3.6) it follows that

3u(4n + 1) = u(16n + 4). (3.10)

Now, employing (2.7) in (3.4),

∞∑
n=0

u(4n + 1)qn = 2ψ(q2)ϕ2(q2) + 8qψ(q2)ψ2(q4). (3.11)

Extracting the terms involving q2n and q2n+1 from both sides of (3.11), we respectively
find that

∞∑
n=0

u(8n + 1)qn = 2ψ(q)ϕ2(q), (3.12)

∞∑
n=0

u(8n + 5)qn = 8ψ(q)ψ2(q2). (3.13)

Employing (2.5) in (3.13) and then equating the coefficients of qn from both sides, we
readily deduce the first equality of (3.1).

We now prove the second equality of (3.1). To this end, we note that the generating
function for v(n) is given by

∞∑
n=0

v(n)qn = ϕ(q)ϕ2(q2). (3.14)

With the help of (2.6), we rewrite (3.14) as

∞∑
n=0

v(n)qn = ϕ2(q2)(ϕ(q4) + 2qψ(q8))

= ϕ2(q2)ϕ(q4) + 2qϕ2(q2)ψ(q8).

Extracting the even and odd terms,

∞∑
n=0

v(2n)qn = ϕ2(q)ϕ(q2), (3.15)

∞∑
n=0

v(2n + 1)qn = 2ϕ2(q)ψ(q4). (3.16)

Now, applying (2.7) in (3.15), and then extracting the even and odd terms,

∞∑
n=0

v(4n)qn = ϕ3(q), (3.17)

∞∑
n=0

v(4n + 2)qn = 4ϕ(q)ψ2(q2). (3.18)
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Next, employing (2.6) in (3.17) and then extracting the terms involving q4n, q4n+1,
q4n+2 and q4n+3, respectively,

v(16n) = v(4n),
∞∑

n=0

v(16n + 4)qn = 6ϕ2(q)ψ(q2), (3.19)

∞∑
n=0

v(16n + 8)qn = 12ϕ(q)ψ2(q2), (3.20)

∞∑
n=0

v(16n + 12)qn = 8ψ3(q2). (3.21)

It follows from (3.21) that
∞∑

n=0

v(32n + 12)qn = 8ψ3(q), (3.22)

v(32n + 28) = 0.

Now, employing (2.7) in (3.16), and then extracting the even and odd terms,

∞∑
n=0

v(4n + 1)qn = 2ϕ2(q)ψ(q2), (3.23)

∞∑
n=0

v(4n + 3)qn = 8ψ3(q2). (3.24)

It follows from (3.24) that
∞∑

n=0

v(8n + 3)qn = 8ψ3(q), (3.25)

v(8n + 7) = 0.

Also, from (3.19) and (3.23),

3v(4n + 1) = v(16n + 4). (3.26)

On the other hand, employing (2.7) in (3.23) and then extracting the odd and even
terms of the resulting identity, and with the aid of (2.5),

∞∑
n=0

v(8n + 1)qn = 2ψ(q)ϕ2(q), (3.27)

∞∑
n=0

v(8n + 5)qn = 8ψ(q)ψ2(q2) = 8
∞∑

n=0

a4(n)qn. (3.28)

From (3.28), we easily deduce the second equality of (3.1) to finish the proof. �
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C 3.2. If r3(n) denotes the number of representations of n as a sum of three
squares, then

r3(8n + 5) = 3u(8n + 5) = 3v(8n + 5) = 24a4(n). (3.29)

P. We note that
∞∑

n=0

r3(n)qn = ϕ3(q). (3.30)

From (3.3), (3.17) and (3.30), we deduce that

r3(n) = u(4n) = v(4n). (3.31)

Now, replacing n by 2n + 1 in (3.10) and (3.26), and then employing (3.31),

3u(8n + 5) = u(32n + 20) = r3(8n + 5) and 3v(8n + 5) = v(32n + 20) = r3(8n + 5),

from which, with the help of (3.1), we easily deduce (3.29). �

Next we deduce the formula given above as (1.6) due to Ono and Sze [7,
Theorem 2].

C 3.3 (Ono and Sze [7, Theorem 2]). Formula (1.6) holds.

P. A classical result due to Gauss states that if n is square-free and n > 4, then

r3(n) =


24h(−n) for n ≡ 3 (mod 8);
12h(−n) for n ≡ 1, 2, 5, 6 (mod 8);
0 for n ≡ 7 (mod 8).

Now (1.6) readily follows from Corollary 3.2. �

We end this section by giving two more corollaries arising from the proof of the
above theorem.

C 3.4. We have

u(8n + 1) = v(8n + 1), (3.32)

u(16n + 8) = v(16n + 8) = 3v(4n + 2). (3.33)

P. Identity (3.32) follows from (3.12) and (3.27), and (3.33) follows from (3.7),
(3.18) and (3.20). �

C 3.5. We have

u(32n + 12) = r3(8n + 3) = v(32n + 12) = v(8n + 3) = 8t3(n), (3.34)

where t3(n) is the number of representations of n as a sum of three triangular numbers.

P. We note that
∞∑

n=0

t3(n)qn = ψ3(q). (3.35)

Now (3.34) follows easily from (3.35), (3.9), (3.22), (3.25), (3.3) and (3.30). �
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4. Infinite families of arithmetic properties of a4(n)

In this section, we prove some infinite families of arithmetic identities for a4(n) by
using the results from the previous sections. First, we deduce the infinite families of
arithmetic identities (1.2)–(1.5).

T 4.1 (Hirschhorn and Sellers [5]). The identities (1.2)–(1.5) hold.

P. Cooper and Hirschhorn [2] found the following arithmetic properties of r3(n).
For any nonnegative integer n and any integer k ≥ 1,

3kr3(6n + 5) = r3(9k(6n + 5)), (4.1)

(2 × 3k − 1)r3(24n + 13) = r3(9k(24n + 13)), (4.2)(3k+1 − 1
2

)
r3(72n + 21) = r3(9k(72n + 21)), (4.3)(3k+1 − 1

2

)
r3(72n + 69) = r3(9k(72n + 69)). (4.4)

Replacing n by 4n in (4.1),

3kr3(8(3n) + 5) = r3

(
8
(
32k+1n +

5 × 32k − 5
8

)
+ 5

)
,

from which we readily deduce (1.2) by employing (3.29).
In a similar fashion, (1.3)–(1.5) follow from (4.2)–(4.4), respectively. �

In the next theorem we give some more infinite families of arithmetic identities for
a4(n).

T 4.2. If a4(n) denotes the number of 4-cores of n, and k ≥ 1 then

5a4(5n + 2) = a4(125n + 65), (4.5)

5a4(5n + 3) = a4(125n + 90), (4.6)(5k+1 − 1
4

)
a4(25n) = a4

(
52k+2n +

52k+1 − 5
8

)
, (4.7)(5k+1 − 1

4

)
a4(25n + 5) = a4

(
52k+2n +

9 × 52k+1 − 5
8

)
, (4.8)(5k+1 − 1

4

)
a4(25n + 10) = a4

(
52k+2n +

17 × 52k+1 − 5
8

)
, (4.9)(5k+1 − 1

4

)
a4(25n + 20) = a4

(
52k+2n +

33 × 52k+1 − 5
8

)
. (4.10)

Before proving the theorem, we prove the following lemma concerning r3(n).
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L 4.3. If r3(n) denotes the number of representations of n as a sum of three
squares, then

5r3(5n + 1) = r3(25(5n + 1)), (4.11)

5r3(5n + 4) = r3(25(5n + 4)), (4.12)(5k+1 − 1
4

)
r3(25n + 5) = r3(25k(25n + 5)), (4.13)(5k+1 − 1

4

)
r3(25n + 10) = r3(25k(25n + 10)), (4.14)(5k+1 − 1

4

)
r3(25n + 15) = r3(25k(25n + 15)), (4.15)(5k+1 − 1

4

)
r3(25n + 20) = r3(25k(25n + 20)). (4.16)

P. Employing the 5-dissection of ϕ(q) from (2.8) in (3.30) and then extracting the
terms involving q5l+r for r = 0, 1, 2, 3, 4, respectively,

∞∑
n=0

r3(5n)qn = ϕ3(q5) + 24qϕ(q5) f (q, q9) f (q3, q7), (4.17)

∞∑
n=0

r3(5n + 1)qn = 6ϕ2(q5) f (q3, q7) + 24q f 2(q3, q7) f (q, q9), (4.18)

∞∑
n=0

r3(5n + 2)qn = 12ϕ(q5) f 2(q3, q7) + 8q2 f 3(q, q9),

∞∑
n=0

r3(5n + 3)qn = 8 f 3(q3, q7) + 12qϕ(q5) f 2(q, q9),

∞∑
n=0

r3(5n + 4)qn = 6ϕ2(q5) f (q, q9) + 24q f 2(q, q9) f (q3, q7). (4.19)

Now, employing (2.9) in (4.17),
∞∑

n=0

r3(5n)qn = 6ϕ2(q)ϕ(q5) − 5ϕ3(q5), (4.20)

which we rewrite, with the aid of (3.30), as
∞∑

n=0

r3(5n)qn = 6ϕ2(q)ϕ(q5) − 5
∞∑

n=0

r3(n)q5n. (4.21)

Similarly, employing (2.9) in (4.18) and (4.19),
∞∑

n=0

r3(5n + 1)qn = 6ϕ2(q) f (q3, q7) (4.22)
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and
∞∑

n=0

r3(5n + 4)qn = 6ϕ2(q) f (q, q9), (4.23)

respectively.
Again, using (2.9) in (4.20), and then extracting the terms involving q5n, we deduce

that

∞∑
n=0

r3(25n)qn = 6ϕ(q)ϕ2(q5) + 48qϕ(q) f (q, q9) f (q3, q7) − 5ϕ3(q). (4.24)

Employing (2.9) once again in (4.24),

∞∑
n=0

r3(25n)qn = 7ϕ3(q) − 6ϕ(q)ϕ2(q5),

which we rewrite, with the help of (2.8), as

∞∑
n=0

r3(25n)qn = 7ϕ3(q) − 6ϕ2(q5)(ϕ(q25) + 2q f (q15, q35) + 2q4 f (q5, q45)). (4.25)

Now, employing (3.30) in (4.25), and then extracting the terms involving q5n,

∞∑
n=0

r3(125n)qn = 7
∞∑

n=0

r3(5n)qn − 6ϕ2(q)ϕ(q5). (4.26)

Employing (4.21) in (4.26), we arrive at

5
∞∑

n=0

r3(n)q5n = 6
∞∑

n=0

r3(5n)qn −

∞∑
n=0

r3(125n)qn. (4.27)

We are now in a position to prove (4.11)–(4.16). First we prove (4.11) and (4.12).
Equating the terms involving q5n+1 and q5n+4, respectively, from both sides of (4.25),
we obtain

∞∑
n=0

r3(125n + 25)qn = 7
∞∑

n=0

r3(5n + 1)qn − 12ϕ2(q) f (q3, q7) (4.28)

and
∞∑

n=0

r3(125n + 100)qn = 7
∞∑

n=0

r3(5n + 4)qn − 12ϕ2(q) f (q, q9), (4.29)

respectively. Employing (4.22) and (4.23) in (4.28) and (4.29) respectively, and then
equating the coefficients of qn from both sides of the resulting identities, we readily
deduce (4.11) and (4.12).
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Next, we prove (4.13). Equating the coefficients of q5n+1 from both sides of (4.27),
we deduce that

6r3(25n + 5) = r3(25(25n + 5)), (4.30)

which is (4.13) for k = 1.
Again, equating the coefficients of q25(5n+1) from both sides of (4.27),

5r3(25n + 5) = 6r3(52(25n + 5)) − r3(252(25n + 5)),

which, with the aid of (4.30), reduces to

31r3(25n + 5) = r3(252(25n + 5)),

which is nothing but (4.13) with k = 2. We complete the proof of (4.13) by
mathematical induction.

We now prove (4.14). Equating the coefficients of q5n+2 from both sides of (4.27),

6r3(25n + 10) = r3(25(25n + 10)), (4.31)

which is (4.14) for k = 1.
Again, equating the coefficients of q25(5n+2) from both sides of (4.27),

5r3(25n + 10) = 6r3(52(25n + 10)) − r3(252(25n + 10)),

which, by (4.31), reduces to

31r3(25n + 10) = r3(252(25n + 10)),

which is (4.14) with k = 2. Now the proof of (4.13) can be completed by mathematical
induction.

In a similar fashion, equating the respective coefficients of q5n+3 and q5n+4 from
both sides of (4.27), and proceeding as in the proofs of (4.13) and (4.14), we can prove
(4.15) and (4.16). Thus, we complete the proof of the lemma. �

P  T 4.2. Replacing n by 8n + 4 in (4.11),

5r3(8(5n + 2) + 5) = r3(8(125n + 65) + 5). (4.32)

Employing (3.29) in (4.32), we readily deduce (4.5).
Next, replacing n by 8n + 5 in (4.12), and then using (3.29), we deduce (4.6).
Again, replacing n by 8n in (4.13),(5k+1 − 1

4

)
r3(8(25n) + 5) = r3

(
8
(
52k+2 +

52k+1 − 5
8

)
+ 5

)
,

which implies (4.7) with the aid of (3.29).
Similarly, replacing n by 8n + 3, 8n + 6, and 8n + 1 in (4.14), (4.15) and (4.16)

respectively, and then employing (3.29), we deduce (4.9), (4.10) and (4.8) respectively,
to finish the proof. �
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