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1. Introduction

Let K be a field and G a finite group with subgroup H. We say that (G, H) is
a K-free pair if whenever M is a finitely generated KG-module whose restriction
M, is a free KH-module, then M is a free KG-module. In this paper pairs of groups
with this property will be investigated.

If K has characteristic p and G is a cyclic p-group then (G, H) is a K-free pair
provided H is a non-trivial subgroup of G. Several other examples of such pairs
are given. One of the major results is that if K has characteristic 2 and G is the
quaternion group of order 8 then (G, H) is K-free for any non-trivial subgroup
H of G. Several conditions on the existence of such pairs are included in this
paper.

Almost all of the results in this paper concern cases where the field K has
characteristic p(# 0) and G is a p-group. There exist examples of K-free pairs
(G, H) where G is not a p-group. But the results are incomplete and are not included
here.

Throughout this paper all modules will be assumed to be finitely generated.
If G is a group 1(G) will denote the identity KG-module. If U is a subgroup of G
and M is a KU-module let M = KG ®y M. If L is a KG-module, L, denotes
the restriction of L to a KU-module. For x,ye G, x’ = yxy~' and U* = xUx™".
The radical of KG is indicated by rad KGand G = X, ;9.

2. Generalities

In this section K is a field and H is a subgroup of group G.

PROPOSITION 2.1, Let T be a subgroup of G with H = T < G.
(i) If(G,T)and (T, H) are K-free pairs then (G, H) is a K-free pair.

(ii) If (G, H) is K-free then (G, T) is a K-free pair.
49
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Proor. (i) Let M be a KG-module such that My is a free module. Then M
is a free module since (M 1)y = My. So M is a free module.

(i) Let M be a KG-module such that M is free. Then M, is a free module.
We shall need the following several times.

LEMMA 2.2, Let K have characteristic p > 0. Let G be a p-group. Suppose
M is a KG-module. Then KG is a direct summand of M if and only if
GM # (0).

PROOF. It is well known that since G is a p-group KG is the unique minimal
ideal in KG. If GM # (0) then there exists some me M with Gm # 0. So the
annihilator of m in KG is the zero ideal. Hence the mapping KG - M by a —» am
for o€ KG is a monomorphism. Since KG is an injective left KG-module [see
Curtis and Reiner (1962; page 321)] this homomorphism must split.

ProOPOSITION 2.3. Let K have characteristic p > 0 and let G be a p-group.
Suppose E is a finite extension of K. If (G, H) is a K-free pair, it is an E-free pair.

PrROOF. Let M be an EG-module such that My, is a free EH-module. By res-
triction M is a finitely generated KG-module. Since EH = E ® x KH, we have
that My, is free as a KH-module, hence it is free as a KG-module. So GM # (0)
and EG is a direct summand of M. By induction on the dimension of M we get
that M is a free EG-module.

THEOREM 2.4, Suppose (G,H) is a« K-free pair. Then there exists no sub-
group C of G with C # {1}, and C* " H = {1} for all xeG.

PROOF. Suppose there did exist such a subgroup. Then by the Mackey sub-
group theorem [Curtis and Reiner (1962; page 324)]
((O)%)y = Z HC* N HM

where x runs through a set of representaives of the H—C double cosets. Since
C*NH = {1} and ({ID" = KH, (1(C)%), is a free KH-module. But 1(C) is
not a free KG-module.

3. Some Examples

PROPOSITION 3.1. Let K be a field of characteristic p> 0. Let G be cyclic of
order p°. If H is any non-trivial subgroup of G then (G, H) is a K-free pair.

PROOF. Let S=<x?> where x is a generator of G. If we show that (G,S) is a
K-free pair an easy induction proves the proposition.

Let M be an indecomposible KG-module of K-dimension n. The Jordan
canonical form of the matrix of x on M is
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[

1

Relative to some basis for M this is the matrix for x. So x? has matrix

10 . 0 1
[ . 0 I
AP = 1
0
0
I
. -

where the non-zero entries occur along the diagonal and in the (i,i + p) positions
fori = 1,---,n—p. The K-dimension of M/(1 — x?)M is p.

Suppose M is a free KS-module. Then Mg is isomorphic to the sum of ¢
copies of KS. Thus n = p°~*t and ¢t is the K-dimension of Mgf(rad KS - My).
Since

rad KS = (I — xP)KS
we must have t = p. Therefore n = p®and M =~ KG.
We can develop more examples using the following.

THEOREM 3.2. Let K be a field of characteristic p > 0 and G a p-group.
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Suppose T, H are subgroups of G with T A Gand T =< H < G. If(G/T,H|T) is
a K-free pair so is (G, H).

Proor. Let M be a KG-module such that My, is a free KH-module. Let
T = X,crg - Theset L = T'M is a submodule of M since T A G. Forall geT,
gT = T. So we can regard L as a G/T-module. We claim that L1, is a free
module. This follows from the fact that My, is a direct sum of copies of KH and
T(KH) =~ 1(T)" while 1(T)® = K(H/T) as K(H/T)-modules.

Hence L is a free K(G/H)-module. Let x4,-:-,x, be a compete set of coset
representatives of Tin G. If X = X _, x,, by Lemma 2.2 there exists an element
le L with XI # 0. But | = Tm for some meM. So X| = XTm = Gm # 0.
Lemma 2.2 says that KG is a direct summand of M. An easy induction proves
the theorem.

COROLLARY 3.3. Let K have characteristic p> 0 and let G and S be
p-groups. If H is a subgroup of G with (G, H) a K-free pair then (G x S,H x S)
is a K-free pair.

PrROOF. G x S/S = Gso ((G x S)/S,(H x S)/S) is a K-free pair.

COROLLARY 3.4. Let K have characteristic p and let G=A,(p) = {x, y/x?"""
=y? =1,x" = x*P""" where m is an integer m = 4. Let H = {x"" ", y>. If
T is any subgroup of G with H € T < G then (G, T) is a K-free pair.

ProoF. By Proposition 2.1 it is sufficient to show that (G, H) is a K-free pair.
Let S =(x"",p> = (x”™ ") x {y>. By Corollary 3.3 and Proposition 3.1
(S,H) is a K-free pair. Now H A G and G/H is cyclic. So (G/H, S{H) is a K-free
pair. Hence (G, S) is K-free. By Proposition 2.1, (G, H) is a K-free pair.

CoROLLARY 3.5. Let K be a field of characteristic p > 0 and let G= B,(p)
= (x,y,z[x”"'—2 =yP =2 =1, xy = yx, yz = zy, x* = xy) where m = 4.
Let H = (x*""*,y,z)>. Then if T is any subgroup with H = T < G, (G, T) is a
K-free pair.

PrOOF. We need only note that {y> A G and (G/{y>, H/{y)) is a K-free pair.

4. The Quaternion Group

THEOREM 4.1. Let K be a field of characteristic 2. Let G be the quaternion
group of order 8, i.e. G = (x,y[x4 =yt =1,x% = y? = (xp)®). If H is any
non-trivial subgroup of G then (G, H) is a K-free pair.

Proor. Let T = {(x>). Since all non-trivial subgroups of G contain T, it will
be sufficient to prove that (G, T) is K-free.
Throughout this proof we suppose M is a KG-module such that M is a free
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KT-module, but M is not free as a KG-module. It will be shown that this leads to
a contradiction. Assume further that M has minimal K-dimension among such
modules.

Let L = (1 + y?>)M. Then L is a submodule of M. Let N = M/L. Since the
elements of T act trivially on L and on N, these modules may be regarded as
KG-modules where G = G/T. We can write G = (X, ) where x = xT, j = yT.
Since M ,,, M,,, M, ,, are free modules, L;,, L), Lizz, Nz Ngys and N 55, are
free modules.

We shall need the following

(xy

LEMMA 4.2. Let S = {y). Let my,---,m,e M such that {m; + (rad KS)M}
is a K-basis for Mg/(rad KS)Ms. Then m,, ---,m, is a KS-basis for M.

ProoF. Clearly the KS-dimension of My is t since My is a free module. Let
M' = X%_, KSm;. Then

Mg = M’ + (rad KS)Ms.

Nakayama’s lemma [see Bass (1968; page 85)] says that Ms = M’'. A simple
dimension argument proves the lemma.

Let by,---, b, be a K{p)-basis for N. If b,,; = (1 + y)b; then b, -, b,, is a
K-basis for N. Let a,,---,a, be a set of coset representatives of b,,---, b,, respec-
tively’ in M. That is, for each i, a; — b; under the quotient map M - N = M/L.
Since this quotient map induces an isomorphism

Mgj(rad KS - Mg) = Ngj(rad KS- Nj),

the elements a,,:--,aq, are a KS-basis for Mg, For each i = 1,-.-,1, let a,4;
= (L+ya, ayy = (14 y)a; and a3, = (1 +y+ y> + y>a. Then
ay, -, a4, is a K-basis for M.

LEMMA 4.3. There exists no KG-free submodules of N.

PROOF. Write N= N, @ .-+ @ Ngwhere each N, is indecomposable. Suppose
one of these, say N, is a free KG-module. We can assume without loss of generality
that by, b, are a K{J) basis for N;. Since one of these must be a KG-basis for N,
we lose nothing by assuming that N; = KG - b, and b, = xb,. But then

Gay = L+ y+y*+yNa + U+ y+y2+yda, # 0.
So M has a KG-free direct summand, by Lemma 2.2. This contradicts the mini-
mality of the K-dimension of M.
Write N = N; ® N, @ --- @ Ng where each N, is indecomposable. Each N;
is free as a K(x)-module and as a K(y)-module but not as a KG-module. Basev

(1961) and Heller and Reiner (1961) [see Conlon (1964)] have given a complete
list of representations of G. The above requirements on each N, dictate that each
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N, is a G, (), in Conlon’s notation. That is, there exists a basis for N such that,
relative to this basis, x and y have matrices

1 0 I

ye X —

where I = I, is the ¢t x t identity matrix and A is non-singular. In fact if the field K
is large enough we can assume that A is triangular.

If these matrices are given relative to the basis by, -, by, fo:;.-#;’],}l__ (byy;
= (1 + y)b,), then as before we can construct a K-basis a,, -+, a,, for #: With
respect to this basis x and y have matrices

1 ]
yel ! 1
I 1
1 1
©) -
x| A 1
B 1 .
D E A 1

where B, C, D, E are to be determined. Now x? = y2. Thisimplies that AC = [ and
E = ABA™!. Furthermore xy = y*x. By computing the matrices for this element
it is easily seen that I+ A = C and I+ A+ B = E. Hence I + A + A*> = 0,
and the minimum polynomial for A has at most two distinct roots.

Let F be an extension of K which contains the roots p, p? of the polynomial
1+ x + x% In F, A is similar to the matrix

For convenience assume A = A’. But then
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I+A = A>=B+E=B+ABA™' If

w X
B = ,
Y VA
0o p’X
A2 = B+ ABA™!' =
pY 0

which is impossible. This contradiction proves the theorem.
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