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§ Introduction and Notations.

In the previous paper [4] we have studied the prolongations of G-
structures to tangent bundles. The purpose of the present paper is to
generalize the previous prolongations and to look at them from a wide view
as a special case by considering the tangent bundles of higher order. In
fact, in some places, the arguments and calculations in [4] are more or less
simplified. Since the usual tangent bundle T(M) of a manifold M considers
only the first derivatives or first contact elements of M, the previous paper
contains, in most parts, only the calculation of derivatives of first order.

Now, since the tangent bundle TM to a manifold M of order 7 con-
cerns with the derivatives of higher order (up to order r), the situations
should be much complicated. Nevertheless, the (covariant) functor T: M~
TM from the category of differentiable manifolds and differentiable maps to
the same category, fortunately, has many properties similar to the functor
T: M—TM. For instance, (i) TG is a Lie group if G is a Lie group, (ii)
TR® has a natural vector space structure and (iii) f‘GL(n) can be considered
as a Lie subgroup of GL(n(r +1)). Therefore, we can follow the procedure
in [4] by replacing the functor 7 with the functor 7r‘

We mention here that Yano and Ishihara [7] study the prolongations
of tensor fields to the tangent bundles of order 2 from the viewpoint of
tensor analysis.

In §1, we explain the notion of tangent bundles TM of order 7 to a

manifold M, tangent bundles of order 1 coinciding with the usual tangent
bundle.
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In §2, 3, we consider the tangent bundles to a Lie group of order r
and prove that if a Lie group G operates on a manifold M effectively then

the Lie group TG operates canonically on TM also effectively.

In §4, 5, we consider the vector space 7V‘R”’ and prove that fGL(n)
operates on TR"™ as a linear transformation group.

In §6, we consider the tangent bundle of higher order to (principal)
fibre bundles.

In §7, we construct a canonical imbedding of TTFM into FfM, where
FM denotes the frame bundle of M. Using the results in §6, 7 we can
define in §8 the prolongation P of order r of a G-structure P to the tan-
gent bundle TM for any 7.

In §9, we prove that a diffeomorphism @: M— M’ is an isomorphism
of G-structures P with P’ if and only if To is an isomorphism of P with
P,

In §10, we prove that a G-structure P is integrable if and only if the
prolongation P’ is integrable.

In §11, we consider some classical G-structures and prove, among others,
that if a manifold M has an (resp. an integrable) almost complex sturcture,
symplectic structure, pseudo-Riemannian structure or a (completely integr-
able) differential system, then TM has canonically the same kind of struc-
tures. Moreover, if M has an almost contact structure, then Yr‘M has a
canonical almost complex structure for » odd and has an almost contact
structure for » even.

In this paper, all manifolds and mappings (functions) are assumed to
be differentiable of class C*, unless otherwise stated. If ¢: M— N is a
map of a set M into a set N and if A is a subset of M, we often denote
by ¢ itself the restriction ¢|A of ¢ to A, if there is no confusion. If ¢;:
M;— N; is a map for i =1,2, then the map ¢, X ¢,: M; X M,— N, X N, is
defined by (9,X ¢,) (%, ;) = (@,(2y), @u(x,)) for z,eM;, i=1,2. If M\=M,=M,
the map (¢, ¢,): M— N; XN, is defined by (¢, ¢,) (x) = (9,(2), ¢,(2)) for xeM.

In the following, R"™ denotes always the xn-dimensional real number
space. The group of all linear automorphisms of R™ will be denoted by
GL(n,R) or simply by GL(n). If aie R for i,j=1,2,+-+,n, we denote by

(a%) the matrix of degree n whose (i, j)-entry is al.

https://doi.org/10.1017/5002776300001360X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001360X

PROLONGATIONS OF G-STRUCTURES 155

§1. Tangent bundles of order r.

Let § be the set of all real valued differentiable functions defined on
some neighborhood of R containing zero. Take two functions f and ¢ in
%. For a ‘pdsitive integer » we say f is r-equivalent to g iff &”fldt’ =
d’gldt’ at t =0 for v =0,1,---,7, and we will denote it by f~g. The
relation ~ is clearly an equivalence relation in & Let M be an rn—dimen-
sional marnifold, and let C*(M) be the ring of all differentiable functions
defined on M. We denote by S(M) (resp. S(M)) the set of all maps ¢ of
some open interval (—e¢,¢) (resp. R) into M, o =¢>0 depending on ¢. Let
¢ and ¢ be two maps of S(M). We say that ¢ is r-equivalent to ¢ iff
foo ,-:/fo ¢ for every fe C°(M) and denote it by ¢ ~ ¢. The relation

~ is also an equivalence relation in S(M). For ¢ € S(M) we denote by

[¢], the equivalence class in S(M) containing .

DeriniTioN 1. 1. We call [¢], the »-tangent to M at p € M (or r-jel)
defined by ¢ iff ¢(0) = .

For any r-tangent [¢], to M there exists ¢’ € S(M) such that [¢’], = [¢],
by virtue of the following

LemMA 1. 2. Let o € S(M). Then there exist some e,>0 and ¢’ = S(M)
such that ¢ s defined on (—ey,€,) and ¢(t) = @'(t) for |t] <e,.

Proof. Since ¢ & S(M), there is some &>0 such that ¢ is defined on
(—&,¢6). We can find a function g € C*(R) such that g(¢) = ¢ for |t] <¢/2
and g(¢) =0 for |#] =2¢/3 and that |g(¢)] <2¢/3 for all t € R. Put ¢ =¢/2
and ¢’ = ¢og. Itis now clear that ¢” and ¢, satisfy the required conditions.

Q.E.D.

DEeFINTION 1. 3. Let 7r‘(M) (or f‘M) be the set of all r-tangents to M,
and for p e M let Yr‘p(M) be the set of all r-tangents to M at p. We define
72 T(M)— M by x(¢],) = ¢(0) for [¢], & T(M).

The notion of 1-tangents to M at p coincides with the notion of usual
tangent vectors to M at p. In order to define the manifold structure in

TM we shall prove the following

LemMmA 1.4, Let {z, 2, - -,2,} be a local coordinate system on some
neighborhood U of p € M. Take two elements’ ¢ and ¢ in S(M) such that
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¢(0) = ¢(0) = p. Then ¢ ~ ¢ if and only if 2,00 ~~2;,0¢ for i =1,2,+ +,n.
r r

Proof. Suppose ¢ ~ ¢. There exist a neighborhood V of p contained
in U and a function ;‘} eCM) (1 =1,2,+ -+, n) such that f,|V = 2,]V.
Since fiop ~ fio¢ and since w;0¢(t) = fioo(t), x;0¢(t)= fiop(t) for
|#] < e with srome €>0, we have xi]ga,;,xiogb for i =1,2,-+-,m,

Conversely, suppose ;¢ ¢ ~®o ¢ for i =1,2,--.,n. Take feC~(M).
We have to prove foo~ fo¢, le. d’(foo)ldt’ =d"(fo¥)dt’ at t =0
fory=0,1,2, - - -,». This holds for » =0, since ¢(0) = ¢(0). Define ¥:U—~R"
by ¥(q) = (#:(g)s %(q), + + +,2,(q)) for g U. Then the function F = fo¥-!
is an element of C*(¥(U)) and we have f(q) = F(x,(q), + * +,%,(q)) for g U.
Since f(¢(t)) = F(x,(¢(t), « « +,24(¢(t)), we have the following

d(fop) 2 d(x; 0
.1 Tdt g[ 0%, :L To(t)) _(x:” 2) ’

and hence we get

4501 -

Similarly, we have

[ d({i; ¢)] é"[ 0% ] =2 d(x(}: 2 ]t:o’

Hence we obtain [d(f o ¢)/dt],=[d(f o ¢)/dt],. Differentiate (1. 1) and evaluate
at ¢ =0, then we get [d%f o ¢)/dt*], =[d*(fo ¢)/dt?], and so on. Thus we
see fo@ ~u fo. Q.E.D.

M=

[g;;:‘ v [d(x ) t=0°

We define the local coordinate system i;z:)i]i=1, 2 e e eyny v=0,1, ¢ +,7}
on (:17(U) by #le]) = (W) [ (@ (e())dt eo for [e], € (27O
It is straightforward to see that T(M) has a differentiable manifold structure
by these coordinate systems and to see that z is a differentiable surjective

map of maximal rank. It is also clear that Ytp(M) is diffeomorphic to R""
for any p e M.

DeriniTION 1. 5. The manifold 7M with the projection z is called the
tangent bundle to M of order r. If U is an open subset of M, then (;)"(U)
is an open submanifold of f‘(M) which can be identified with YV‘(U).
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However, it must be noticed that f(M) (M, 7:) is not a vector bundle
over M.

We define =7: ’.lr(M)—->:l§(M) for r >s by =zi([¢l,) =[¢], for ¢ & S(M).

On the other hand, M can be imbedded in Tr‘(M) by z—[r.1, for
x € M, where 7, & S(M) is defined by r,(¢t) =2 for ¢t € R.

Let N be another manifold of dimension m. For any map @: M— N,
we define the induced map Yr‘@: 71;M - YT‘N by (77"45) ([e]) =[D o ¢], for p=S(M).
It is easy to see that T is well-defined and that T is a differentiable
map of TM into TN. We shall call 7o the tangent to @ of order 7 (or
simply r-tangent to ®).

Let z, (resp. z;) be the projection of MXN onto M (resp. N). We
can readily see that f‘(MxN) can be identified with TMXTN by [¢l, —
([zy © @1ry [m20¢],) for ¢ € S(MXN).

We can prove the following Propositions 1. 6 and 1. 7 whose proof will
be straightforward.

ProrosiTION 1. 6.  Let My, My, M,, M; be manifolds. and let ®: M,— M,,
O: My~ My "2 My—> M, and ¥: My~ M; be maps. Then, we have the following

equalities :
(i) T(0, 0 0) = (T0,) o (T),
(i) 70,0 = (To, T?),

(i)  T@x¥)=ToxTv,

(iv) T(1y) = lr'm ,

where 1y stands for the identity map of M.

PropoSITION 1. 7.  Let = (resp. m,) be the projection of M,xM, onto M,
(resp. M), and let #, (resp. 7,) be the projection of fIr"Ml><77‘M2 onto ’_;:‘Ml (resp.
’}Mz). Then, we have Tr, = 7, for i =1,2.

ProrosiTiON 1. 8.  Let M, N be manifolds and let @ be a map of M into
N of maximal rank. Then, To is a map of TM into TN of maximal rank.

Proof. We shall prove only for the case r =2, since the proof for
r=3 is similar. Let p,€ M and put ¢,=®&(p,). We take a coordinate
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neighborhood U (resp. V) of p, (resp. ¢,) with coordinate system {xy, « -+, %,}
(resp. {¥y +++, ¥n}) such that ¢U)c V. Then, 72‘U (resp. YZ‘V) has the in-
duced coordinate system {z;, &; #;1i =1,2, -+, n} (resp. {¥s U5 ;17 =12,

coym}). Put Fy(zy, « -+, 2,)=y,(0(x) for xeU. Take an element [¢]2672‘(U)
with coordinates {x;, %, %;}, then z,(¢(2)) = x; + &t + ;224 ¢;(¢), where
[d%,/dt*], = 0. Hence, we have y,0(@i(¢(1)), « -+, @al@(t)) = Fi(as, « + -, %)

oF,; 1 a*F, .. oF; .. 2 ) 2 2
+ 3Gt + (g a ey Dt 2R iy ) £+ 04(t), where [d%/dt?],

=0. Therefore, (T(D) ([¢);) = [@ 0 ¢], has the following coordinates:

oF; ,
Y, = Fy(x), yEJ] ow, 4

(1. 2)

2
aF xxk+2

1
2_1/:8,6 j

Ys g
2 . . . .
Hence, the map 7@ has the Jacobian matrix J with respect tlo the coordi-

) )
nate systems {x;li =1, « -+, n; v=0,1,2} and {ylk=1, -+ -, m; v=0,1,2}
as follows:

%5—;) 0 0
(L. 3) I=1| U (g—f;) 0
Jo o uh (G5

3 9*F, =L &F . _OF 4
where J} =2 FE¥ TR #; and Ji = 2 A 3w 0w0m; gan b dwe

Since the Jacobian matrix of @ is (%L), which has the maximal rank,
k

J has also the maximal rank.
CoROLLARY 1. 9. Let @ be a regular map of M into N, namely the differ-

ential T® 1is an injective map of T,(M) into Tow(N) for every point p € M.
Then, To is also a regular map of TM into TN.

v
Remark 1.10. We see that if @ is a regular injective map, then 79 is
also a regular injective map.
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§2. Tangent groups of order r.

Let G be a Lie group with group multiplication g: GXG—G and
with the unit element e.

TuEOREM 2. 1. TG is a Lie group with group multiplication YT‘y. The

group G is a closed subgroup of TG and YT"E(G) is a closed normal subgroup of TG
such that

TG = G-T,G),

with Gn?r‘e(G) =&, where & 1is the umit element of TG. Moreover the projection
7: TG—G is a homomorphism. (¢f. [3] for r =1)

Proof. For any two elements ¢, ¢ € S(G) (cf. §1), we define ¢ - ¢=S(G)
by (¢-¢)(¢) = ¢(t): ¢(¢) for t = R. Then, we have (f‘p) ([l [¢1,) = (YV]u)
(@, ¢)1;) =[po (0, P)], =[¢-¢], and hence we get

(2. 1) (Te) [eds [91) = [0 g1,

Since (¢-¢)+n=¢-(¢-3) for any ¢, ¢,7 € S(G), we see that the multiplica-
tion f,u is associative. Define 7, & S(G) by 7.(t) =e for ¢t € R and put
¢ =[r],. Clearly ¢ is the unit element with respect to Yr‘y. For ¢&S(G),
we define ¢! € S(G) by ¢7(¢) = (¢(¢))™! for t € R. Then ’.;‘y([go],, [p~1],) =
[p-¢71], =[7.], =& and hence [¢7!], is the inverse element of [¢],. Now,
[e~1], = (Trz)[go],, where ¢: G—G is the map z—>a~! for # € G. Since fe
is a differentiable map of TG into itself, we have proved that TG is a Lie
group with group multiplication ’.lr‘,u. Next, since G = {[7,],]a € G}, where
7.(t) = a for teR, it follows that G is a closed subgroup of e Similarly
we see that ’.lr‘eG is a closed normal subgroup of ’;‘G. Next, any [¢], 7’:6
can be written as [¢], = [74]r *[yo-1+ ¢],» where a = ¢(0) and so [7,-1- q)],eYr‘eG.
The equality an‘eG =¢ is also clear. Finally the projection # is a homo-
morphism since (2. 1) holds. Q.E.D.

DeriniTiON 2, 2,  The Lie group TG with groﬁp multiplication ’f‘y will
be called the tangent group to G of order r.
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ProposITION 2. 3. Let @ be a homomorphism of a Lie group G into a Lie
group G'.  Then To is also a homomorphism of the tangent group TG of order r
into TG

Proof. Let p' be the group multiplication of G. Since @ is a homo-
morphism, we have @op=p'o(@x®). By Proposition 1. 6 we have ’;‘Qﬂ";z
= f‘y’o(f‘(b X 7r’¢), which means that 7¢ is a homomorphism of TG into
76",

ProposiTiON 2. 4.  The projection =y : TG = TG for r>s is s a homomor-
phism of tangent groups.

Proof. Clear from the equality (2. 1).

ProrposITION 2.5. If G is a Lie subgroup of G’, then Tr‘(G) is also a Lie
subgroup of Yr‘(G’).

Proof. Let @: G— G’ be the injection map. Then @ is a regular map.
By Remark 1.10 and Proposition 2. 3, To is a regular homomorphism of
TG into %G’. Let [¢], be an element of %‘G such that (5‘(1)) (lel,) =& is

the unit element of %G'. Then [@o ¢], =[7:],, where 7,: R— G’ is defined
by 74(¢) = ¢ for t€R, e being the unit element of G. We see that ¢(0)=e

and that [¢], =[r.]=¢é. Hence Yr‘q) is a regular injective homomorphism,
which means that TG is a Lie subgroup of TG'. Q.E.D.

§3. Tangent operations of order r.

Let G be a Lie group operating on a manifold M differentiably. We
denote by p: GXM— M the operation map of G on M.

ProrosiTion 3. 1.  The tangent group TG to G of order r operates on the

tangent bundle ™ of order r by the operation map T p (for the tangent group TG,
see [3]). :

Progof. Since p is the operation map of G on M, we have po(zX1y)
= po(lgxp). By Proposition 1. 6 we have (7r“.o) o(TIr";leT,M) = Zr"po(l;a XYr‘p),

which means that g-(6-%) =(a-b)-% for a, 567"(6) and :ieTrM, where we
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have put @-% = (Trp) (@,%). Let 7,: R—>G be the constant map: 7,(¢) =e
for t € R. Then, for any [¢], € TM we have fp([n,], lel,) = 7<P([Te, ®)],) =
[00(Te@)], =[Te )] =[¢],, which means that the unit element é&=[7,], of
TG operates on TM as the identity map. Hence we have proved that TG
operates on ™ by To. Q.E.D.

v
DEeriniTioN 3. 2.  The operation map Tp in Proposition 3.1 will be
called the tangent operation to p of order r.

Prorosition 3. 3. If a Lie group G operates on M effectively (i.e. a-x=1
2 2
Sor all xeM implies a=e), then TG operaties on TM effectively by the tangent
operation of order 2.

Proof. TFor ¢=S(G) and ¢ =S(M) we define ¢-¢=SM) by (¢-¢)(t) =
o(t)- ¢(t) for ¢t = R. Suppose go-gb,;,gb for every ¢ € S(M). We have to
show that gofzvn, where 7, S(G) is defined by 7,(¢) =e. First, since
©(0)- ¢(0) = ¢(0) for any ¢ = S(M), we see that ¢(0)-z =z for any z € M,
whence ¢(0) = ¢ since G operates effectively on M. Next take a point p,eM
and fix it. We take a coordinate neighborhhod U (resp. V) of p, (resp. of
e) in M (resp. in G) with coordinate system {z,, - « -, ,} (resp. {zy, + - -, 2x})
such that z,(p,) =0 for i =1,2, - -+, n (resp. z(e) =0 for I =1,2, - - -, N).
Define the functions F.(i =1, -.-,n) by

Fi(zis o vy2n; Ty 0 0 0, 2,) = 2,(0(2, 2)).

) )
Let {z;]i =1, -+ -, n; v=0,1,2} (resp. {z]l/ =1, -+, N; »v=0,1,2}) be the
” , © @
induced coordinate system on T(U) (resp. T(V)). If z,([¢l)=u; 2, [¢l)=2;

(:c)i([¢]2) = ¥, we see that
git)=(-+-, @+ &+ i+ &), --)elU
for small |¢], where [d%,/dt?], =0 for i =1,.-+,n. Similarly we see that
o) = (v, it + 20 +n(t)y---)EV

for small |¢], where [d?),/dt?],=0 for [ =1,--,N. We have the relations
o)~ 209 (i =12 ---,n) for every ¢ € S(M). To simplify the

notations we define the functions f;(¢) for i =1, -+,n by

fi(t)':Fi(’ . ',QDL(t)" PR (bi(t)’ M ')
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. W)
and we define the variables y, for k=1,2, « -+ N+ n; v=0,1, - -+, 7 by
w) w) w) w)
Yy, =vlez, for k=12, -+, N and y,=v! 2,y for x=N+1, -+, N+ n.

By means of these notations we have the following equalities

N+n
(3. 1) e = 30 et +e500)
: F @
3. 2) ‘fit’} =35 oot L (fs + Yt + €5(2))
a 3 K o (2 S A
+.§ ay,ay (G + Gt + €5(1) - (92 + Hat + X(2)),

where [def/dt]l, =0 for k=1,2. Since fi(t)= (x;0(p-¢)(¢) and since

x;0(9-¢) ~ x;0¢ we obtain the following relations:

aFi oF, .
(3. 3) 1 i :|<o iy 2[ o ; :|<o,x> Ti=To
oF, oF; ..

(3. 4) 22[ 0z, ](o o T 22[ 0, ](M) T

N

*F,; s s *F, . .
2 02,021 ](M)z‘ “m 221 £ 1[ 32,00, :|<o,x>z‘x’
2 oF;

SO0 | = &,
i ax,ax,,lo,w) e = W

for i =1,2,--+.,n and for every (w; #;#%; € U. Now, since e-x =2 for
any ¥ € M, we have

F;0, -« ©305 Xy - - .,xn) = ;
oF;

ij
Finally, we obtain. from (3. 3), (3. 4) the following relations:

for i =1,2,-.-,n. Therefore, we get [ ] =¢% for 4,7 =1,2, +« +,m.
(0, )

N
oF, s
8.9 12=1[ 0z ](o.@ % =0
0°F .
3. i
(3. 6) 22 I: 0z, ](0 pit IZ[ 02,02y, ](O.x) “1m
z,[ oz,ax, 0,0 41" %3 =0

for every (;, ++,2,)€U and i=1,.--,n.
Now, we shall prove the following
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Lemma 3.4. Let ay - - -,ayeR.  Suppose Za, 35 1 ](0 o= 0 holds for

every (%, » +, )€U and for i =1,2, + - «,n, w/zere U is an arbitrary coordinate
neighborhood in M. Then a, =0 for 1 =1,2,--+,N.

By virtue of this lemma, we see from (3. 5) that ¢, =0 for [ =1,2,- - -,
N and then from (3.6) it follows that %, =0 for /=1,2,--., N, which
proves that ¢ ~Te and thus the proposition will be proved.

Proof of Lemma 3. 4. Suppose a, 70 for some [. Let g be the Lie
algebra of G. By taking a linear transformation of the coordinates {z, - - -,
zy}, if necessary, we can suppose that [0F;/6z,]w,. =0 for any 2 U and

that z; (exple‘. t;X;)=t;, for i =1,2,+--, N, where {X,,--,Xy} is a base
of g. NowJIet X, be the vector field on M induced by the one-parameter
group exptX;. For any point x U, we have (X)), =0, since (X)), 2;=
[dx ((exp tX;) - 2)[dt], = [dF(t,0, - + +, 0; x)/dt], = [0F:/02.J0,,y=0 for i=1,2,
- +,n. Since U and x are arbitrary, we see that X, =0 on M and that
exp tX; operates trivially on M. It follows that expitX, =e for any {€R
and hence X, =0, which is a contradiction. Thus Lemma 3. 4 is proved
and hence the proof of Proposition 3. 3 is complete. Q.E.D.
More generally, we can prove the following

Tu:orEM 3. 5. If a Lie group G operates on M effectively, then TG operates
on TM effectively by tangent operation of order r for any poistive integer .

Proof. Using the notations of the proof of Proposition 3. 3, especially
the notations of (3. 1), we define ¢,(¢) by ¢.(¢) = 7, + §.¢ + &5(¢) for a=1,2,
«++,N+n. Then the equality (3. 2) can be written as follows:

af, _ oF; 0°F;
(3¢ 7) dt? 2 aya Soa 2 ayaay goagoﬁ'

By differentiating (3. 7), we obtain the following
dif, _ *F,
(5. 8) ar == 094090y,

9°F,
0Y.0Yp

foaSDﬁSOr

+33) Plog+ 22t

ayq ?a.

In general, by induction on v =1,2, -+, we obtain the following equality
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a’fs _ o°F,; .o
3.9 at’ b3 ey + + 0. Pay Pa,

v=1 .
+ CgV)E ayma' ° l'?iaya -1 Soélgpaz PP

v=2 I,
+ 2 %:u%a;—: PeyPayPas * * Payey

v=2
+ R gy T bl e

9°F,

oF,;
0Ya10Yas

T F a2 e

P ~D¢as + 2 2
., . . S
where ¢{) are some positi e integer for 3 p; =1,2,+-+, v—2 and for
1000 e =1
any v =1,2, - -,
Suppose (¢-¢) ~ ¢ for every ¢=S(M) as in the proof of Proposition
r
3.3. By using (3. 9) and Lemma 3. 4 repeatedly we can show, by induc-
tion on v, that z,=0 for any /=1,2, --+, N and »v=0,1, -+ -, 7, which
proves that ¢ ~7.. Q.E.D.
v

§4. Tangent bundle to R" of order r.

Let R™ be the real euclidean space of dimension n. For any two 7-
tangents [¢l,, [¢], to R", we define their sum by: [¢], + [¢], =[¢ + ¢l
where (¢ + ¢) (¢) = ¢(t) + ¢(¢) for teR. For any ceR we define the scalar
multiplication of [¢], by ¢ as follows: ¢-[¢], =[c-¢l,, where (c-¢)(8)=c-¢(t)
for teR. Clearly [¢], + [¢], and c:[¢], are well-defined.

THEOREM 4. 1. By the above sum and scalar multiplication the tangent bunile

T;‘R,,, to R™ of order r is a real vector space of dimension n(r + 1).
Proof. Straightforward verification. Q.E.D.

PROPOSITION 4. 2. Let VOW be a direct sum of vector subspaces V and

W, then TV and TW are dentified with vector subspaces of T(V @ W) and we
have

flr'(V AOW) = ’;‘V@ {‘W (direct sum).

Remark 4.3. Let {2, +++,2} be the natural coordinate system on R"

r
and let {x;,]i=1,:+-, n;»} be the induced coo dinate system on TR".
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v
Then the sum and scalar multiplication in TR" in Theorem 4.1 are as

follows:

) (V)/ ) (Vz
{ (@) + (%7) = (w; + x7),
) )
¢ (x;) = (¢ ;).

$5. Imbedding of TGL(n) into GL(n(r+ 1)).

Let po: GL(n)XR™— R" be the usual operation of the general linear
group GL(n) on R". By Proposmon 3.1, the tangent group TGL( ) to
GL(n) of order » operates on TR by the tangent operation Tp to p of
order ». Now, by Theorem 4. 1, TR" is a vector space of dimension n(r+1).
We shall prove the following

THEOREM 5. 1. The tangent group YT‘GL(n) to GL(n) of order v operates on
TR effectively as a linear group.

Progf. Since p is effective, we see that fp is effective by Theorem 3. 5.
For any » € S(GL(n)) and ¢ € S(R™), we define -9 & S(R™ by the equality
(- ) (t) =n(t)-(t) = p(y(t), ¢(t)) for t € R. We put [1],-[¢], = Tr"p([n],,[go],).
Then we have [7],-[¢]l. =[7-¢],. Take an element [¢], of 77‘(R") and cER.
Then we calculate as follows: [71,([¢], + [¢].) =[7], - [¢ + ¢1- = [0+ (¢ + P)].
=[-9+7-¢l, = ¢l +[1-¢), =), -[¢], + 7], -[¢],. Similarly, we have
). (c-[l,) = [nlLe- o1, = [0+ (c@)lr =[c-(n- @)1, = cln- ¢1, = c(n), +[¢),). Thus
we have proved that [7], operates on fR"’ as a linear transformation.

Q.E.D.

DerintTION 5. 2. Let {#%y, -+ -,2,} be the natural coordinate system on
R™ and let {(a:ili =1,+++,n;v=0,1,++,7} be the induced coordinate sys-
tem on TR"™ Using these coordinates, Theorem 5.1 shows that there is
a canonical injective homomorphism 7> of TGL(n) into GL(n(r + 1)).

Let (y!) e GL(n). Then Yr‘GL(n) has the induced coordin te system
{(l:;/)ﬂi,j =1,«++,n;v=0,1, ---,7r}. We denote by Y, the nxun-matrix
((1;)3) for v =0,1, - - - &7,
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ProrosiTION 5. 3. The homomorphism 3> is given by the following equality :

Yo O e oo oo e s e e e
Y, Y, * .
, ) D U .
]gp...,y},...,): : .. . .
. ‘0
Ve oo v oenneely, Y,

Proof. We shall prove the proposition only for the case » =2, since

the proof for the case »=3 is similar. Let [¢], YZ‘GL(n) be such that [¢],

2
= (yi, 9%, 41). Let [€L,TR"™ be such that [£], = (%, %; %;). Then we can
assume that

{ o(t) = (¥ + 9it + §jt*),
(5. 1)

E(t) = (xi + i&it + .’Eitz)
for teR. From (5.1) it follows that (¢-€)(¢) = ¢(t)-&(¢) = (X (¥} + it +
yit?) (@, + 4.8 + £,2%) = (; yiw, + 2 (Yia, + yia)t + g](y}xi + gk, + Giw,)t?
+ 2 (Yid, + i) + Et‘. yii,tY). Therefore, we get [¢pLl€], =[¢: €], = (Syix,,
Ei (Yo + yid), ;‘.(yﬁﬁfi + 9§+ @+ Gixg),

and hence we obtain
72(ek) = | ¥} Y5 0

which proves the proposition. Q.E.D.

§6. Tangential fibre bundle of order r.

Let EM,n,F,G) be a fibre bundle with bundle space E, base M,
projection =z, fibre F and structure group G. We shall prove the following

ProPOSITION 6. 1. YV‘E(YV‘M, Yr‘zr, TT"F, ’f‘G) is a fibre bundle with bundle space
’.;:‘E, base f‘M, projection ’;‘n-, Sfibre f‘F and structure gro'p TG.

https://doi.org/10.1017/5S002776300001360X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001360X

PROLONGATIONS OF G-STRUCTURES 167

Proof.  First, since G operates on F effectively, e operates on TF
effectively by virtue of Theorem 3.5. Let {U,} be an open covering of
M such that E is trivial over U, with trivialization ¥,: z~\(U,) = U,x F and
with transition functions g. i.e. ¥,o¥3'(2,y) = (2,9.5(x)-y) for a€U.NUy

and yeF. Clearly {Yr‘UG} is an open covering of Yy‘M and YT‘Z(f,, is a diffeo-
morphism of (77"7:)“‘(77‘U¢) onto 7’"U¢><77‘F . We shall verify the following

6. 1) (T¥.) o (TUs) " ([¢1rs [¥1,) = [¢1rs (Tug) [£1,) - [41,)

for [<p],EY’:(UaﬂUB) and [</;],e]r‘F. We denote by p: GXF — F the operation
of G on F and by =;: U,NUgXF—=U,NUs (resp. m: U.NUgX F —F) the

projection. Similarly we define #;: YV“(Uaﬁ Upg)XTF —T({U,NUg) and #,. Then,
we have the following equalities

(6° 2) T owuowgl =Ty “zow‘aowﬁl =po (gaBXIF)-

Taking the tangent to (6. 2) of order r, we get, by Propositions 1. 6 and
1. 7, the following

# o TU, o TUG =7,
(6. 3) 14 r » v
ZpoTUa o TUG =Tpo (T¢spx1y ),
which proves (6. 1). Therefore, we have proved that TE is a fibre bundle
with transition functions {’.It‘gdﬁ}. Q.E.D.

DermvTion 6, 2. We shall call the fibre bundle T7E(TM, Tx, TF, TG)
the tangential fibre bundle to E of order r.

Let P(M,z,G) be a principal fibre bundle with bundle space P, base
M, projection z and structure group G, and let {U,} be an open covering
of M such that P is trivial over U, and let {g,3} be the transition function
with respect to this covering {U,}. We denote such a principal fibre bundle
by P(M,r,G) = {U,,9.3}. (For the general theory of fibre bundles, see [5]).
Then, by the proof of Proposition 6. 1 we obtain the following

COROLLARY 6. 3. From a principal fibre bundle P(M,n,G) = {U,,g.5} we

get a principal fibre bundle YV‘P(Yr‘M, YY‘z, 7r‘G) = {f‘Ua, ’Ir‘g,,;} for any positive in-
teger 7.
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§7. Imbedding of Ir'FM into FTr'M.

Let F(M) (M,r, GL(n)) be the frame bundle of an xn-dimensional mani-
fold M as in [4]. We shall prove the following

TueorREM 7. 1. For any manifold M, there is a canonical injection j5p: TFM
~FTM of the tangential fibre bundle TFM to FM of order r into the frame bundle
of Tr‘M such that jP(x-9) = j5P(x) - 77(g) for xETr‘FM, ge Tr‘GL(n) and that the
Sollowing diagram s commutative :

1 (r)

¥ Iu 7
TFM ————— FTM
Tx J(ﬁ
1,
r Y TM v
™ ———>TM,

where n: FM-> M (resp. #: F TM Yy‘M) is the projection.

Proof. We shall use the same notations as in the proof of Theorem
2.4 [4l. We denote by J¢; the Jacobian matrix with respect to the co-

ordinate systems {%:i]i =1,+++,n;v=0,1,++-,7} and {(;;.ili =1, -,n;
vy=0,1,+-+,7}. Using the same arguments as the proof of Theorem 2.4
[4], in order to prove the Theorem 7, 1, it is sufficient to verify the follow-
ing relation:

7. 1) J$ =0T on TWUINT(U).

We shall prove (7. 1) only for » =2, since the proof for the case =3
. .. W) o w) .
is similar. Put x;=ux,,; and y, ==, for i =1,2,- -+, ;v =0,1, + - +,7.
By expressing y; as a function fy(z,, ---,%,) of #,---, 2,, we get from

(1. 3) the following relation:

Jap 0 0

(7. 2) JB=1 Jug Jug O
jaﬁ jaB ]aB
where J,5 = (Ji) with Ji =E*&:fc and J,p = (J) with Ji= 1 s
af k I3 ri 0% ;0% j af k E 2 ﬁ

*f, . 3*fy . . af. .
mx—:a—xl—x,x, +;W %, Putting Ji= axf, we get the following
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o _s 0]k . oy _ 1 2 .. aJi ..
(7. 3) ]Ic_? axj X 4 .’Iic_ 2 Z axjaxl xsz‘}‘; amj X jo

gl

Now, consider the map J = J.,5: U,NUg—GL(n). We can calculate the
. ) )
coordinates (y%|i,j=1,-++,n; v=0,1,2) of the image of (z;li=1,.-.,n;
2
v=0,1,2) by the map 7/ as follows:

(O} (€Y) i
v = Jita), vl = -S04,

(7. 4)
() 271
yi= -+ Atk
2 k, 1 axkaxl

o,
abk:)'cl + % %‘i‘ Xk «
By Proposition 5. 3 and (7. 4), (7. 3) we obtain
2 2 2
JRoT]ap= ]2 on T(U)NT(Up). Q.E.D.

§8. Prolongations of G-structures to tangent bundles of order r.

Dernirion 8. 1. Let G be a Lie subgroup of GL(n). We denote by
G the image of TG by the homomorphism 75, i.e.

8. 1) G = jO(TG).

Clearly, G is a Lie subgroup of GL(n(r + 1)).

Let P(M,z, G) be a G-structuure on M (for the general theory of G-
structures see, for instance [1], [2], [4] or [6]). We denote by 2z the rest-
riction of the projection =: Ff‘M—)YV‘M to the subbundle P = j‘{,’(’lr‘P).
Then we obtain a G-structure P (YT‘M, 7, G”) on the tangent bundle
TM to M of order ». We shall call P the prolongation of order r of the
G-structure P to the tangent bundle TM to M of order 7.

We can easily see the following

ProposiTiON 8. 2. If M is completely parallelizable, then TM is also com-
pletely parallelizable.

ProposiTiON 8, 3.  There is a canonical bundle homomorphism B, of P
into P® for r>s, i.e. the following diagram
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P(f) —_— P(S)
ﬂ.(r) ﬂ(S)

7 71"; s

™M ———— TM

is commutative and there is a canonical homomorphism hy: G — G® such that
Bi(w - a) = pi(x) - hi(a)
Jor x € P and a s G7.
§9. Prolongations of isomorphisms of G-structures.

TueoreM 9. 1. Let M and M’ be two manifolds and f: M—M be a
diffeomorphism betw en them. Then, we have the following commutative diagram:

7<)

TFM — s FTMm
TFf FTf
i j(r)

TFM ——~ s FTM' .

Proof. We use the same notations @,, @,, f, as in the proof of Theo-
rem 4, 2 [4l. On the other hand, let

¥,: TU.XGL(n(r + 1)) > FTU,
¥: TV.xGL(n(r + 1)) = FTV,

be the local trivializations of FTM (resp. F%M’) over Yr‘Ua (resp. Yr‘Va)
induced by the coordinate system on U, (resp.V,). Define f$: ’.lrU,, X
GL(n(r + 1))+ TV.x GL(n(r +)) by the following

fO =W o FTf oW,

Let ;&= 1,U><j‘,,” and 5.7 :1’;: Xj9. By the same arguments -as the
T TV

proof of Th. 4.2 [4], in order to prove the Theorem 9.1, it is now suf-
flicient to prove the commutativity of the following diagram:
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J(r)
TU,xTGL(n) ————— TU,XGL(n(r + 1))
(9. 1) Tf. ik

s7(T)
TV XxTGL(n) — ——= TV, XGL(n(r +1)).

We shall prove the commutativity of (9. 1) only for the case r =2,
since the case for » =3 is similar. Using the same notations y,, f(x), w¥, 2%
as in Th. 4. 2 [4] (we use y,; instead of ¥’, etc), we introduce the notations
fe(®), ®, Yy, for £ =1,2,.-.,3n by the following

frim=3 afz e

9. 2)

fi+2n = 2 0 f xkil + 2 gft xk,
L

0°0%;
Litn = xi’ Liton = 5‘51:9 Yitn = yu Yjron = yz
for i=1,2, -+, n. Let {x;, @flt,2=1,2,--,3n} (resp. {ys 256,22 =12,

2 2
-,3n}) be the coordinate system on FTU, (resp. FTV,) induced by the
coordinate system {z.} (resp. {y.}). Now since the map f,: U,xGL(n)—~>
V.XGL(n) is expressed as follows:

©. 3) fai ¥y = fil@), 2l =X wh g;‘f (1,7 =1,2, - - =, 1),

k

2
we obtain the expression of Tf, as follows:

y; = filx), 2] =%}wl‘ 2 ,

boowy
e = 3Gt b
. 4 = Ry, S
Jo= 5 Bongey it D5 b
= (Bt amgagn et Brasse o)
+I§w7‘c_<9?v%c7”'él +5 5 ai{;;al st + 3 af’ vk .
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By Proposition 5.3 we get the following

2] 0 0
2
(9. 5) (Ja® o Tfa) (s w}) = | Yny | ] 2 0 ,
z; 2] 2}

where y, and 2§ are given by (9. 4).
On the other hand, since f: U, =V, is expressed by y; = fi(xy, « + +, %)

2
(i=1,.-+,n), we have the expression of Tf as follows:

v = fil@), 4= - g,

2 k axk

Tf: s s
I R ofs
Yi =727 £ omdu, x"x’-l_% o, Tk

Therefore, we get the expression of f& as follows:

v, = fulx), g, =10

3
k axk

x.lc’

L1 0f, . . ofs
(2) . —_ Y Jr —J
P10 o= B w0t P e

for x, 2=1,2,+++,3n and i =1,2,---,n. Now, we calculate Z% by (9. 2)
as follows:

5 e 0%fi . ~ of
n+j k J n+k j
Z §wx~—x;+§w,c ST

2-2n+./ = Zwk af2n+j Zw’n-}-k af2n+:' 21172"“‘ af2u+.1
T " 0Xg T " 0% T " 0%

_ ~% L 63f_,- x- 3.7 + 32f, .
_Zk:w( 2 zzm 0Tmox 00 . ‘u’:‘ 0%,0%; ”‘)

_ i f; . _ 0f;
n+k i 2n+k J
+ =% om, T + Zk W' Gme

for k=1,2,+++,3n and j=1,2,+-,n. By Proposition 5.3 and the above
calculations, we have the following equalities:
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wk 0 0
(9. 6) P o i (wu; wh, Wk, W0F) = f2 | x,;| Wt wh

WY Wi wk

z 0 0
=| fi(x), 95 o3 | 27 Z] 0 ,
FACHI VAl

0 2
where we see that z{ = 31w} o/s Fm = St S i+ 3fi and

¢ oy bl T0%,0%;
zon+i _ ]_ afj .. 62fj " ok afj .
z5" Ew‘ 2 IEm 2w 00,00, ™l +213 9%,0%; x,>+ %w‘ w0, + zk:

=#{. Therefore, we obtain, by (9. 5) and (9. 6), the commutativity
of (9 1) for r = 2. Q.E.D.

By the same arguments as the proof of Th. 4. 3 [4] we can prove the
following

THEOREM 9. 2. Let @ be a diffeomorphism of a manifold M onto a manifold
M. Let P (resp. P') be a G-structure on M (resp. M’). Then @ is an isomor-
phism of P with P’ if an only if To is an isomorphism of P with P'.

CorOLLARY 9. 3. Let @ be a diffeomorphism of M onto itself, and let P be
a G-structure on M. Then @ is an automorphism of P if and only if To is an
automorphism of the prolongation P of order r.

§10. Integrability of prolongations of G-structures.
In this section, we shall prove that the prolongation of an integrable
G-structure (see Def. 5.1 [4]) of order » is also integrable and vice versa.

ProrposiTioN 10. 1. Let {xy, «++,2,} be a local coordinate system on a
neighborhood U in M, on whick we give a G-structure P. Let ¢ be a cross section
of P over U, which is expressed by ¢(x) = (+ -+, 3 ¢4(2) (8/6%4)4 + + +) Jor x€U.
Define ¢ by ¢ = j‘{,’O’Ir"qS. Then ¢ is a cross section of the prolongation P
over TU and is expressed with respect to the induced coordinate system {(:Zli =1,
cee,my v=0,1,++,7} as follows:

=1

(10. 1) ¢(r>(. . ,,(9:2, o)== (. N z”}q;} ( (y) )x py i}lp‘;:;(}() <_§‘)_>x’ . .),
= ;
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L4 . . ©))
where X = (+++, ;,+++)€TU and Fii(X) ts a polynomial of w(A=p; k=1,
-« «,n) without constant term and with coefficients, which are partial derivatives of
¢7ln(lym = 1, b ',1’[).

Proof. Let zn: F(IM)—> M and #: FYr‘M—>§‘M be the projections. Let

@y and ¥, be the local trivialization of FM and F YV‘M over U and Yr‘U,
respectively. We see that

FVTPM = oo 1y i) e (T,

Using Proposition 1. 6, we have the following equalities:
ﬁ0¢(7) =ﬁ°](h?f¢ = 71;7[07’:45 =7’:(n-o¢) = Yr‘lv =1,

Since ¢ (TU) = j o T$(TU) = j9T($(U)Cj@TP = PO, we see that ¢ is
a cross section of P™ over TU.

We shall prove (10. 1) only for the case » =2, since the case =3 is
similar. Put f(x) = (¢4(x))e GL(n) for x €U, then we have @3 o ¢ = (1y, f).
Hence, we have ¢ =Telly xji)o (T01 o Tg =Wy o {1y, X2) o Tlhu, /) =
1If,,o(1%U>< j2oTf). Therefore, using the expression (1. 2) of Tf and Proposi-
tion 5. 3 we get the expression of ¢ as follows:

¢ 0 0
6@ (2, &, %) = Uy (2,8, %); | ¢ ¢t 0
3R B

= (o o)+ 4 G+ 81 GG

DG+ G BGE)e )

S I TR
where ¢j_2‘:‘_a—x;x"’ ¥ ——'2—% 0%,0%, xkxz‘i';

6% .
FER Tk

These functions ¢% and ¢% have the properites stated in the proposition.
Thus the proposition is proved. Q.E.D.

Remark 10. 2. By the properties of the functions Fji(X), we see that
Fi* vanishes if the functions ¢} are constants for /,m=1,2,+--,n. The
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. X . o) . &)
function Fi%(X) also vanishes at X = (- - -,2; ++-) with 2, =0 for all 2= p

. . . (CON
and k=1, ---,n, since Fi is a polynomial of z, without constant term.

THEOREM 10, 3. Let P be a G-structure on a manifold M. Then, P is
integrable if and only if the prolongation P\ of P order r is integrable for any r.

Proof. Suppose P is integrable. Let x,&M be any point of M and let
{2y, - +,2,} be a local coordinate system on a neighborhood U of %, such
that

¢(x) = ( < (—ai—L, .- ) €P for any z€U.

Then, by Proposition 10. 1 and Remark 10. 2, ¢ is a cross section of P™
and is expressed with respect to the induced coordinate system {(;:zli =1,
ceeyn; v=0,1,+-, 7} as follows: ¢ (- -, (:;3, o) =(o->-, (a/a(;:)i),y, cee)
for X=1¢(-- -,(92, .. -)EYr"U. Since ¢(X)eP” and since z, is arbitrary,
we have proved that P is integrable.

Conversely, suppose P is integrable for some ». To prove that P is
integrable, we use the same arguments as the proof of Prop. 5.5 [4]. Take
a point peM and take a coordinate neighborhood U of p with coordinate
system {x, +.-,2,} such that there is a local cross section ¢: U—P of P
over U. Then, by Proposition 10. 1, ¢ = j‘{onr’qS is a cross section of P
over CIT’U. Now, let X, be the element of fU having coordinates {(;c)i} with
2; = x,(p) and (;c)z =0 for all v=1and i=1,---,#. Since P™ is integr-
able, there can be found a coordinate neighborhood U of X, with coordi-
nate system {yy, ¥y * * +, Yx} (N = n(r + 1)) such that Uch‘U and that, if we
define ¢, by &y(X) = (8/0y,)x, * * +» @/0yn)x)s $o is a cross section of P
over U. Since ¢|U and @, are both cross sections of P over U, there
exists a map §: U— G such that

(10. 2) ¢ (X) = §o(X) - §(X)

holds for XeU. By Proposition 5.3, there is a map g: U— G such that
§(X) has the following form:

9(X) 0
(10. 3) §(X) = g(X) :

* T 9(X)
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. (€D .
Since {y,, - - +,yy} and {z;} are both coordinate systems on U we have
differentiable functions f, such that y,=f.(- « ',(;7)@-, <o) for (.- -,(;c),-, ce)el
and £ =1,2, - -+, N. Now if ¢(x)= (.-, 1g4x)(3/6%,), ---) for x €U,

then by Proposition 10. 1, (10. 2) can be written as follows:

(10. 4) 21 (x) <~a(—gcr)x + BF(X) (?ag)x

=505 (0 (2-) + 3 g (S2-)

[
0Y; k=n+1 Yy /x

for j=1,2,--+,n, where §(X) = (95(X)) for X e U. Since (a/a(o”o)i),, = oSl

)
0%,;) - (0/0Yc)x, (10. 4) can be written as follows:

w9 gl () B (),
K s My a K

s

=S50 (52) + 5 g (2 e

0Y; /x k<nt1d 0Yr

Comparing the coefficients of (6/6y,)y for k< n in (10. 5), we have

(10. 6) oia) L + 1 R0 e = ghix)
: ox, ¢ %,

for j,k=1,2,++-,n. Now, define maps f;: U'—=R and g§: U'—~G by
Fila) = fil2,0, -+ +,0) and (§(x)™) = g% (2,0, + - +,0) for i,j,k=1,+++,n and
zel’ = z(U).

Putting (:;i=0 k=12, »++y,n;v=1,2, +++,7) in (10.6) and using
Remark 10. 2 we obtain

(10. 7) 3165 (0) 25 = (g(a) )y

Now, by the same arguments as in the proof of Prop. 5.5 [4, pp. 88-89],
we see that there exists a coordinate neighborhood U, of p with coordinate
system {&, + - +,%,} such that the map ¢, defined by &(x) = ((3/6%,), - -,
(3/63,),) for z€U, is a cross section of P over U,  Thus P is integrable.
Q.E.D.
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§11. Prolongations of classical G-structures.
(I) G=GL(#,C).

Let J be a linear automorphism of R*" such that J?= — 132, and let
GL(n,C; J) be the group of all aeGL(2r) such that ao J = Joa. It is easy

to see that 71:] is a linear automorphism of R*""*» = Yr"(R”) such that (;’j)2
= —1. We shall prove the following

ProrposiTioN 11, 1. If G = GL(n,C; J), then G cGL(n(r + 1), C; T)).

Proof. Take an element a=G™. We have to prove that (dof;‘]) (X)
= ((f‘])od) (X) for every Xe?r‘(Rz"). Now, we can find maps ¢=S(G) and
¢eS(R*") (cf. Notations in §1) such that @ =[¢], and X =[¢],. First, it
is readily seen that ¢-(Jo¢)= Jo(p-¢) (cf. Notations in Th. 5. 1). There-
fore, we have a(TJ(X)) = [¢1.([] o @), = [¢-[J o ¢)], = [J o (¢~ $)1, =TJ ([g - ¢1.)
= TJ(¢l, -T61) = TJ(@(X)). QE.D.

By the same arguments as the proof of Theorem 6. 3 [4], we obtain
the following

TuEOREM 11. 2. (1) If a manifold M has an almost complex structure, ™
has a canonical almost complex structure for every r.

(2) If a manifold M has a complex structure, then TM has a canonical complex
structure for every r.

(IT) G = Sy(m).
Consider a skew-symmetric non-degenerate bilinear form f on R®*™.
Let S,(m, f) be the group of all ae GL(2m) which leaves f invariant. We

denote by =z, the projection of TR = R™* onto R defined by #.([¢],) =1/r!)
[d"¢ldt"], for ¢=S(R) = C*(R).

LemmaA 11. 3. If f is a skew-symmetric non-degenerate bilinear form on R*™,
then f™ =n,o(’.;‘ f) is also a skew-symmetric non-degenerate bilinear form on
Remr+ = TRom,

Proof. We take the skew-symmetric matrix (a}) € GL(2m) such that
fl@,y) =X ajw,y; for x = (2y, »++,x,) and y=(yy -+, ¥a) With n=2m.
Let {(zyv)i} be the induced coordinate system on R"*®. Take an element
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7 v (v
[¢], (resp. [¢],) of TR™ with coordinates {(xi)} (resp. {yz}). We can assume
r (v r (v
that o(t) = (.. -, Z_zx)i t%, «+«+) and ¢(t)=(+--, ;})y)t", «++). It is now

straightforward to see that the following equality holds:

(1L 1) FO Tl 102D = 3 Yayas ve s

2,7 v=0

which shows that f is a skew-symmetric non-degenerate bilinear form on

Rn(7‘+l).
ProposiTION 11. 4. If G = S,(m, f), then GV CSy(m(r + 1), f).

Proof. Similar to the of Proposition 11. 1.

By the same arguments as the proof of Th. 6. 6 [4] we obtain the fol-
lowing

THEOREM 11. 5. If a manifold M has a (resp. an almost) symplectic struct

7
ure then TM has a canonical (almost) symplectic structure.

(IIT) G = GL(V,W).
We have the following Proposition whose proof will be omitted.

ProrposiTioN 11. 6. If a manifold M has a k-dimensional (completely integr-
able) differential system, then TM has a canonical k(r + 1)-dimensional (completely
integrable) differential system.

(IV) G =0k n—k.

Let g be a symmetric non-degenerate bilinear form on R" of signature
(k,n — k) and let x,: TR R be the same projection as in (II) and let ¢
be the map ¢ ==, o(f‘g): %R"”x a‘R”——>R. We denote by O(k,n —k,g) or

simply O(g) the group of all ae GL(r) such that a leaves g invariant.

Lamma 11. 7. The notations being as above, ¢

degenerate bilinear form on R™*V of signature (n(r + 1)/2, n(r + 1)/2) if » is odd
and of signature <k+ 72" , N ——k-i—% if v is even.

is a symmetric non-

Proof. If the bilinear form ¢ is expressed by a symmetric matrix
A= (a})eGL(n), then by the same computation as the proof of (11.1) in
Lemma 11. 3, we see that g’ is expressed by the following matrix
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0 A
A .
A" = . (A: (r 4+ 1)-times).
A 0
Since A is of signature (k, n — k), A" is of signature (n(r + 1)/2, n(r + 1)/2)
if » is odd and of signature (k+ (rn/2), n — k+ (rn/2)) if » is even.
Q.E.D.

Lemma 11. 8. If G =0(g), then GcO(g"”), the signature of ¢ being
gwen in Lemma 11, 7.

Proof. Omitted.
By the Lemma 11. 8, we obtain the following

v
THEOREM 11.9. If M has a pseudo-Riemannian metric, then TM has a
canonical pseudo-Riemannian metric for every .

(V) G=GL(n,C)x1c GL@2n +1).

LemMA 11.10. Let G = GL(n,C)X1cGL(2n +1). Then, G cGL((2n + 1)
(r +1)/2,C) if 7 is odd and G cGL((2nr + 2n + 7)/2,C)X1 if r is even.

Proof. We shall omit the proof, which is similar to the proof of Lem-
ma 6. 14 [4].

By Lemma 11. 10. we obtain the following

THEOREM 11. 11, If M has an almost contact structure, then (i) TM has a

. .o ” .
canonical almost complex structure for any odd r and (i) TM has a canonical almost
contact structure for even r.
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