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PROLONGATIONS OF G-STRUCTURES TO
TANGENT BUNDLES OF HIGHER ORDER

AKIHIKO MORIMOTO

To Professor Katuzi Ono on the occasion of his 60 th birthday

§ Introduction and Notations.
In the previous paper [4] we have studied the prolongations of G-

structures to tangent bundles. The purpose of the present paper is to
generalize the previous prolongations and to look at them from a wide view
as a special case by considering the tangent bundles of higher order. In
fact, in some places, the arguments and calculations in [4] are more or less
simplified. Since the usual tangent bundle T{M) of a manifold M considers
only the first derivatives or first contact elements of M, the previous paper
contains, in most parts, only the calculation of derivatives of first order.

r

Now, since the tangent bundle TM to a manifold M of order r con-
cerns with the derivatives of higher order (up to order r), the situations

r

should be much complicated. Nevertheless, the (covariant) functor T: M-+
r

TM from the category of differentiate manifolds and differentiable maps to
the same category, fortunately, has many properties similar to the functor

r

T: M-^TM. For instance, (i) TG is a Lie group if G is a Lie group, (ii)
r r

TRn has a natural vector space structure and (iii) TGL{n) can be considered
as a Lie subgroup of GL{n{r + 1)). Therefore, we can follow the procedure

r

in [4] by replacing the functor T with the functor T.
We mention here that Yano and Ishihara [7] study the prolongations

of tensor fields to the tangent bundles of order 2 from the viewpoint of
tensor analysis.

In §1, we explain the notion of tangent bundles TM of order r to a
manifold M, tangent bundles of order 1 coinciding with the usual tangent
bundle.
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In §2, 3, we consider the tangent bundles to a Lie group of order r

and prove that if a Lie group G operates on a manifold M effectively then
r r

the Lie group TG operates canonically on TM also effectively.
r r

In §4, 5, we consider the vector space TRn and prove that TGL(n)

operates on TRn as a linear transformation group.

In §6, we consider the tangent bundle of higher order to (principal)

fibre bundles.
r ^ r

In §7, we construct a canonical imbedding of TFM into FTM, where

FM denotes the frame bundle of M. Using the results in §6, 7 we can

define in §8 the prolongation P ( r ) of order r of a G-structure P to the tan-
r

gent bundle TM for any r.
In §9, we prove that a diffeomorphism Φ: M-±M is an isomorphism

r
of G-structures P with P' if and only if TΦ is an isomorphism of P{r) with
pf(r)

In §10, we prove that a G-structure P is integrable if and only if the

prolongation P ( r ) is integrable.

In §11, we consider some classical G-structures and prove, among others,

that if a manifold M has an (resp. an integrable) almost complex sturcture,

symplectic structure, pseudo-Riemannian structure or a (completely integr-
r

able) differential system, then TM has canonically the same kind of struc-
r

tures. Moreover, if M has an almost contact structure, then TM has a

canonical almost complex structure for r odd and has an almost contact

structure for r even.

In this paper, all manifolds and mappings (functions) are assumed to

be differentiable of class C00, unless otherwise stated. If φ: M-+N is a

map of a set M into a set N and if A is a subset of M, we often denote

by φ itself the restriction φ\A of φ to A, if there is no confusion. If φ^\

Mi~+Ni is a map for i — 1,2, then the map φι x φ2: Mxx M2->iVΊ x N2 is

defined by (φ1xφ2) {xuXi) = (9i(»i)> 2̂(̂ 2)) for ^ e M i , ί=l,2. If Mi=M2=M,

the map (φ19φ2): M->iVixJV2 is defined by (^, p2) (α) = (φ^x), φ2(x)) for a eM,

In the following, Rn denotes always the w-dimensional real number

space. The group of all linear automorphisms of Rn will be denoted by

GL(n,R) or simply by GL{n). If a} e R for i,j = 1,2, ,n, we denote by

(βj) the matrix of degree n whose {f,i)-entry is a).
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§1. Tangent bundles of order r.

Let g be the set of all real valued differentiable functions defined on

some neighborhood of R containing zero. Take two functions / and g in

$. For a positive integer r we say / is r-equivalent to g iff dvfldtv =

dvg\dtv at t = 0 for v = 0,1, ,r, and we will denote it by f~g. The
' r

relation ^ is clearly an equivalence relation in g\ Let M be an n-dimen-
r

sional manifold, and let C°°(M) be the ring of all differentiable functions

defined on M. We denote by §{M) (resp. S(M)) the set of all maps φ of

some open interval (—ε,ε) (resp. R) into M, oo ̂ > £ > o depending on φ. Let

ψ and ψ be two maps of 3{M). We say that φ is r-equivalent to ψ iff

foφ^foψ for every / e C°°(M) and denote it by φ ~ ψ. The relation
r r

s^s is also an equivalence relation in S(M). For φ e S(M) we denote by
r

[<p]r the equivalence class in S(M) containing φ.

DEFINITION 1. 1. We call [φ]r the r-tangent to M at p e M (or r-jet)

defined by φ iff φ(0) = p.

For any r-tangent |>] r to M there exists φr e S{M) such that [^']r = [φ]r

by virtue of the following
LEMMA 1. 2. Z,£ί φ G S(M). 7"fe?z ίΛ r̂̂  exist some εx > 0

ί t o ψ is defined on {—Sx,εx) and φ{t) = φ'{t) for \t\<ε1.

Proof. Since φ e §{M), there is some ε > 0 such that φ is defined on

(—ε,ε). We can find a function g & C°°(R) such that g(t) = t for \t\^εl2

and 0(f) = 0 for | ί ] ̂ 2ε/3 and that ]flr(ί)| <2ε/3 for all ί e J?. Put εj = ε/2

and φ' = φ °g. It is now clear that v>' and εί satisfy the required conditions.

Q.E.D.

DEEFINTION 1. 3. Let T{M) (or TM) be the set of all r-tangents to M,
r

and for φ e M let TP{M) be the set of all r-tangents to M at p. We define

π: T{M)-+M by ϋ(M r) = φ{0) for [^]r e T(M).

The notion of 1-tangents to M at # coincides with the notion of usual

tangent vectors to M at j). In order to define the manifold structure in

TM we shall prove the following

LEMMA 1. 4. Let {xί9 x2, , xn] be a local coordinate system on some

neighborhood; U of p e M. Take two elements' φ and ψ in S{M) such that

https://doi.org/10.1017/S002776300001360X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001360X


156 AKIHIKO MORIMOTO

φ(0) = ψ(0) = φ. Then φ ~ ψ if and only if xi o φ ̂  xt o 0 for / = 1,2, , n.
r rr

Proof. Suppose φ.— ψ. There exist a neighborhood V of p contained

in U and a function / ^ Π M ) (i = 1,2, , n) such that fΛV^x^V.

Since fi° φ ~ fi° ψ and since a?4 o ̂ >(f) = / € o φ(t), xi o 0(/) = / € o 0(j) for

Ul < ε with some ε > 0, we have x^ψ ^yχio ψ for / = 1,2, , n.
r

Conversely, suppose xt o y? ^ ^ χi o 0 for / = 1,2, , n. Take /eC°°(M).

W e h a v e t o p r o v e foφ^foψ, i . e . dv{f o Ψ)ldtv = dv(f oψ)ldtv at t=0

for y = 0,1,2, , r. This holds for * = 0, since φ(0) = ψ(0). Define Ψ: U-^Rn

by 3F(tf) = [xM, xz(q)9 •,»»((?)) for q^U. Then the function F = /of-1

is an element of C°{Ψ{U)) and we have /(g) = Fix^q), -,xn{q)) for ge l7 .

Since /(^(f)) = F(x^(t))9 , xn{φ(t))> we have the following

. d(Xj o y)

a n d h e n c e w e g e t

Γ d(foφ)Ί = f , Γ J F _ Ί . Γ £/(«?< o y) Ί
L dt Ĵ =o /έiL a^ί _U?P(P) L d/ί J=o#

Similarly, we have

Γ d(foψ)Ί = f , Γ_^1Ί . Γ rf(α?< Q ψ) 1

Hence we obtain [d(fo φ)ldt]Q—[d{fo ψ)jdt\. Differentiate (1. 1) and evaluate

at t =0, then we get [d2(f o φ)ldt2]0 = [d2(f o ψ)/dt2]0 and so on. Thus we

see foφ^foψ. Q.E.D.
r

O)
W e d e f i n e t h e l o c a l c o o r d i n a t e s y s t e m {xi\i=l,29 *,n; v=0,1, ,r}

It is straightforward to see that T(M) has a differentiate manifold structure

by these coordinate systems and to see that π is a differentiate surjective
r

map of maximal rank. It is also clear that TP{M) is diffeomorphic to Rrn

for any p e M.

DEFINITION 1. 5. The manifold TM with the projection π is called the

tangent bundle to M of order r. If U is an open subset of M9 then (π)~ι(U)
r # r

is an open submanifold of T(M) which can be identified with T(U).
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r r

However, it must be noticed that T(M) (Λf, π) is not a vector bundle

over M.
We define πr

s: T(M)-*T{M) for r>s by 4 W r ) = [ Λ for φ<=S{M).

On the other hand, M can be imbedded in T(M) by x-+\Tx]r for

x e M, where rΛ e S(M) is defined by Tx(t) = x for f e #.

Let iV be another manifold of dimension m. For any map Φ: M-*N9

we define the induced map TΦ: TM-ϊTN by (TΦ) (M r)=[Φo ψ\r for <peS(M)..

It is easy to see that TΦ is well-defined and that TΦ is a differentiate
r r r

map of TM into TiV. We shall call TΦ the tangent to Φ of order r (or

simply r-tangent to Φ).

Let πj (resp. π2) be the projection of MxN onto M (resp. iV). We

can readily see that T(MxN) can be identified with TMxTN by [>]r -*

(fri ° £>]r> fe ° ί°]r) for ψ e S(MxN).

We can prove the following Propositions 1. 6 and 1. 7 whose proof will

be straightforward.

PROPOSITION 1. 6. Let Mo, M19 M2, M3 be manifolds, and let Φ: M0-+Mί9

Φί'. Mi~+ M2, Φ': MQ~>M2 β̂ rf Ψ: M2-+Mz be maps. Then, we have the following

equalities:

(i) f(Φ 1 oφ) = (fφ 1 )o(fφ),

(ii) nΦ,Φ') = (TΦ9TΦ'),

(iii) T(Φx¥) = TΦxTW,

(iv) f(l^) = l r ,

1# stands for the identity map of M.

PROPOSITION 1. 7. Let πx[resp. π2) be the projection of MγxM2 onto Mt

(resp. Λf2), and let πx (resp. π2) be the projection of TMγxTM2 onto TMX (resp.
r r

TM2). Then, we have Tπt = £< for i = 1,2.

PROPOSITION 1. 8. Let M, N be manifolds and let Φ be a map of M intσ
r r r

N of maximal rank. Then, TΦ is a map of TM into TN of maximal rank.

Proof. We shall prove only for the case r = 2, since the proof for

r ^ 3 is similar. Let p0 e M and put qo = Φ{po). We take a coordinate
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neighborhood U (resp. V) of p 0 (resp. q0) with coordinate system {xί9 ,# Λ }
2 2

(resp. {y19 , 2/m}) such that Φ(U) c F . Then, Tί/ (resp. TV) has the in-

duced coordinate system [xi9 xi9 xt\i = 1,2, , n] (resp. {?/y, yj9 jjj\j = 1,2,
2

• -9m}). Put FiίίCj, ,a?») = y<(Φ(a?)) for a e t Λ Take an element \_φ\^T(U)

with coordinates {xi9 xi9 ά^}, then Xi{φ{t)) = Xi + xtt + άi^2 + ε4(ί), where

= 0. Hence, we have yiΦ(x1{φ(t))9 , aΛ(p(0)) = F ^ ^ ! , . , xn)
4-fΣ .tTl ^ ^ + 2 2 - 1 ^ ^ ) ^ + ̂ (0, where [d*ηJdt*U

j 2 \y,A; OXjOXjc j OXj J /
2

= 0. Therefore, (TΦ) (|>]2) = [ Φ o ^ ] 2 has the following coordinates:

j dXj

(1.2)

" ~~rtι
2

Hence, the map TΦ has the Jacobian matrix / with respect tlo the coordi-
00 00

nate systems [x^i =19 , n\ v = 0,1,2} and \yk\k = 1, , m; v = 0,1,2}
as follows:

(1. 3) / =

\(/ί)

w h e r e Λ = ? i g i r * ' a n d ^ -T-
Since the Jacobian matrix of Φ is ( ^ ) > which has the maximal rank,

J has also the maximal rank.

COROLLARY 1. 9. Let Φ be a regular map of M into N9 namely the differ-

ential TΦ is an injective map of TP{M) into To^iN) for every point p e M .
r r

Then, TΦ is also a regular map of TM into TN.

r

Remark 1. 10. We see that if Φ is a regular injective map, then TΦ is

also a regular injective map.
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§2. Tangent groups of order r.

Let G be a Lie group with group multiplication μ: GxG-^G and

with the unit element e.

y γ

THEOREM 2. 1. TG is a Lie group with group multiplication Tμ. The
r r r

group G is a closed subgroup of TG and Te{G) is a closed normal subgroup of TG

such that

TG=G-Te(G),

r > r

with GΓ\Te{G) = e, where e is the unit element of TG. Moreover the projection
r r

π: TG-+G is a homomorphίsm. {cf [3] for r = ί)

Proof F o r a n y two e lements φ, ψ e S{G) (cf. §1), we define φ ψ

by (φ ψ) (t) = φ(t) ψ(t) for t e R. Then, we have (Tμ) ( |>] r, [φ]r) = (Tμ)

([{<P, ψ)]τ) =[μ° (ψ9 Φϊlr = iψ Φlr and hence we get

(2.1) (770 (Mr, Iφ\r)=lψ-Φ\r.

Since (φ ψ) η = ψ (ψ η) for any 9,0, η e S(G), we see that the multiplica-
r

t ion 7 > is associative. Define r e e S(G) b y Γe(ί) = ^ for ί e i ? a n d p u t
r

£ = D"β]r Clearly β is the unit element with respect to Tμ. For ^eS(G),

we define yr1 e S(G) by ^^(ί) = (<p{t))~ι for ί e R. Then f//(Mr, C -̂1],.) =

[φ φ'^r = [7*e]r = β and hence [p"1],. is the inverse element of M r . Now,

iφ^Ίr = (Te)[φ]r9 where : G-+G is the map α -^aΓ1 for aj e G. Since T«

is a differentiable map of TG into itself, we have proved that TG is a Lie

group with group multiplication Tμ. Next, since G = {[ΓJrlβ e G}, where

Fα(£) = a for fei?, it follows that G is a closed subgroup of TG. Similarly
r r r

we see that TeG is a closed normal subgroup of TG. Next, any [φ]r e TG
can be written as lφ]r = [ r j r -[γa-i ]̂r> where α = 9(0) and so [rα-i φ\r^TeG.

r . r

The equality Gf]TeG = e is also clear. Finally the projection π is a homo-
morphism since (2. 1) holds. Q.E.D.

DEFINITION 2. 2. The Lie group TG with group multiplication Tμ will

be called ^ tangent group to G of order r.
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PROPOSITION 2. 3. Let Φ be a homomorphism of a Lie group G into a Lie
r r

group G'. Then TΦ is also a homomorphism of the tangent group TG of order r

into TG'.

Proof Let μτ be the group multiplication of G. Since Φ is a homo-

morphism, we have Φ o μ — μr o (Φxφ). By Proposition 1.6 we have TΦoTμ
r r r r r

= Tμ' o (TΦ x TΦ), which means that TΦ is a homomorphism of TG into

TG'.
r r

PROPOSITION 2. 4. The projection πs: TG -+TG for r>s is s a homomor-

phism of tangent groups.

Proof Clear from the equality (2. 1).

r

PROPOSITION 2. 5. If G is a Lie subgroup of G'9 then T{G) is also a Lie

subgroup of T(Gr).

Proof Let Φ: G->G' be the injection map. Then Φ is a regular map.
T

By Remark 1. 10 and Proposition 2. 3, TΦ is a regular homomorphism of

TG into TG'. Let [>]r be an element of TG such that (TΦ) fl>]r) = e' is

the unit element of TG'. Then [Φo<p]r = [r'J r, where r j : R-*G' is defined

by ϊ'e(t) = e for t(=R, e being the unit element of G. We see that <p(0) =e
r

and that [ψ\r = [ΐe] — e. Hence TΦ is a regular injective homomorphism,

which means that TG is a Lie subgroup of TG''. Q.E.D.
§3. Tangent operations of order r.

Let G be a Lie group operating on a manifold M diίFerentiably. We

denote by p: GxM-+M the operation map of G on M.

r

PROPOSITION 3. 1. The tangent group TG to G of order r operates on the
r r

tangent bundle TM of order r by the operation map Tp [for the tangent group TG,

see [3]).

Proof Since p is the operation map of G on M, we have p o (μ x l^)

= po(loχp). By Proposition 1.6 we have (Tp)o(TμXlr ) = 7>o( i r xTp),
TM TG

which means that a (δ x) = (a b) 51 for ά,b(=T(G) and x<=TM, where we
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have put a-x = {fp){ά,x). Let Te: R-+G be the constant map: ϊe{t) = e

for t e R. Then, for any |>] r e TM we have 7>([re], Mr) = TWe* ^)]r) =

[i° o ίe^)]r = [ ^ Λ = M π which means that the unit element e=\ϊe~\r of
r r r

TG operates on TM as the identity map. Hence we have proved that TG

operates on TM by Tp. Q.E.D.
Y

DEFINITION 3. 2. The operation map Tp in Proposition 3. 1 will be

called the tangent operation to p of order r.

P R O P O S I T I O N 3. 3. If a Lie group G operates on M effectively (i.e. a x = x
2 2

for all x&M implies a = e), then TG operaties on TM effectively by the tangent

operation of order 2.

Proof For φ^S(G) and 0<=S(M) we define φ-ψ^S(M) by {φ ψ){t) =

φ{t) φ{t) for ί e i ? . Suppose φ ψ^sψ for every ψ^S{M). We have to

show that ψ ̂  ϊe, where Te e S{G) is defined by fe(f) = e. First, since
2

φ(0) 0(0) = 0(0) for any ψ e S(M), we see that ^(0) x = x for any x e M,

whence ^(0) = ^ since G operates effectively on M. Next take a point pQ<=M

and fix it. We take a coordinate neighborhhod U (resp. F) of p0 (resp. of

β) in M (resp. in G) with coordinate system {x19 ,xn} (resp. {^, ,zN})

such that ίβ^po) = 0 for ί = 1,2, , n (resp. zt{e) = 0 for / = 1,2, , TV).

Define the functions F^i = 1, , w) by

ΛUi, ,2JV; a?!, ,&n) = a?i(^(z, a?)).

(v) (v)

L e t { α 4 l ί = 1 , • • • , « ; y = 0 , 1 , 2 } ( r e s p . { ^ 1 / = 1 , • • • , # ; * = 0 , 1 , 2 } ) b e t h e
r r (0) (1)

induced coordinate system on T(U) (resp. T(V)). If α;i([0]2) = a;i, (
(2)

([] = ίc'i, we see t h a t

Ψ(t) = (•••, a?* + i t + ϊ i / 2 + ε t(/), • • • ) € = ! /

for small | ί | , w h e r e [d2ejdt2'}o = 0 for ί = 1, ,w. Similar ly we see t h a t

for small | / | , where W2^ι/Λ2]0=0 for / = 1, ,JV. We have the relations

Xi° (φ ψ) s^s Xi° ψ (i = 1,2, , w) for every 0 e S(M). To simplify the
r

notations we define the functions / t(ί) for i = 1, , n by
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O)
and we define the variables yκ for K = 1,2, N+ n; v = 0,1, , r by

00 (v) (v) (v)

VK = v\*zκ for Λ: = 1,2, , N and 2/* = pl α^^ for K = iV + 1, , N+ n.

By means of these notations we have the following equalities

(3. l) % N n 4 ^

(3. 2)

+ Σ -d*F* (y* + yJ + e;(ί)) (yi + yiί + eί(ί)),

where WεJ/tff]0 = 0 for fc = 1, 2. Since /*(£) = (»< o (9 . φ)) (t) and since

Xi° (ψ ψ) ~ Xi° ψ we obtain the following relations:

L J έι' έ + 2ϋϊ gL

for i = 1, 2, , n a n d for every (xi9 xi9 χt) e t/. N o w , since ^ x = a? for

a n y x e M, we h a v e

F 4 (0, , 0 ; &!, , a?n) = a?<

for f = 1,2, , n . Therefore, we get Γ ^f* Ί = δj for i,j = 1,2, ,w.
L d#j J(of«)

Finally, we obtain, from (3. 3), (3. 4) the following relations:

(3 6)

for every {x19 9xn)^U and f = 1,

Now, we shall prove the following
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LEMMA 3. 4. Let a19 -,aN<=R. Suppose Σ ^ Γ - l ^ - l , = 0 holds for
1 = 1 L OZ i -1(0. aθ

every (x19- ,xn)^U and for i = 1,2, ,w, where U is an arbitrary coordinate

neighborhood in M. Then at = 0 for I = 1,2, , N.

By virtue of this lemma, we see from (3. 5) that zt = 0 for / = 1,2, ,

N and then from (3. 6) it follows that ϊt = 0 for / = 1,2, , N9 which

proves that ψ ̂ ^ ΐe and thus the proposition will be proved.

Proof of Lemma 3.4. Suppose atφ0 for some /. Let g be the Lie

algebra of G. By taking a linear transformation of the coordinates {z19 ,

zN], if necessary, we can suppose that [dFJdzJ^x-) = 0 for any x^U and
N

that Zi (exp 2 ^Λ) = t% for i = 1,2, , N9 where {X19 9XN] is a base

of Q. Now let Zx be the vector field on M induced by the one-parameter

group exp tXx. For any point x^U9 we have ( A ^ = 0, since (XiL tf^

[rf«i((exp tXx) - x)ldt\ = [rfF<(ί,0, , 0; x)ldt\ = [BFJdz^o^ = 0 for i = 1,2,

• , n . Since U and x are arbitrary, we see that ί ^ O o n M and that

exp tXx operates trivially on M. It follows that exp tXλ = e for any t&R

and hence Xx — 0, which is a contradiction. Thus Lemma 3. 4 is proved

and hence the proof of Proposition 3. 3 is complete. Q.E.D.
More generally, we can prove the following

r

T H OREM 3. 5. If a Lie group G operates on M effectively, then TG operates

on TM effectively by tangent operation of order r for any poistive integer r.

Proof Using the notations of the proof of Proposition 3. 3, especially

the notations of (3. 1), we define φa(t) by φa{t) = ya + yj + slit) for α = l,2,

• ,iV+ n. Then the equality (3. 2) can be written as follows:

CS 7)

By differentiating (3. 7), we obtain the following

(3 8)

In general, by induction on v = 1,2, , we obtain the following equality
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<3 9)

where cμ

v]ββμ are some positi e integer for J] ̂  = 1,2, , v — 2 and for

any y = 1,2, .

Suppose [ψ'φ)r-^φ for every ψ^S(M) as in the proof of Proposition

3. 3. By using (3. 9) and Lemma 3. 4 repeatedly we can show, by induc-

tion on v9 that zι = 0 for any / = 1,2, , iV and * = 0,1, , r, which

proves that φ~ϊe. Q.E.D.
r

§4. Tangent bundle to Rn of order r.

Let i ^ be the real euclidean space of dimension n. For any two r-

tangents |>] r , [ψ\r to i?% we define their sum by: [φ]r + \_ψ\r = O + ψ]r,

where (φ + ψ) {t) = φ{t) + ψ{t) for t^R. For any cei? we define the scalar

multiplication of lφ]r by c as follows: c [φ\r =[c ^ ] r , where (c φ) {t) = c φ(t)

for ίei?. Clearly |>] r + [0]r and c [>]r are well-defined.

THEOREM 4. 1. #y /fe <2έo^ sum and scalar multiplication the tangent bundle
r

TRn to Rn of order r is a real vector space of dimension n(r + 1).

Proof. Straightforward verification. Q.E.D.

PROPOSITION 4. 2. Let V@W be a direct sum of vector subspaces V and
r r

W, then TV and TW are identified with vector subspaces of T(V ® W) and we

have

T{V ® W) = TV ® TW (direct sum).

Remark 4. 3. Let {x19 ,x] be the natural coordinate system on Rn

r

and let {x^i = 1, , n; v) be the induced coo dinate system on TRn.
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r

Then the sum and scalar multiplication in TRn in Theorem 4. 1 are as

follows:

00 00 (y) (v)

(Xi) + (*ί) = (3* + »ί)
(v) (v)
() ( )

§5. Imbedding of TGL{n) into GI(n(r + 1)).

Let p: GL(n)xRn-^Rn be the usual operation of the general linear
r

group GL{ή) on Rn. By Proposition 3. 1, the tangent group TGL(n) to

GL(ή) of order r operates on 77?n by the tangent operation 7> to p of

order r. Now, by Theorem 4. 1, TRn is a vector space of dimension n(r+l).

We shall prove the following

r

THEOREM 5. 1. The tangent group TGL(n) to GL{n) of order r operates on
r

TRn effectively as a linear group.

Proof. Since p is effective, we see that Tp is effective by Theorem 3. 5.

For any η e S{GL{n)) and φ e S{Rn), we define η φ e S(i?Λ) by the equality

fe 9)(O=?7(ί) (O = ^ ( ί ) ^ ( ί ) ) for ί ε ί . We put fo]r -Mr = f /)(Mr,Mr)
r

Then we have M r [ Λ =D? ^]r. Take an element [0] r oΐ T(Rn) and cei?.

Then we calculate as follows: Mrfl>]r + [ψ\r) = Mr [9 + 0] r = fo (ψ + 0)]r

= b ψ + 3? ψ\r = [57 rfr + [17 0] r = [rj]r [^]r + M r [ψ]r. Similarly, we have
Mr(c Mr) = Mr[c ' <P]r = fc (c?)]r = [C fe φ)]r = cfo ?] r = cfe]r [^]r). ThuS

r

we have proved that \rj]r operates on TRn as a linear transformation.
Q.E.D.

DEFINITION 5. 2. Let {#!,•• •,#»} be the natural coordinate system on
O)

i?w and let {xι\i = 1, ,w; v = 0,1, ,r} be the induced coordinate sys-
Y

tern on Ti?w. Using these coordinates, Theorem 5. 1 shows that there is

a canonical injective homomorphism ffi of TGL(n) into GL{n{r + 1)).
Let (yj) e GL(n). Then TGL{n) has the induced coordin te system

00
{2/jl^y = 1> •> w; v = 0,1, * , r } . We denote by F v the wxn-matrix

(2/j) for y = 0,l, f,r.

https://doi.org/10.1017/S002776300001360X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001360X


166 AKIHIKO MORIMOTO

PROPOSITION 5. 3. The homomorphism ffi is given by the following equality :

I Yo 0 0 \

ί ' C r V . . . η j ί . . . \ —
V
I i

V,
Proof We shall prove the proposition only for the case r — 2, since

2

the proof for the case r ^ 3 is similar. Let |>]2 e TGL{n) be such that [>]2
2

= (3/J> 2/j> i/j). Let [f]2eTi?w be such that [ξ]2 = (a;*, ά ί f ajj. Then we can

assume that

(5.1)
φ(t) = (yl + y

ξ(t) = («, + i 4

y}t2),

for tsΞR. From (5.1) it follows that {ψ -ξ) {t) = φ{t)-ξ{t) = (Σ (2/} + 2/}

+ Σ (y}ά"4 + if}i4)ί8 + Σ yjtiit4). Therefore, we get M2[f]2 = ίψ ?]2 =

Σ {yjxi + ^ίά<), Σ (yjait + yj + ά* •

and hence we obtain

y)

2/}

o o

o

Q.E.D.which proves the proposition.

§6. Tangential fibre bundle of order r.

Let E{M9π9F9G) be a fibre bundle with bundle space E, base M,

projection π, fibre F and structure group G. We shall prove the following

PROPOSITION 6. 1. TE{TM, Tπ, TF, TG) is a fibre bundle with bundle space
r r r r r

TE9 base TM, projection Tπ, fibre TF and structure gro*p TG.
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r r

Proof. First, since G operates on F effectively, TG operates on TF

effectively by virtue of Theorem 3. 5. Let {Ua} be an open covering of

M such that E is trivial over Ua with trivialization ΨΛ: π~1{Ug)-*Ua.xF and

with transition functions gaβ9 i.e. Ψa o Ψγ(x,y) = {x,g«$(x) y) for x<=Uaf}Uβ
r r r

and 2/eF. Clearly {TUa} is an open covering of TM and T¥a is a diffeo-

morphism of {Tπ)"\TUa) onto TUaxTF. We shall verify the following

(6. 1) (TΨa) o [fψβ)-Wr, ίΦ\r) = (Mr, ((Γfl^) Mr) ' Mr)

for [φ]r^T(UanUβ) and [ψ]r<^TF. We denote by p: GxF-ϊF the operation

of G on F and by πx\ UaP\UβXF-+UaΠUβ (resp. ττ2: UaΠί/βXF-ϊF) the

projection. Similarly we define πx: T{Ua Π £/$) x TF -> Γ(£/β Π t/^) and τf2. Then,

we have the following equalities

(6. 2) π^ψ.o ¥γ = π i , ^oψ^oψΫ =, po (gaβ x 1F).

Taking the tangent to (6. 2) of order r, we get, by Propositions 1. 6 and

1. 7, the following

r r r r

π 2 o lΨao 1 Ψn1 = i p o i #α / 3 x l r ),

which proves (6. 1). Therefore, we have proved that TE is a fibre bundle
r

with transition functions {Tgaβ}. Q.E.D.

DEFINITION 6. 2. We shall call the fibre bundle TE(TM, Tπ, TF, TG)

the tangential fibre bundle to E of order r.

Let P(M,π,G) be a principal fibre bundle with bundle space P, base

M, projection π and structure group G, and let {Ua} be an open covering

of M such that P is trivial over UΛ and let {gaβ} be the transition function

with respect to this covering {Ua}. We denote such a principal fibre bundle

by P{M,π,G) = {Ua,g^}. (For the general theory of fibre bundles, see [5]).

Then, by the proof of Proposition 6. 1 we obtain the following

COROLLARY 6. 3. From a principal fibre bundle P{M,π,G) = {Ua9gΛβ} we

get a principal fibre bundle TP{TM,Tπ,TG) = {TUa9Tg^} for any positive in-

teger r.
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§7. Imbedding of TFM into FTM.

Let F(M) {M9 π9 GL{n)) be the frame bundle of an ^-dimensional mani-

fold M as in [4], We shall prove the following

Y

THEOREM 7. 1. For any manifold My there is a canonical injection ffi: TFM
Y Y

-¥ FTM of the tangential fibre bundle TFM to FM of order r into the frame bundle

of TM such that j%\x g) = j%\x) jV{g) for x<=TFM9 g^TGL{n) and that the

following diagram is commutative:

TFM y FTM

Tπ

TM

TM y TM ,

where π: FM-+M {resp. ft: FTM^TM) is the projection.

Proof We shall use the same notations as in the proof of Theorem

2. 4 [4]. We denote by / ^ the Jacobian matrix with respect to the co-

ordinate systems [xati\i = 1, , n; v = 0,1, ,r} and [Xβti\i = 1, 9n;

v — 0,1, , r} . Using the same arguments as the proof of Theorem 2. 4

[4], in order to prove the Theorem 7. 1, it is sufficient to verify the follow-

ing relation:

(7. 1) JVβ = Λr) o TJaβ on T{Ua) ΓΊ T(Uβ).

We shall prove (7. 1) only for r = 2, since the proof for the case r ^ 3
O) 00 <>) 0O

is similar. Put xi = x(tΛ and 2/i = %β,i, for i = 1,2, , n ; v — 0,1, , r .

By expressing Vi as a function ft{x19 , xn) of x19 - 9 xn9 we get from

(1. 3) the following relation:

(7.2) r i = Λ 0 /^

where JΛβ = (Jί) with /« = g ^ ^ i^ and / α i 3 = (/«) with /« = " ^ Σ

ί5 /
P u t t i n § J l = "9^7 w e § e t t h e
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Now, consider the map J = Ja$: UaΓiUβ-+GL[n). We can calculate the
00 00

c o o r d i n a t e s { y j \ i , j = 1 , , n ; v = 0 , 1 , 2 ) o f t h e i m a g e o f ( X i \ i = 1 , , w ;
2

v = 0,1,2) by the map TJ as follows:

!

(0) (1)

ί / } ( ) J

By Proposition 5. 3 and (7. 4), (7. 3) we obtain

Λ2) o f/αi3 = /Sg on T(U.) Π 7W*). Q.E.D.

§8. Prolongations of G-structures to tangent bundles of order r.

DEFINITION 8. 1. Let G be a Lie subgroup of GL{n). We denote by

G ( r ) the image of TG by the homomorphism /n

r), i.e.

(8. 1) G ( r ) = Λr) (f G).

Clearly, G ( r ) is a Lie subgroup of GL(n{r + 1)).

Let P(M, π, G) be a C-structuure on M (for the general theory of G-

structures see, for instance [1], [2], [4] or [6]). We denote by π{r) the rest-

riction of the projection π: FTM-+TM to the subbundle P ( r ) = j%\TP).

Then we obtain a G(r)-structure P ( r ) (TM, π(r\ G(r)) on the tangent bundle

TM to M of order r. We shall call P ( r ) the prolongation of order r of the
r

G-structure P to the tangent bundle TM to M of order r.

We can easily see the following
r

PROPOSITION 8. 2. If M is completely parallelizable, then TM is also com-

pletely parallelizable.

PROPOSITION 8. 3. There is a canonical bundle homomorphism βr

s of P ( r )

into P(s) for r>s, i.e. the following diagram
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D(r) pOO

TM

commutative and there is a canonical homomorphism hr

s: Gir)-*Gis) such that

for x e= P(r) and a e G ( r ) .

§9. Prolongations of isomorphisms of G-structures

THEOREM 9. 1. Let M and M be two manifolds and f:M-*M' be a

diffeomorphism betw en them. Then, we have the following commutative diagram:

TFM

TFf

3 Mt

--> FTM

FTf

K
FTM .TFM

Proof We use the same notations Φa9 Φ'a9 /α as in the proof of Theo-

rem 4. 2 [4]. On the other hand, let

Ψ*: TUaxGL{n{r-

Ψ'a: TV. x GL{n(r + 1)) -+ FTV*

be the local trivializations of FTM (resp. FTAΓ) over TUa (resp. 7Vβ)
r

induced by the coordinate system on UΛ (resp. Fα). Define /c

α

r): Tί/α x

GL(w(r + 1)) -> TVaxGL(n(r + )) by the following

Let fp = l r x/n

r) and ϋ ( r ) = l r x/n

r). By the same arguments - as the

proof of Th. 4. 2 [4], in order to prove the Theorem 9. 1, it is now suf-

fficient to prove the commutativity of the following diagram:
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TUaxTGL{n)

(9.1)

TVΛxTGL{n)

TU9xGL{n{r

fV

4
—> TVaxGL(n(r

We shall prove the commutativity of (9. 1) only for the case r = 2,

since the case for r ^ 3 is similar. Using the same notations yif fi(x), w\, z\

as in Th. 4. 2 [4] (we use yi instead of y\ etc), we introduce the notations

/*(#)> χκ> VK for K — 1,2, ,3n by the following

(9.2)

Γ Γ " Xk>

for z = l , 2 , » , w . L e t {xκ, wκ

λ\κ, λ = 1,2, ,3n} (resp. {yκ,zκ

λ\κ, λ — 1,2,

2 2

• ,3n}) be the coordinate system on FTU* (resp. F7Vα) induced by the

coordinate system {xκ} (resp. {yκ}). Now since the map fa: U*xGL(n)-¥

V*xGL(n) is expressed as follows:

(9.3) / „ : y, =/,(*), «{ = Σ ^ f - ^ (ί,/ = 1,2, ,n),

2

we obtain the expression of T/α as follows:

dxk '

(9.4)

^ XιXm

dVj
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By Proposition 5. 3 we get the following

(9.5) = yκ
z{

z{

0 i

0

where yκ and z\ are given by (9. 4).

On the other hand, since / : Uo->Va is expressed by yi = ft{xί9
2

(i = 1, ,n), we have the expression of T / as follows:

,».)

2

Tf:

Therefore, we get the expression of /c

cfc

2) as follows:

μ = l

for K, λ = 1,2, ,3n and f = 1,2, ,w. Now, we calculate £][ by (9. 2)

as follows:

zn

κ

+j = ΈK-
3 * * '

for K = 1,2, ,3n and = 1,2, ,n. By Proposition 5. 3 and the above

calculations, we have the following equalities:
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(9. 6)

where we see that z{ = Σ3 w\ 4^-> zTs = Σ » { ?*J *ι + Σ w\ - 1 ^ - and
k OXjc k,l OXiOXjc k OXjc

z2n+j _ TΓλn.jc { I y i d3/j . . ^ d2fj .. \ , y, . fc d2/y Λ . yi

fc \ 2 /,w oic^aj^ajfc / dXιdxk ' κι dXkOXi k

w\ j — z{. Therefore, we obtain, by (9. 5) and (9. 6), the commutativity
OXjc

of (9. 1) for r = 2. Q.E.D.

By the same arguments as the proof of Th. 4. 3 [4] we can prove the

following

THEOREM 9. 2. Let Φ be a diffeomorphism of a manifold M onto a manifold

Mr. Let P (resp. Pr) be a G-structure on M (resp. Mr). Then Φ is an isomor-

phism of P with Pr if an only if TΦ is an isomorphism of P(r) with P / ( r ) .

COROLLARY 9. 3. Let Φ be a diffeomorphism of M onto itself and let P be
r

a G-structure on M. Then Φ is an automorphism of P if and only if TΦ is an

automorphism of the prolongation P ( r ) of order r.

§10. Integrability of prolongations of ^-structures.
In this section, we shall prove that the prolongation of an integrable

G-structure (see Def. 5. 1 [4]) of order r is also integrable and vice versa.

P R O P O S I T I O N 1 0 . 1 . Let {x19 9xn] be a local coordinate system on a

neighborhood U in M, on which we give a G-structure P. Let φ be a cross section

of P over U, which is expressed by φ(x) = ( - . . , ̂ Σφjix) [dldx^)x9 •) for x^U.

Define φ{r) by φ(r) = JV°Tφ. Then φ{r) is a cross section of the prolongation P(r)

over TU and is expressed with respect to the induced coordinate system {xt \ i — 1,

• , n v = 0,1, , Ύ } as follows:

4r
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r (Λ)

where X = ( , χi9 )^TU and F)]μ{X) is a polynomial of xk{λ^ μ; 4 = 1,

• , n) without constant term and with coefficients, which are partial derivatives of

Φl{l,m = 1, ,»).

Proof Let π\ F(M)-+M and π: FTM-+TM be the projections. Let
r r

Φu and ΨΌ be the local trivialization of FM and FTM over U and TU9

respectively. We see that

jV\TFM = ̂  o (i r x#>) o (f<^)-\

Using Proposition 1. 6, we have the following equalities:

π o φ^r) = πo j<£> Tφ =TπoTφ = T(π o φ) = T\Ό = l r .

Since φ(r) {TU) = / ^ oTφ(TU) = jVΆΦ(U))dj%ΎP = P ( r ) , we see that ^ ( r ) is

a cross section of i ? ( r ) over 777.

We shall prove (10. 1) only for the case r = 2, since the case r ̂  3 is

similar. Put f{x) — {φ){x))^GL{n) for x&U, then we have Φ^1 o φ = (iU9 f).

Hence, we have ^C2) = f > ( i 2 χj™)o (TΦ)-1 oTφ = Ψv o (12 x/n

2 ))of(l,,/) =
2 ΓCί ^ 2 17 2

^ o ( i 2 xffioTf). Therefore, using the expression (1. 2) of Tf and Proposi-

tion 5. 3 we get the expression of 0C2) as follows:

Φ) 0 0

,x9x) = Ψu \(x,x,x); \ φ φ) 0

Φ) Φ)

f r U 'K-alr) J
•»-f-S-*-«-5-δ^" + ? i

These functions }̂ and ̂ } have the properites stated in the proposition.

Thus the proposition is proved. Q.E.D.

Remark 10. 2. By the properties of the functions F)\v

μ{X), we see that

Fyu

μ vanishes if the functions φι

m are constants for l,m = 1,2, ,n. The
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O) . (Ό

function F)\v

μ(X) also vanishes at X = ( , xi9 ) with xk = 0 for all λ^ μ

and ft = 1, , n, since F)\μ is a polynomial of xk without constant term.

T H E O R E M 10. 3. Let P be a G-structure on a manifold M. Then, P is

integrable if and only if the prolongation P{r) of P order r is integrable for any r.

Proof Suppose P is integrable. Let # o eM be any point of M and let

{xlf 9xn} be a local coordinate system on a neighborhood U of x0 such

that

( ( f X ) for any xe-U.

Then, by Proposition 10. 1 and Remark 10. 2, φ{r) is a cross section of P ( r )

and is expressed with respect to the induced coordinate system {xi\i=l,
00 O)

• , n ; v = 0 , 1 , , r] a s f o l l o w s : ^ ( r ) ( , x i 9 . . - ) = ( • • • , OldXi)*, )
(v) y

for X = ( , »<, )<BTU. Since φ{r\X)^P{r) and since #0 is arbitrary,

we have proved that P ( r ) is integrable.

Conversely, suppose P ( r ) is integrable for some r. To prove that P is

integrable, we use the same arguments as the proof of Prop. 5. 5 [4]. Take

a point p ε M and take a coordinate neighborhood U of p with coordinate

system {x19 ,#Λ} such that there is a local cross section φ: U-±P of P

over {/. Then, by Proposition 10. 1, φ{r) = / ^ o Tφ is a cross section of P ( r )

r r (v)

over TU. Now, let Xo be the element of TU having coordinates {#*} with
(v)

%ι = ^ί(^) a n ( i ^i = 0 for all v ^ l and i = 1, *,n. Since P ( r ) is integr-

able, there can be found a coordinate neighborhood ϋ of Xo with coordi-

nate system {yl9y^ ,2/ΛT} (N= n(r + ΐ)) such that UczTU and that, if we

define φQ by ^0(X) = {{dldyλ)x, , {dldyN)x), φ0 is a cross section of P ( r )

over U. Since ^ ( r )]ί7 and "̂0 are both cross sections of P ( r ) over ϋ9 there

exists a map £: ί/->G ( r ) such that
(10.2) ^ ( r )(X) = £0(X).£(X)

holds for X^U. By Proposition 5. 3, there is a map g: U->G such that

has the following form:

g{X) o

(10. 3) g(X) = I g(X)

* ' 'g{X)l
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(v)

Since [y19 ,yN] and {#*} are both coordinate systems on Ό we have

diίferentiable functions /* such that yκ=fκ( , xi9 ) for ( r # ί , )&ϋ
a n d * = 1,2, , N. N o w if φ{x) = (•••, Σ 0 K # ) ( d / ^ ) * > •) for x e £/,

i

then by Proposition 10. 1, (10. 2) can be written as follows:

Σ ^ (
+i 3

for j = 1,2, ,w, where ^(Z) = (flr;(jf)) for l ε ί / . Since (a/a^,)x = SO/./

d%i) (dldyκ)x, (10.4) can be written as follows:

do. 5)

Comparing the coefRcients of {dldyk)x for k ̂  n in (10. 5), we have

(10.6) XΦiM)-$- + ΈlFl:UX)-&t-

for j,k = 1,2, ,n. Now, define maps fk:U'-+R and g:U'-±G by

Λ(a) = /*(», 0, , 0) and (fifίa?)"1)} = g) {x, 0, , 0) for *', , h = 1, , n and

Putting xfc = 0 (fc = 1,2, , n v = 1, 2, , r) in (10. 6) and using

Remark 10. 2 we obtain

(10.7)

Now, by the same arguments as in the proof of Prop. 5. 5 [4, pp. 88-89],

we see that there exists a coordinate neighborhood Uo of p with coordinate

system {x19 ,xn} such that the map φ, defined by φ{x) = {{dldxJή, ,

{dldxn)x) for a eί/o, is* a cross section of P over Uo. Thus P is integrable.

Q.E.D.
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§11. Prolongations of classical (^-structures.

(I) G = GL(n,C).

Let / be a linear automorphism of R2n such that J2 = — lR2n and let

GL(n,C; J) be the group of all a^GL{2n) such that ao J = J o a. It is easy

to see that TJ is a linear automorphism of R2n<r+» = f (i?2n) such that (T/)2

= — 1. We shall prove the following

PROPOSITION 11. 1. If G = GL(n,C; /), then G(r)cGL(w(r + l), C; TJ).

Proof Take an element αeG ( r ) . We have to prove that {aoTJ)(X)

= {(TJ)oά)(X) for every X<=T{R2n). Now, we can find maps φ^S(G) and

ψ<ES{R2n) (cf. Notations in §1) such that a = [φ\r and X=[ψ]r. First, it

is readily seen that φ {J ° ψ) = J ° {φ * ψ) (cf. Notations in Th. 5. 1). There-

fore, We have ά(TJ(X)) = [φ]r(U ° 0)]r = [̂  [/ ° 0)]r = [/ ° (ψ ' Φ)1r = fj([ψ . 0]r)

= TJ(ίφ]r Mr) = TJ(S(X)). Q.E.D.

By the same arguments as the proof of Theorem 6. 3 [4], we obtain

the following

r

THEOREM 11. 2. (1) If a manifold M has an almost complex structure, TM

has a canonical almost complex structure for every r.
r

(2) If a manifold M has a complex structure, then TM has a canonical complex

structure for every r.

(II) G = Sp(m)

Consider a skew-symmetric non-degenerate bilinear form / on R2m.

Let Sp[m9 f) be the group of all «G GL{2m) which leaves / invariant. We

denote by πr the projection of TR = Rr+1 onto R defined by πr([φ]r) =

ίdrφldtr\ for φ^S(R) = C"(R).

LEMMA 11. 3. If f is a skew-symmetric non-degenerate bilinear form on R2m,
r

then / ( r ) — πro (Tf) is also a skew-symmetric non-degenerate bilinear form on
r

Proof We take the skew-symmetric matrix (a)) e GL{2m) such that

f(x9y) = I]aίjXiyj for x = {x19 , xn) and y = {ylf , yn) with n = 2m.
(v)

Let {Xi) be the induced coordinate system on RMr+1\ Take an element
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r (v) O)

[φ\τ (resp. [0] r) of TRn with coordinates {#*} (resp. {2/*}). We can assume

that φ(t) = ( , jlxtt
v, •••) and 0(0 = ( , fj 2/Γ, •••). I t is now

straightforward to see that the following equality holds:

(li. i) / ( r ) (Mr, iΦrl) = Σ Σ ̂  ΐ ί< v ),

which shows that / ( r ) is a skew-symmetric non-degenerate bilinear form on

PROPOSITION 11. 4. if G = Sp{m,f), then G(r)aSp(m{r + 1), / ( r ) ) .

Proof. Similar to the of Proposition 11. 1.

By the same arguments as the proof of Th. 6. 6 [4] we obtain the fol-

lowing

T H E O R E M 11. 5. If a manifold M has a {resp. an almost) symplectic struct
r

ure then TM has a canonical {almost) symplectic structure.

(III) G = GL(V, W).

We have the following Proposition whose proof will be omitted.

PROPOSITION 11. 6. If a manifold M has a k-dimensional {completely integr-
r

able) differential system, then TM has a canonical k{r + l)-dimensional {completely

integrable) differential system.

(IV) G = O(k, n - k).

Let g be a symmetric non-degenerate bilinear form on Rn of signature
r

{k,n — k) and let πr: TR-*R be the same projection as in (II) and let g(r)

be the map g{r) = πr o (Tg): TRrίxTRn^R. We denote by 0{k,n — k,g) or

simply O(g) the group of all a^GL{n) such that a leaves g invariant.

LAMMA 11. 7. The notations being as above, g(r) is a symmetric non-

degenerate bilinear form on i^nCr+1) of signature {n{r + l)/2, n(r + l)/2) if r is odd

and of signature (k + - ^ - , n — k + - φ - ) if r is even.

Proof. If the bilinear form g is expressed by a symmetric matrix

A = (βJ)eGL(«), then by the same computation as the proof of (11. 1) in

Lemma 11. 3, we see that g{r) is expressed by the following matrix
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A
A

{A: (r + l)-times).
I

0

Since A is of signature (Jc, n — k), A{r) is of signature (n{r + l)/2, n(r + l)/2)

if r is odd and of signature {k + (rw/2), n — k+ {ml2)) if r is even.

Q.E.D.

LEMMA 11.8. If G = O(g), then G ( r )c0(g ( r )), the signature of g(r) being

given in Lemma 11. 7.

Proof Omitted.

By the Lemma 11. 8, we obtain the following

Y

THEOREM 11. 9. If M has a pseudo-Riemannian metric, then TM has a

canonical pseudo-Riemannian metric for every r.

(V) G = GL{n, C) x 1 c GL{2n + 1).

LEMMA 11. 10. Let G = GL{n,C)xlczGL{2n + 1). Then, G(r)cGL((2n + 1)

(r + 1)/2,C) if r is odd and G{r)aGL{{2nr + 2n + r)/2,C)xl if r is even.

Proof We shall omit the proof, which is similar to the proof of Lem-

ma 6. 14 [4].

By Lemma 11. 10. we obtain the following

Y

THEOREM 11. 11. If M has an almost contact structure, then (i) TM has a
Y

canonical almost complex structure for any odd r and (ii) TM has a canonical almost

contact structure for even r.
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