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HOMOLOGY OPERATIONS REVISITED 

Z. FIEDOROWICZ AND J. P. MAY 

There are two principal kinds of input data for infinite loop space 
theory, namely Eœ spaces à la Boardman-Vogt [3] and May [7] and 
T-spaces à la Segal [14]. May and Thomason [13] introduced a common 
generalization and used it to prove the equivalence of the output obtained 
from these two kinds of input. 

This suggests that any invariants of one kind of input should have 
analogs for the other. Homology operations are among the most basic 
invariants of Eœ spaces, and we here establish the analogous invariants 
for T-spaces. The definition is transparently obvious from the point of 
view of the common generalization but is at first sight rather surprising 
and unnatural from the point of view of T-spaces alone. Probably for 
this reason, there is no hint of the possibility of a direct definition of 
homology operations for T-spaces in the literature. 

We shall explain the philosophy and details of the definition in Section 
1, deferring some proofs until Section 4. We shall give a number of con
sistency results which are essential for the new operations to be of calcu-
lational utility in Section 2. Our motivation largely comes from the study 
of bipermutative categories and multiplicative infinite loop space theory, 
where a combination of the two kinds of input plays a central role, and 
these topics will be discussed in Section 3. 

1. The construction of the operations. We begin by recalling from 
[13] the generalized domain data for infinite loop space theory. Let J ^ 
denote the category of finite based sets n = {0, 1, . . . , n) (with basepoint 
0) and based functions. Let II denote the subcategory of ^ consisting of 
all morphisms <j> : m —•> n such that </>_10) has at most one element for 
1 ^ j ^ n {<j>~x{0) may have more than one element). Let ^ be an 
operad [7, p. 1]. Thus *& = {&(j)\j ^ 0} is a collection of (unbased) 
spaces with suitable structure. As is made precise in [13, p. 215], this 
structure leads to a small topological category *$ which contains II and 
augments to Ĵ ~ via a functor e : ^ —»Ĵ ~. The maps of morphism spaces 
e : ^ ( m , n) —> <^~(m, n) are homotopy equivalences if and only if all 
të (j) a r e contractible, and we shall concentrate on such spacewise con
tract]'ble operads in this paper. 

LetJ^~ be the category of (well-behaved) based spaces. A ^-space is 
a continuous functor X : ^ —>^, written n —» Xn on objects, such that 
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HOMOLOGY OPERATIONS 701 

the natural maps d : Xn —> X\ are weak homotopy equivalences. Here ô 
has ith coordinate induced by the morphism ô< : n —> 1 in II such that 
5*0) = ! Jf i = J a n d &i(j) = 0 otherwise. In particular, X0 o^ {*}. We 
also require the cofibration condition specified in [13, p. 206], but we 
won't have to make explicit use of it. 

We regard ^-spaces as underlying II-spaces with extra structure. Note 
that a space Y Ç 3T determines a II-space R Y with nth space Yn. The 
functor R is right adjoint to the functor L which assigns X\ to a II-space 
X. Loosely, we think of a ^-space X as providing X\ with a structure of 
//-space which is commutative and associative up to all higher coherence 
homotopies. We refer to [1] for an excellent intuitive discussion of what 
we mean by this. 

Our ^-spaces are essentially just the same thing as Segal's T-spaces 
(see [13, 1.4]). When X — RY, our ^-spaces X are essentially just the 
same thing as May's fé7-spaces Y (see [13, 4.2]). There is an operadc/K 
with each JV(J) a point; J/ = £F and e : ^ —» ^ is induced by the 
obvious augmentation e : ^ —>J/. An^K-space is the same thing as a 
commutative monoid, and we have inclusions of categories 

^-spaces 

i x 
J^-spaces ^-spaces 

\ . / 
^-spaces 

This satisfactorily outlines the input data for infinite loop space theory. 
However, for the discussion of invariants of these data, the essential 
ingredient has not yet been mentioned: it is the (right) action of the 
symmetric groups S ; on the spaces ^ ( j ) . For example, we shall prove 
the following sharpening of [7, 3.6] in Section 4. 

PROPOSITION 1.1. Let *€ be an operad such that each ^(j) is Xrequi-
variantly contractible. Then there is a functor Ufrom &-spaces to ^-spaces, 
a functor W from 'if-spaces to jV-spaces, and a pair of natural maps of 
^-spaces 

Y^-UY^WY 

such that both e and e are homotopy equivalences. That is, Y is weakly 
equivalent as a espace to the commutative monoid WY. Therefore, if T0Y 
is a group, then Y has the homotopy type of a product of Eilenberg-MacLane 
spaces. 
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702 Z. FIEDOROWICZ AND J. P. MAY 

It may well be objected that no such S requivariance phenomenon is 
visible in the notion of an J^-space. However, we shall also prove the 
following analog of the previous result in Section 4. For a ^-space X, 
each 5 : Xn —» X\n is a 2n-equivariant map and a weak homotopy 
equivalence. Let us say that X is a S^-space if each 8 is a 2n-equivariant 
homotopy equivalence. 

PROPOSITION 1.2. Let ^ be any operad. Then there is a functor U from 
2^-spaces to ^^-spaces, a functor V from 2^'-spaces to ^-spaces, and a 
pair of natural maps of 2^-spaces 

X^-UX^RVX 

such that both e and ô are^ spacewise homotopy equivalences. In particular, 
with ^ = ^¥ and thus *$ — Ĵ ~, a S#" -space X is weakly equivalent as an 
espace to RVX, where VX is a commutative monoid. Therefore, if ir^Xi 
is a group, then X\ has>the homotopy type of a product of Eilenberg-MacLane 
spaces. 

Both propositions may be viewed as fattened versions of the assertion 
that an ^/f-space is a commutative monoid. To see what is really going on, 
recall that the spaces *€ (p) are to be thought of as parameter spaces for 
p-fo\d multiplications. If Fis a ^-space, then, via the maps 

(1) <g{p) X Yp -* F, 

each c £ & (p) specifies a p-îo\d product on F. Since *$ (p) is contractible, 
all of these products are homotopic. Again, if X is an J^-space, then we 
have a diagram 

(2) X1
p^XP^?Xl, 

where <t>p is the canonical p-fo\d multiplication induced by the morphism 
<t>p : p —> 1 in J ^ which sends all j ^ 1 to 1. If ô is an actual homotopy 
equivalence, then any choice of homotopy inverse for 5 specifies a £-fold 
product on X1} and all of these products are homotopic. In the previous 
propositions, these products were Sp-equivariantly homotopy commuta
tive in the sense that, up to homotopy, they factored through the orbit 
space F p /S p or Xip/^p. Homology operations may be viewed as obstruc
tions to such Sp-equivariant homotopy commutativity. 

An operad ^ is said to be H-free if S ; acts freely on *lf (J) for each j \ 
*$ is said to be an Eœ operad if it is also spacewise contractible. An Eœ 

space is a ^-space over any Eœ operad fë. For an Eœ space Y and a prime 
p, we can pass to orbits in (1) and then pass to mod p homology to obtain 

(3) H*(tf(p)XzpY*) ->H*Y. 

We can then define homology operations on H* F by a process precisely 
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analogous to the construction of Steenrod operations on the cohomology 
of spaces (e.g. [4, I §1]). 

The distinction between spacewise contractible operads and Eœ operads 
is effectively finessed by the simple trick of taking products. Given a 
spacewise contractible operad cêl, one replaces it by *$ = cé' X ^ œ , 
where ^œ is the little cubes Eœ operad (or any other convenient fixed 
chosen Eœ operad). A ^'-space is then a ^-space by pullback. The 
example to keep in mind is cê' = jV, when ^ = 97

00. We can define 
homology operations for ^ -spaces this way, but they are obviously 
trivial. Nevertheless, this simple trick works to define non-trivial opera
tions on H*X\ for general J^-spaces X. That is, we shall exploit the 
diagram 

(4) H,(V(p)XzpXn^^*H*(V(p)XzpXp)
 {eX<t>")*>H,(Xl). 

Here (1 X ô)* is an isomorphism since 1 X 8 is a weak homotopy equival
ence, as one sees by comparing the covering projections 

<g{p) X X? -» <g(p) Xs„ X1' and 

V(P) X I ^ ^ ) X x , I , 

At first glance, the use of e : të(p) -+^(p) = {*} and the single multi
plication <j>p might lead one to believe that only trivial operations could be 
obtained this way. However, Proposition 1.2 puts things in perspective: 
The resulting homology operations may be viewed as measuring the devia
tion of ô : Xp —» Xip from being a Sp-equivariant homotopy equivalence. 

It is best to view the operations for J^-spaces as obtained by specializa
tion of operations constructed for general %f-spaces. Precisely, we have 
the following result. 

THEOREM 1.3. Let *£ be an Eœ operad and consider cé-spaces X. There 
are natural homomorphisms Qs : H*Xi —» H*Xi which satisfy all of the 
standard properties valid for the homology operations Qs on ^-spaces Y. 
If X = RY, then the new operations coincide with the old operations on H* Y. 

The "standard properties" are those listed in Theorem 1.1 of [4, p. 5]. 
They include the Cartan formula, Adem relations, and stability with 
respect to o* : H*ÇlXi —> H*Xi, where 12X = {QXn} is a ^-space by 
composition of the functors X : ^ —» $~ and 12 : 3T —*>??~. The proof 
proceeds as follows. By the construction of ^ from ^ , the space *& (p) 
may be identified with the subspace e~l{<j>p) of ^ ( p , 1). We thus have an 
evaluation (or action) map 

9 : <£(p) XXP->XL 

When X is an J^-space regarded as a ^-space by pullback along e, 9 is 
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just e X </>p as in (4). We therefore have the homomorphism 

9*(1 X ô)*-1 : H*(V(p) XSpZip) ->HmXx. 

Let 7T be the cyclic group of order p embedded in Sp in the obvious way 
and let W be the standard 7r-free resolution of Zp. As explained in detail 
in [4, p. 7], we have a standard homomorphism 

We compose these and define the operations Qsx in terms of the usual 
classes et ® xp exactly as in [4, p. 7]. The verification of most of the 
properties of the operations is no more complicated than for actual f̂-
spaces. In particular, by naturality diagrams, stability presents no 
difficulty. The Cartan formula and Adem relations can be derived by a 
slight elaboration of the earlier proofs and exploitation of the following 
result, which is the appropriate version for ^-spaces of the diagram of 
[7, p. 5] that was the heart of the definition of ^-spaces. 

LEMMA 1.4. Let X be a *$ -space. Then the following diagram commutes, 
where j = ji + . . . + jk and the /x are shuffle homeomorphisms. 

V(j) X AV « -

y X 1 

1 X Ô 

1 X 5 

V(k) X ["Xi^OolxXr 

1 X , 

1 X 5> 

V(k) X [Xj'if (j,) X XJ'j «-?-

T X 1 

- • X l 

^)x|im)] X Xj 

1 X à 

[k(js)|x[xi;J 

V(k) X Xk 

1 X 5 

1 X M 

X (1 X ô)fc 

:|[xj^U) x x,] lxQk > V(k) x xt 

Here ô : Xj -—> X*=i Xjs has 5th coordinate induced by the projection 
j i V . . . V j * ; — » j , i n l l and X*=i &(js) in the middle is identified with 
the component e - 1 ^ V . . . V 4>jk) of the space ^ ( j , k ) . 

The proof is immediate from the definitions. However, those who dis
like diagrams may be relieved to learn that we actually do not have to 
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give direct proofs of the properties of the operations. In view of the 
following replacement result, to be proven in Section 4, they are im
mediate consequences of the known properties in the case of actual 
^-spaces. 

PROPOSITION 1.5. Let *& be any 2-free operad. Then there is a functor U 
from ^-spaces to ^-spaces, a functor V from ^-spaces to ^-spaces, and 
a pair of natural maps of ^-spaces 

X^-UX-^RVX 

such that e is a spacewise equivalence and ô is a spacewise weak equivalence. 

That is, X is weakly equivalent as a ^-space to RVX. Therefore, the 
new homology operations on H*Xi agree under the induced isomorphism 
with the old homology operations on H*VX. In particular, we can obtain 
the new operations for ̂ - spaces by first regarding J^-spaces as ^-spaces 
by pullback and then replacing them by weakly equivalent ^-spaces, 
where *$ is any Eœ operad. 

Remarks 1.6. (i) If ^ —» c$' is a map of Eœ operads, then 

is an equivalence for any 2p-space Z. Therefore the homology operations 
for ^'-spaces are the same when constructed using cê' or when using ^ . 
In particular, if ^ and Qf are Eœ operads, then this observation applies 
to the projections from ^ X 2 to *$ and to 3t. Therefore the homology 
operations for ^ -spaces are independent of the choice of Eœ operad ^ 
used in their construction. In fact, we could replace & (p) by any Sp-free 
contractible space in the construction. 

(ii) Instead of starting with a spacewise contractible operad, we could 
have started a bit more generally with an arbitrary category of operators 
& (in the sense of [13, 1.1]) such that e : ^ —»#~ is an equivalence. One 
then defines homology operations on H*Xi, where X is a ^-space, as 
above using the diagram 

(E x e-U)) Xz,*? ±^- (E x r\*,)) X^x„ eorXSxl 

where E is any contractible space on which Sp acts freely. The resulting 
homology operations are natural with respect to maps of ^-spaces and 
satisfy all the standard properties. This follows by naturality and the 
existence of the sequence of weak equivalences of ^-spaces 

X±- l * X - > e % X 

where e#X is an J^space (cf. [13, 1.8]). 
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2. Operations on infinite loop spaces. We turn next to consistency 
statements relating the new homology operations on ^-spaces to the 
known homology operations on infinite loop spaces. As before, we start 
with a spacewise contractible operad cê' and set ^ = c€' X ^ œ , where 
^ œ is the little cubes Eœ operad. 

By a spectrum E, we understand a sequence of spaces Et and homeo-
morphisms 

ai : Et —> QEi+i. 

By [7, 5.1], Eo is naturally a ^œ-space. This structure gives canonical 
homology operations on infinite loop spaces. The same operations are 
obtained by regarding £ 0 as a ^-space by pullback along the projection 

Now [13, § 6] associates to a ^-space X a spectrum MX and a map 
i : Xi —» MoX which induces group completion on homology. Moreover, 
with the notation of Proposition 1.5, we have a diagram 

X JL- UX -A» RVX J*Z> RMoX 

of ^-spaces in which the ^ - m a p y : VX —> Af0X is a group completion. 
Further t = 7 o <5i o n , where r : X —» £/X is a natural map of II-spaces 
homotopy inverse to e. Granting these statements from [13, § 6] and [12, 
4.6], some details of which will be recalled in Section 4, we conclude the 
following result. 

PROPOSITION 2.1. For a espace X, the homomorphism 

I* : H*X\ —> H%MoX 

preserves homology operations. 

This proof depends on use of the "May machine" for the passage 
from input to output. In fact, as discussed in [7, p. 154-155], it was the 
need for just such a consistency result that originally led to the invention 
of the May machine. However, we can use the uniqueness theorem of [13] 
to transport the conclusion to the Segal or any other machine. Recall 
from [13, 2.1] that, for a category of operators ^ such that e : ^ —»Ĵ ~ 
is an equivalence, an infinite loop space machine defined on ^-spaces is 
a functor E from ^-spaces to connective spectra together with a natural 
group completion 1 : X\ —» E0X. As in Remarks 1.6 (ii), we may as well 
restrict attention to the case ^ =Jr. With c€' = Jf and X restricted to 
be an #~-space regarded as a ^œ-space by pullback, we have the May 
machine M described above. For any other machine £ , the uniqueness 
theorem of [13] provides an equivalence of spectra f : MX —• EX. As 
should have been, but wasn't, explicitly stated in [13], the following 
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diagram commutes. 

M0X 

Strictly speaking, f is actually not a map but a chain of (weak) equiva
lences of spectra with suitable compatibility triangles as above on the 
zeroth space level; compare [13, p. 215 and 221]. Since f0 preserves 
homology operations by naturality, we have the following immediate 
consequence of the preceding result. 

PROPOSITION 2.2. For an & -space X and an infinite loop space machine 
E, the homomorphism i* : H#Xi —» H^EQX preserves homology operations. 

In fact, the homology operations onJ^-spaces are characterized by this 
compatibility assertion for any given E. 

PROPOSITION 2.3. Let E be an infinite loop space machine. Suppose given 
natural homology operations {QE

S\ on H#Xi for J^-spaces X and suppose 
that these operations are mapped under i* to the canonical homology opera
tions on H*EQX. Then {QES} coincides with the set {Qs} of homology opera
tions on ^-spaces constructed in the previous section. 

Proof. By hypothesis and by the previous proposition, i* carries both 
sets of operations to the canonical operations. Therefore these operations 
certainly agree whenever i* is a monomorphism. While i* need not be a 
monomorphism in general, we can nevertheless reduce the general case 
to this special case. By Proposition 1.5, for ̂ "-spaces X we have a natural 
weak equivalence of ^œ-spaces 

e*X+~ UX ->RVX, 

where VX is a ^œ-space. By [13, 1.8] ,we have a derived natural weak 
equivalence of ^ -spaces 

X <- e*e*X -> e*UX -> e*RVX. 

Thus we may assume without loss of generality that X = e*RY for a 
^«,-space Y. The action of ^ œ on Y is given by a fé^-map 9 : Cœ Y —» F, 
where Cœ is the monad in 3T associated to 9ê'œ (so that Cœ Y is the free 
^^-space generated by Y\ see [7, § 2]). By [13, 1.8] again, we have the 
following commutative diagram of ^œ-spaces in which the horizontal 
arrows are equivalences: 
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RCmY< URC^Y • e*e*RCmY 

Re URB *e*Re 

R Y < 1,2? Y • e*t0R Y 

By comparison with known properties of the May machine (namely the 
version of the Barratt-Quillen Theorem given by [7, 14.4 (vii)] or 
[9, VII 3.3]), it follows from the top row that the group completion 

i : (e*RC„Y)1 -+ E0e*RCœY 

is equivalent to the natural group completion 

aœ:CœY^QY 

and therefore induces a monomorphism in homology by the explicit calcu
lations of [4, I § 4]. Thus QE

S = Qs on H*(e*RCœY)i. Since G is a retrac
tion, it induces an epimorphism on homology. Therefore, by the diagram, 
(€*i?0)i also induces an epimorphism on homology. Since e*RB is an 

-map, (e*RQ)i preserves both sets of homology operations. It follows 
that QE

S = Qs on H*(€*RY)i, as was to be shown. 

This result is a uniqueness assertion for homology operations on J^~ 
spaces modulo the question of the uniqueness of homology operations on 
infinite loop spaces. We remark parenthetically that the second author 
tried quite hard, without success, to prove an algebraic axiomatization of 
the homology operations on the homology of infinite loop spaces analogous 
to the standard axiomatization of the Steenrod operations on the co-
homology of spaces. (Incidentally, as far as we know, nobody has 
bothered to work out the comparison of geometric constructions that 
would be needed to check that our canonical homology operations agree 
with the operations originally defined by Araki and Kudo [2] or by Dyer 
and Lashof [5].) 

This leads to one further consistency question. In [14, 3.3], Segal 
constructed a functor A from connective spectra to J^-spaces such that 
(AE)i = Eo. There result new homology operations on infinite loop spaces 
coming from the J^-space structure, and the latter bears little geometric 
similarity to the ^œ-space structure used above. 

PROPOSITION 2.4. For a connective spectrum E, the fé'œ-space operations 
and espace operations on H*E0 coincide. 

Proof. Consider the Segal infinite loop space machine S with its natural 
group completion t. By [14, 3.3], there is an equivalence of spectra 
J : SAE —* E such that £0 o t is the identity map of Eo- By Proposition 
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2.2, i carries the J^~-space operations to the fé^-space operations. By 
naturality, | 0 preserves the ^œ-space operations. 

3. Permutative and bipermutative categories. The passage from 
permutative categories to spectra was axiomatized in [10]. The axio-
matization was needed because there are two quite different ways of 
passing from permutative categories J / to the input data of infinite loop 
space theory. On the one hand, the classifying space Bsé is a i^-space for 
a certain Eœ operad 3) (see [8, § 3]). On the other hand, Bs/ is Bsé\ where 
sé : #~ —> Cat is a functor such that Bsé is an J^~-space (see [14, § 2] and 
[10, Const 10]). Now both kinds of data have homology operations, and 
these operations are carried to the canonical operations by i : Bs/ —» 
EçjSé for an infinite loop space machine E defined on either sort of data. 
Again, i* need not be a monomorphism, and we need a little argument to 
prove the following result. 

PROPOSITION 3.1. For a permutative category s/, the 3-space operations 
and espace operations on H*Bs$ coincide. 

Proof. &(p) = B2P, where Sp is the translation category of 2^, and the 
action of QJ on Bstf is induced by passage to classifying spaces from the 
functor 

cp:2p X^p ->stf 

specified on [8, p. 81]. With e the projection from SP to the trivial cate
gory, it suffices to prove that the following diagram of functors commutes 
up to Sp-equivariant natural transformation: 

2P X srf» < Xp X stfv. 

cp\ \e X <t>p 

Y -t 

s/ s/ 

With the notations of [10, Const. 10], for objects 

a Ç Sp and (As, i(Stt)) G S$p, 

we have 

cp o (1 X ô)(a, (^4„ i(S,t))) = Ar-id) D . . . D A^-i^ 

and 

(e X <t>P)(a, (Asti(s.t))) = Ap. 
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The L(Stt) determine the required isomorphism 

Ap -»i4a-l(l) • . . . • Aa-lfr), 

and nothing is changed upon replacement of (cr, (Aay iis< t) )) by 

(err, (ASJiu.t))r) for r £ 2„. 

Remark 3.2. Application of * 'Street's first construction" gives a different 
and in many ways preferable functorstf : ^ —» Cat with Bstf an J^-space; 
here 5«^i is equivalent rather than>equal to Bstf (see [15] or [11, § 3]). 
By [11, A.4], there is a natural map Bstf —> 5 ^ of J^-spaces which 
realizes the equivalence Bstf \ —» fia^i = JBJ^, hence this approach also 
leads to the same homology operations. 

We turn next to a discussion of homology operations in the context of 
Eœ ring spaces [9] and their generalizations of [12]. Here we start out with 
a suitably related pair of operads ( ^ , 8?), such as the pair (jV,jV), and 
construct from it a certain wreath product category J? = ¥? J ^ which 
contains II J U and is augmented over ^ j ^ . Where in the additive 
theory we had ^-spaces F defined in terms of powers of F and ^-spaces 
X defined in terms of II-spaces X = {Xn}, the multiplicative theory deals 
with ( ^ , &)-spaces Z, ^/-spaces X, and an intermediate category of 
(fé\ S )̂ -spaces F. Here X has an underlying II J II-space which is a 
collection of spaces 

X(n;su . . . , s n ) - X ( l ; l ) s i + - + s « . 

For a (fé\ ^)-space F, F is a II-space and determines a ^ - s p a c e i?" F 
whose underlying IIJ II-space is given by 

(R"Y)(n;8i,...,Sn) = YSI X . . . X YSn. 

For a ( ^ , &)-space Z, Z is a space and determines a (fé7, ^)-space i^'Z 
with (R'Z)0 = Z s and thus determines a ^ - spaçe RZ = ^ ' ^ ' Z . The 
c a t e g o r y ^ contains both ^ and &, and a ^ J ^-space X restricts to a 
^-space Xe with underlying II-space {X(l; n)} and to a ^-space X® 
with underlying II-space {X(n; l n)} . Therefore, by Theorem^ 1.3, 
H*X(1 ; 1) has * 'additive" operations Qs coming from the action of *€ and 
"multiplicative" operations Qs coming from the action of & when ^ and 

are £ œ operads. For ( ^ , ^)-spaces Z, these operations were studied 
in [4, II]. We have the following multiplicative analog of Theorem 1.3. 

THEOREM 3.3. Let (f€, (@) be an Eœ operad pair and consider ^-spaces 
X, where^ = S? J *€. The operations Qs and Qs on H*X(1 ; 1) satisfy all of 
the algebraic properties valid for the operations on (f$, ^)-spaces Z. 
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The properties in question are the ''mixed Cartan formula", the "mixed 
Adem relations", and various other formulas derived in [4, II § 1-3]. As 
in the additive theory, two proofs are possible. The first consists of slight 
elaborations of the earlier arguments and is based on the following analog 
of Lemma 1.4, which gives the appropriate version for ̂ /-spaces of the 
diagram of [4, p. 77] that was the heart of the definition of ( ^ , ^)-spaces. 

LEMMA 3.4. Let J = & j <£, where (<<£, &) is an operad pair. Let X be 
a ^ -space and abbreviate Z = X(l; 1). Then the following diagram com
mutes, where J = (ji, . . . , jk) andj = ji . . .jk: 

&(k) x ( X #( jr) X Z'A <H~ 

II? 

^(*)xfx^OV)J xfXz^J 

&(k) x (x VUr)) 

( rX*Ur)) 

CH • &{k) X f X V(jr) X X(l;iT)J T l ) &(k) X Zk 

•&{k) x(x/<?(jr)\x (Xl(l;jr)j 

x (&{k) xzy &(k) X 

W(k) X 

x x e 

V(j) x z> 

X (&(k) XX(k;lk)y 
1 X 1 X i 

( I X , 

( X «if (*)) 

XX(k;J) ~ 
1 X » 

-+&(k) XX(k;lk) 

| ( 1 X / X 1)(A X 1 X 1) 

Hk) X [ X V(jT)j X &(k) X X(k;J) 

^( j )XX( l ; j ) e 

Here the 9 and £ are evaluation maps of the functor X, the arrows labeled 
~ are equivalences given by the definition of a^/-space, and the arrows 
labeled ~ are shuffle homeomorphisms. The map a is given by 

for g e &(k), 

k k j r 

c 6 X ^ ( i r ) and j = X X zr,«, zrifl € Z, 
T = l T = l ( 7 = 1 

where 

r= l 

for sequences Q = (<?i, ...,<?*) with 1 ^ çr ^ j r ; the map 

0 : ^(jfe) XX(k;J) -+(&(k) XX(k;l*))> 
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has Qth coordinate (1, /30), where 

0Q = (l',k-+k;ôQl,...,ÔJ :X(k;J) ->X(k;l«). 

The proof is an exercise in the interpretation of the definitions of [12, 
§ 1-2], the commutation formula [12, 1.6] being the crux of the matter. 

Rather than exploit this diagram, we can appeal to the following analog 
of Proposition 1.5, which is proven in [12]. We write U® and V® for the 
functors of Proposition 1.5 in order to emphasize that they were defined 
solely in terms of the underlying additive structure. 

THEOREM 3.5. LetJ\ = (@c€, where (^, &) is a ^L-free opérai pair. 
(i) There is a junctor U from J -spaces to </-spaces, a functor V from 

f -spaces to ((tf, @)-spaces, and a pair of natural maps of ̂  -spaces 

X^-UX^R"VX 

such that e is a spacewise equivalence and è is a spacewise weak equivalence. 
(ii) If Y is a {^ê, @)-space, then U®Y is a (^', &)-space, V®Y is a 

(^, â^)-space, and the natural maps 

Y<^U®Y-^R'V®Y 

are maps of (^', &)-spaces. 

Thus a ^ - s p a c e X is weakly equivalent as a ^/-space to RV®VX, 
where V®VX is a ( ^ , ^)-space. Hence the algebraic properties of the 
homology operations on H*X(\; 1) are immediate consequences of their 
properties on H* V® VX. 

Now let 

(Sf,S?) = ( ^ XJf„ ,â?' X i f ) , 

where ( ^ ' , *&') is a spacewise contractible operad pair and fflœ, =£?) is 
the canonical Eœ operad pair used in [12];jTœ can be used Instead of %7

œ 

in the purely additive theory above. There is a notion of a S^-spectrum, 
and the zeroth space of a ^-spectrum is a (fé7, S?)-space [9, IV. 1.1 and 
VII. 2.4]. If F is a (té, ^)-space, then M Y is a ^-spectrum and 

7 : V®Y -*MoY 

is a map of (f&, ^)-spaces [12, 4.4 and 4.8]. We therefore have the 
following analog of Proposition 2.1. 

PROPOSITION 3.7. Let J = # J té with ( # \ @) as above. For a J-space 
X, 

#*X(1 ; 1) ^Hm(VX)i^HmMoVX 

preserves both additive and multiplicative homology operations. 
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Here MVX is equivalent as an additive spectrum to MX®, but MX® 
itself is not a S^-spectrum. 

Woolfson [16] has described a Segal style multiplicative infinite loop 
space machine. As explained in [12, Appendix D], it accepts o u r ^ J JF-
spaces as input but has considerably more complicated up to homotopy 
versions of our J^f-spectra as output. In particular, it is far from clear 
precisely what structure the Oth spaces of his output spectra carry, the 
most optimistic guess being that they are (1 ; l)th spaces of J ^ j^-spaces. 
Since the extra complexity appears to offer no compensatory advantages, 
we have not tried to compare machines. 

Need for the full generality of ^-spaces arises in the study of biper-
mutative categories. These are categories s/ which are permutative under 
both a sum 0 and product ® and which satisfy appropriate distributivity 
and nullity of zero laws; see [9, VI §3]. We write J^e or s/® for s/ 
regarded just as an additive or multiplicative permutative category. As 
sketched in_[16] in a special case and explained in detail in [12, D.6]^ 
Bsé = Bssf(l; 1), where J / : # " / # " -> Cat is a functor such that Btf 
is an#~ J jF'-space. A simple comparison of [12, D.6] and [10, Const. 10] 
gives the following consistency statement. 

LEMMA 3.8. The restrictions ofs/ : J ^ / j ^ —» Cat to the additive and 
multiplicative copies of ^ contained in^ J ^ coincide with the junctors 
s/® and s/® defined solely in terms of the underlying additive and multi
plicative permutative categories ofs/. 

Regarding &~ J ^ -spaces as & j ^-spaces by pullback, where (X, @) 
is an £ œ operad pair such as pfœ, ££) ,we obtain additive and multipli
cative homology operations Qs and Qs on H*Bsé which satisfy the con
clusion of Theorem 3.3. By the lemma, these operations coincide with the 
^"-space operations on H*Bs/@ and on H*Bs/®. Therefore, by Proposi
tion 3.1, they also coincide with the ^-space homology operations on 
H*Bs/® and on H*Bs$ ®. 

It was asserted in [9, VI] that (&, 3) is an operad pair and Bs/ is a 
(3, 3)-space. For reasons explained in [12, Appendix A], these assertions 
are false. However, by the previous paragraph, the operations Qs and Qs 

obtained from the two i^-space structures on Bs/ satisfy the mixed 
Cartan formula, mixed Adem relations, and so forth. This is fortunate 
since, as was exploited in [4, II] and [6, Appendix C], the concrete specifi
cation of the actions by 3) in terms of wreath products makes them very 
convenient for purposes of explicit calculation. The following remark 
validates the discussion of this point given in [9, p. 207-208] and [4, p. 
142-143]. 

Remark 3.9. The arguments above imply that if TBs/ is interpreted 
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as M^VBsé and i : Bsé —» YBsé is interpreted as the composite group 
completion 

«5 - i 

Bs/—* ( 7 & / ) i - i - > M o 7 B < 

then the diagrams of [9, VIII. 1.2] are homotopy commutative. (This 
verification was promised in [12, A.2 (21)] and completes the check that 
nothing of consequence in [9] is affected by the errors noted above.) 

Remark 3.10. By [12, § 3], application of "Street's first construction" 
gives a different and in many ways preferable functor s/ : J ^ J Ĵ ~ —» Cat 
with Bsé an jF'j jF'-space; here Bs/(1 ; 1) is equivalent rather than equal 
to Bs/. By [12, D.8] there is a natural map Bsé -> Bsé of & j ^ - spaces 
which realizes the equivalence, hence this approach leads to the same 
homology operations Qs and Qs on H*Bsé. We have used the less general 
and concep tua l^ constructions only because Lemma 3.8 is simpler and 
more precise than its counterpart for se given in [12, 3.2]. 

Remark 3.11. More generally we can define additive and multiplicative 
homology operations directly on H*X(l ; 1), when X is a^ - space and^/ 
is an arbitrary category of ring operators such that e : f —» Ĵ ~ j ^ is an 
equivalence (cf. [14, 1.7]). For we can associate to^ two categories of 
opera to rs^e and , /® by means of the pullback diagrams 

A • / A • / 

e \ e and \e e 

• i ^ ^® 

j r — — y ^ l ^ #~ • J r J J r 

where i® and i® are the additive and multiplicative embeddings of Ĵ ~ in 
^ J & (cf. [14, 1.5]). Then e : / e -> & and 6 : / ® -> J*" are equiva
lences and we may use the procedure of Remark 1.6 (ii) to define additive 
and multiplicative operations on H*X(1; 1) satisfying all the standard 
properties. This follows by naturality and the existence of the sequence of 
weak equivalences of ^/-spaces 

X <— 1*X —> e*e*X 

where e*X is an & J J ^ space (cf. [14, 2.9]). 

4. Proofs of structured weak equivalences. The proofs of Proposi
tions 1.1, 1.2 and 1.5 are all simple exercises in the use of the monadic 
two-sided bar construction introduced in [7, § 9]. In fact, the replacement 
of Aœ spaces by weakly equivalent topological monoids given in [7, 13.5] 
provides a paradigmatic example of this type of proof. 
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Proof of Proposition 1.1. Fora ^-space F, define 

UY = £(C, C, F) and WY = £(7V, C, F). 

Let e : £/F —» F be the standard natural homotopy equivalence [7, 9.8 
and 11.10]. Let e' : UY —> W /Fbe^(e, 1,1), where e here is the morphism 
of monads C —• N induced by the augmentation e : ^ —> JV. By hy
pothesis, each e : ^ (j) —•> ^ij),s a S requivariant homotopy equivalence. 
Therefore, by [8, A.2 (ii)], e : CZ —» iVZ is a homotopy equivalence for 
any space Z. By [8, A.4 (ii)], it follows that e' : £/F —» WFis a homotopy 
equivalence. As the realization of a simplicial ^K-space, WYis an .yK-space ; 
as realizations of maps of simplicial ^-spaces, e and e' are maps of 
^-spaces (see [7, 12.2]). 

The essential point for the remaining propositions is the following 
invariance result, the second part of which was already noted in [13, 5.6]. 
Recall that [13, 5.1] associates a monad C in the category of functors 
II —>3T to an operad ^. 

LEMMA 4.1. Let *$ be an operad and let f : X —> X' be a natural trans
formation of functors n —»ĉ "~. 

(i) If eachfn : Xn —» Xn
r is a 2n-equivariant homotopy equivalence, then 

each Cnf : CnX —-> CWX' is a 2n-equivariant homotopy equivalence. 
(ii) //* m d ^ ( j ) is 2rfree and each fn is a weak homotopy equivalence, 

then each Cnf is a weak homotopy equivalence. 

These are both consequences of the specification of CnX as a filtered 
space given in [13, 5.5]. For (ii), one must use standard results about 
equivariant cofibrations, as in [3, Appendix 2.7, 4.4, and 4.6], together 
with a somewhat tedious inspection of the 2^-actions on the spaces 
involved. 

As observed in [13, 5.7], inspection of the construction of C shows that 
C{ Yn) = {(CY)n) for a space F; in particular, 

diY"} = CY. 

In functor notation, these equalities read CR = RC and LCR = C. For a 
functor X : II —+^~, the maps <5 : Xn —> Xin specify a natural transforma
tion 8 : X —> RLX (the unit of the adjunction between L and R)} and the 
following diagram commutes by naturality: 

CnX • CnRLX 

\ Ô I 
5 ""\ = \ô 

• (do)71 ^ + 
(dxy • (CiRLxy = (cxo*. 
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Therefore the lemma has the following immediate consequence. 

PROPOSITION 4.2. For any opérai ^, C restricts to a monad in the cate
gory of ^U-spaces. For a 2-free operad &, C restricts to a monad in the 
category of II-spaces. 

By [13, 6.2] ,the diagonal arrows ô in the previous diagram specify a 
morphism of monads C —> RCL. (See [12, § 5] for a conceptual discussion 
of this fact and of other formal parts of the following proof.) 

Proof of Propositions 1.2 and 1.5. Modulo Proposition 4.2, these two 
results have identical proofs. For a C-space X, define 

UX = B(C, C, X) and VX - B(CL, C, X). 

Then RVX = B(RCL, C, X). Let e : UX -> X be the natural equivalence 
of n-spaces derived from [7, 9.8 and 11.10] and let Ô = B(a, 1,1) : UX -> 
RVX. According to cases, ô is a spacewise equivalence or a spacewise 
weak equivalence because ô is so. The rest follows as in the proof of 
Proposition 1.1. 

When ^ = c€' X ^ œ , the group completion y : VX —• M0X is the 
composite 

B(CL, C,X) B^co7r,ljl)>B(QL1 C,X) £ colim 12n^(SnL, & , * ) . 

Here 7r : C —> Cœ and aœ : Cœ —» Ç a r e the morphisms of monads given 
by the projection and by [7, 5.2], Cn denotes (abusively) the monad 
associated to c€l X ^w» and 700 is the colimit over w of comparison maps 

5(0w2nL, Cw, X) -> <ànB{^nL, Cny X) 

obtained by inductive use of the natural map |QF| —>0| F| for simplicial 
spaces F. See [13, 6.4] for details; the requisite constructions and proofs 
are jifist slight elaborations of those originally given for C-spaces in 
[7, § 14] and [8, § 2]. 
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