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Abstract A linear growth-diffusion equation is studied in a time-dependent interval whose location and
length both vary. We prove conditions on the boundary motion for which the solution can be found in
exact form and derive the explicit expression in each case. Next, we prove the precise behaviour near
the boundary in a ‘critical’ case: when the endpoints of the interval move in such a way that near the
boundary there is neither exponential growth nor decay, but the solution behaves like a power law with
respect to time. The proof uses a subsolution based on the Airy function with argument depending
on both space and time. Interesting links are observed between this result and Bramson’s logarithmic
term in the nonlinear FKPP equation on the real line. Each of the main theorems is extended to higher
dimensions, with a corresponding result on a ball with a time-dependent radius.
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1. Introduction

We consider the linear reaction-diffusion (or growth-diffusion) problem:

∂ψ

∂t
= D

∂2ψ

∂x2
+ f0ψ in A(t) < x < A(t) + L(t) (1.1)

ψ = 0 at x = A(t) and x = A(t) + L(t) (1.2)

where ψ ≥ 0 (representing a population or concentration, for example). Here,D > 0 is the
diffusion coefficient, the constant f0 > 0 describes the growth, and there are homogeneous
Dirichlet boundary conditions at the endpoints. Both the start of the interval, A(t), and
the length of the interval, L(t), are prescribed functions of time, and we assume that both
A(t) and L(t) are twice continuously differentiable.
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The scenario of a domain with moving boundaries is relevant in the context of, for
example, a species population in a habitat which changes over time. This could be due to
factors such as flooding, climate change, habitat destruction, forest fire, loss of snow cover,
or ‘re-wilding’ or ‘re-greening’ areas of land. Such phenomena mean that the habitat’s
size, as well as location, can change with time (and not necessarily at a constant rate). For
such an application, the relevant climatological or ecological data could be used to choose
an appropriate A(t) and L(t) for the mathematical model. While changing habitats are
one motivation, there are numerous other physical applications of diffusion equations,
and this work is relevant whenever these processes occur within a spatial domain whose
boundary moves due to some external influence. (It is worth remarking that this is not the
same as a free boundary problem, in which the moving boundary would be determined
as part of the solution.)

We treat a linear growth term: f0ψ for some f0 > 0. This allows for certain exact solu-
tions and precise bounds on behaviour, which are useful for understanding and evaluating
the effects of a time-dependent domain, as well as having mathematical interest. Following
this study, we intend to treat the case of a so-called FKPP-type nonlinear term (named
from the initials of the authors of [17, 21]), where f(0) = f(1) = 0, f > 0 on (0, 1), and
f(k) ≤ f ′(0)k. This has applications to population dynamics. The results for the nonlin-
ear case will be discussed elsewhere. An important property of such nonlinear terms is
that the solution to the linear problem (with f0 = f ′(0)) is a supersolution. Moreover,
a linearization around the zero state can be used as an approximation to the nonlinear
equation when the population density is small enough. Therefore, a thorough understand-
ing of this linear problem (with the full time-dependence) will also be an important tool
in the analysis of nonlinear problems in time-dependent domains.

Due to the importance of climate change and its consequences for the migration of
species, the topic of habitat movement in a reaction-diffusion model has been considered
by several authors (see, for example, [1, 3–6, 8, 9, 22, 23, 29].) To our knowledge, all
of these make the mathematically convenient assumption that climate change translates
the habitat at a constant speed c. Here, we consider not only the case of a fixed length
L and constant speed c but also several other much more general moving boundaries. The
domain length is able to vary with time. The results presented here will focus, primarily,
on some particular cases of A(t) and L(t) for which exact results can be given: explicit
expressions for the solution for certain forms of L(t), and precise boundary behaviour in
a ‘critical’ case. We also extend the methods to much more general forms of A(t), L(t),
making use of a comparison principle on a transformed version of the equation. This
provides useful upper or lower bounds on the solution for a range of cases.

This paper is split into two main sections. Section 2 treats the cases which can be
solved exactly, deriving the explicit expressions and studying some of their implications.
In § 3, we construct a supersolution and an Airy function subsolution, to prove precise
bounds on the solution near a boundary moving with A(t) = −2

√
Df0t+ α log(t+ 1) +

O(1). This describes a ‘critical’ case, in the sense that as α varies, a transition occurs
between growth and decay, with the solution near the boundary behaving like a power
law in t.
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We begin by transforming onto a fixed spatial domain. We change variables from ψ(x, t)
to u(ξ, t) where ξ = (x−A(t))

L(t) L0, with L0 = L(0) and obtain the variable-coefficient PDE

∂u

∂t
= D

L2
0

L(t)2
∂2u

∂ξ2
+

(Ȧ(t)L0 + ξL̇(t))
L(t)

∂u

∂ξ
+ f0u in 0 < ξ < L0 (1.3)

u = 0 at ξ = 0 and ξ = L0. (1.4)

In § 2, we introduce a further change of variables and thus deduce conditions under
which the transformed equation can be solved exactly by separation of variables, reducing
to a Sturm–Liouville problem on a fixed interval. These conditions are that L̈L3 and ÄL3

are constants, which is when the length varies as L(t) =
√
at2 + 2bt+ L2

0. The forms of
A(t), and of the exact solutions, depend on whether a is zero or non-zero and on the
sign of aL2

0 − b2. We derive the explicit expressions for u(ξ, t) in each exactly solvable
case and describe several implications of the results. We also extend the same method to
a ball in R

n with moving centre and time-dependent radius R(t), giving exact solutions
when R̈R3 is constant, i.e. R(t) =

√
at2 + 2bt+R2

0.
The exact solutions show directly each of the individual factors involved in determining

the overall behaviour, and they determine precisely how any initial condition will evolve
over time. This is very instructive in understanding the effect of each time-dependent
domain. One also sees the effect of each parameter, which gives useful insight into how
any changes or uncertainty in the parameters would alter the solution. We suggest that
these exact solutions could be a useful tool in comparing theoretical with ecological
observations. Finally, they are a means of deducing the long-time asymptotic behaviour:
we show that, in some cases, the solution tends uniformly to zero, in other cases, it
becomes arbitrarily large at each interior point, while there are also cases for which the
solution grows exponentially on part of the domain while decaying elsewhere. This third
sort of behaviour occurs when the interface (between the regions for growth and decay)
can travel at an asymptotic speed c∗ = 2

√
Df0 while staying within the domain. We recall

that this speed c∗ is also the asymptotic spreading speed for solutions to the linear and
nonlinear FKPP equations on the real line with compactly supported initial conditions
(see [2, 21]), and it is the minimum wave speed for travelling wave solutions to the FKPP
equation.

In § 2.6, we use comparison principles to deduce upper and lower bounds on the solution
for other forms of L(t) and A(t). One application gives bounds whenever the domain
(A(t), A(t) + L(t)) encloses, or is enclosed by, one of the exactly solvable cases. A second
method allows us to derive bounds whenever L̈L3 and ÄL3 are bounded.

Our exact solutions are (it would seem) previously unknown. A linear growth-diffusion
on an expanding domain was analysed by Simpson in [25] (and extended to a coupled
system in [26]). In that model, the domain was itself expanding at each position x, to
model the uniform growth of living tissue. This differs from the case considered here,
where the physical points inside the domain are not being expanded, but rather the
boundary of the domain is moving. This led to a different reaction-diffusion equation
in [25]:

∂C

∂t
=

D

L(t)2
∂2C

∂ξ2
+ (k − σ(t))C in 0 < ξ < 1.
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In our own model, the additional terms in Equation (1.3) mean that more changes of
variables are required in order to get the equation into a separable form (see Equation
(2.5)). Moreover, the dependence of these terms on both space and time means that
it is only separable under the extra conditions that L̈L3 and ÄL3 are constants. Our
explicit solutions appear more intricate than those in [25], although the principle is the
same. Note, also, the paper [20] which considered the Schrödinger equation on an interval
(0, L(t)) of changing length and derived necessary conditions to solve it by separation of
variables.

On the topic of exact solutions to certain parabolic equations, let us also mention
the works [27, 28] by Suazo, Suslov and Vega-Guzmán. They used transformations of
variables to convert between a diffusion-type equation with variable coefficients and the
heat equation, and thus they derived the fundamental solution for their class of equation.
This was given in terms of the solution μ(t) to a second-order ODE, and a set of six
coefficients which were themselves defined by integrals involving μ, μ′ and the time-
dependent coefficients of the parabolic equation.

Reaction-diffusion models on domains subject to translation at a constant speed c have
been considered by several authors. We note, in particular, the paper by Potapov and
Lewis [22] on a two-species competition, and the paper of Berestycki (H.), Diekmann,
Nagelkerke and Zegeling [5] for a single species (see also [1, 3, 4, 6, 8, 9, 23, 29]). These
two papers considered a nonlinear reaction term and a model on the real line with growth
in a favourable region – of a fixed length L and moving at a constant speed c – and decay
elsewhere. The case of Dirichlet boundary conditions on a finite interval was included
as a limiting case. Several interesting results were proved regarding the dynamics on a
moving domain as opposed to a stationary one. (See, especially, the observations in [22]
regarding invasibility in a moving domain.) Both papers proved the existence of a minimal
domain length L needed for survival and expressed this as a function of c. If c was greater
than a certain critical value then the solution decayed exponentially to zero regardless of
the domain length. The implication was that if the climate changes too rapidly then the
species is unable to keep up and goes extinct. This critical speed, c∗ = 2

√
Df0, features

in our solutions in a similar manner.
Another moving boundary reaction-diffusion problem which has received much atten-

tion is the free boundary problem

∂u

∂t
= d

∂2u

∂x2
+ u(a− bu) in g(t) < x < h(t)

u(g(t), t) = u(h(t), t) = 0

g′(t) = −μ∂u
∂x

(g(t), t), h′(t) = −μ∂u
∂x

(h(t), t)

where a, b, and μ are given positive constants. Note that here g(t) and h(t) are mono-
tonic functions of t. The reader is referred to [10, 13, 14], where Du, Lin, Bunting and
Krakowski proved a vanishing/spreading dichotomy: either g(t) → g∞, h(t) → h∞ with
h∞ − g∞ ≤ π

√
d/a and u→ 0, or g(t) → −∞, h(t) → +∞ and u spreads at an asymp-

totically constant speed in both directions. In the vanishing case, their domain is enclosed
by a stationary domain of the critical length, π

√
d/a, and the solution decays to zero.

In the spreading case, the asymptotic speed c(μ) is strictly less than the critical speed
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c∗ = 2
√
da, and it is crucially determined by the parameter μ which occurs in their free

boundary condition. Certain properties of the solution in the case of spreading have been
proved in [15, 16] and may provide a useful and interesting point of comparison in the
intended extension of our own problem to include a nonlinear reaction term. In the current
study, we focus our attention on the case with a linear reaction term.

In § 3, we consider the behaviour on a domain whose endpoints move close to the criti-
cal speed c∗. An analysis of one of our exact solutions suggests that a logarithmic-in-time
adjustment may be the key to this. This is further motivated by the well-known result
regarding Bramson’s logarithmic correction in relation to the nonlinear FKPP equation
on the real line with compactly supported initial conditions. In that case, it has been
proven that the positions x = ±(c∗t− 3D

c∗
log(t+ 1) +O(1)) are the asymptotic positions

at which the solution takes on any value strictly between zero and the finite stable equi-
librium. Moreover, there is locally uniform convergence, at this shifted position, to the
profile of the minimum speed travelling wave. This result is known as Bramson’s logarith-
mic correction. (See [11, 12] for Bramson’s original proof using probabilistic arguments,
or [19] for an alternative proof using PDEs by Hamel, Nolen, Roquejoffre and Ryzhik.)

Here, we study the behaviour near the boundary when

A(t) = −L(t)/2 = −c∗t+ α log(t+ 1) +O(1). (1.5)

We construct super- and sub-solutions to demonstrate that when α > 0, the solution at
x = A(t) + y (for y = O(1)) is ‘exactly of order’ yt−

3
2+ αc∗

2D as t→ ∞. (A precise statement
can be found in § 3.) In particular, the ‘critical’ boundary motion, for which the solution at
A(t) + y remains exactly of order y, is A(t) = −c∗t+ 3D

c∗
log(t+ 1) +O(1). This precisely

matches Bramson’s logarithmic term.
Our analysis uses a change of variables; a supersolution based on the principal

eigenfunction of the Laplacian; and a subsolution constructed from a space-and-time-
dependent Airy function Ai and its tangent at the position Ai(0).

Bramson’s logarithmic term (or similar) has been seen to arise in several other circum-
stances. We note, in particular, the paper [18], by Gärtner, which generalized the result
to the multi-dimensional case (see also [24]), and the paper [7], by Berestycki (J.), Brunet
and Derrida, which derived the term in the setting of a linear equation on a semi-infinite
interval with a free boundary. They prescribed constant values of the function and its
gradient at the free boundary and then calculated the precise asymptotics of the bound-
ary motion for which the prescribed conditions would be satisfied. Again, the leading
term was c∗t and the next term was of order log(t). For initial conditions with suitable
decay, the coefficient of the logarithmic term was the same as in Bramson’s correction.
(Many subsequent terms were also calculated; see [7].)

To our knowledge, our current study is the first time that such a term has appeared in
the context of the linear equation on a finite, but time-dependent, interval with Dirichlet
boundary conditions. In contrast to our own method of super- and sub-solutions, the log-
arithmic correction term in [19] was derived using bounds on some approximate solutions
together with parabolic estimates in the function spaces L2 and H1

0 , and in [7], it was
derived using a clever integral transform method and a singularity analysis in a small
parameter. These three derivations of the term are completely different; nevertheless, the
same logarithmic term appears in each different setting. It is possible that some useful
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insight into this somewhat ‘universal’ logarithmic term may be gained from our change
of variables — which is the source of the factor t−

1
2+ αc∗

2D in the critical behaviour — or
from our super- and sub-solutions — the source of the yt−1 factor.

We also discuss, in § 3.3, the extensions of this result to a ball in R
n with radius

R(t) = c∗t− α log(t+ 1) +O(1).

2. Exact solutions

In this section, we state and prove the form of each exact solution.

Theorem 1. Suppose that

L(t)2 = at2 + 2bt+ L2
0 for some a, b, (2.1)

Ä(t) =
γ1

(at2 + 2bt+ L2
0)3/2

for some γ1. (2.2)

Then, for any given initial conditions u(ξ, 0) in L2([0, L0]), the solution for u(ξ, t) can
be obtained exactly, as a sum of un(ξ, t) with coefficients depending only on the initial
conditions. The functions un are given by

un(ξ, t) = exp
(
σn

∫ t

0

L2
0

L(ζ)2
dζ

)
gn(ξ)

(
L0

L(t)

)1/2

× exp

(
f0t−

∫ t

0

Ȧ(ζ)2

4D
dζ − ξ2L̇(t)L(t)

4DL2
0

− ξȦ(t)L(t)
2DL0

)
(2.3)

where gn(ξ) satisfies the Sturm–Liouville problem in equations (2.9), (2.10) with γ0 =
aL2

0 − b2, with eigenvalue σn. The explicit expressions for these exact solutions depend
on whether a is zero or non-zero, and on the sign of aL2

0 − b2. They are given in full in
Equations (2.17), (2.21), (2.28), (2.32), (2.33), and (2.34).

These explicit expressions determine precisely how any initial condition will evolve
over time and demonstrate each factor contributing to the behaviour. We can compare
Equation (2.3) (or the specific formulae in Equations (2.17), (2.21), (2.28), (2.32), (2.33),
and (2.34)) with the more standard case of a Fourier series solution on a fixed domain,
for which

ũn(ξ, t) = exp
(
−Dn

2π2

L2
0

t

)
sin
(
nπξ

L0

)
exp(f0t). (2.4)

The comparison is very instructive in understanding the precise effects of the time-
dependent domain on the way the solution develops — the subtleties of which would
otherwise have been non-obvious.
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Proof. We begin with a useful change of variables. With u(ξ, t) satisfying Equation
(1.3), let

w(ξ, t) = u(ξ, t)
(
L(t)
L0

)1/2

exp

(
−f0t+

∫ t

0

Ȧ(ζ)2

4D
dζ +

ξ2L̇(t)L(t)
4DL2

0

+
ξȦ(t)L(t)

2DL0

)
.

(2.5)

This removes the terms in ∂u
∂ξ , shifting the effects of the time-dependent domain into the

factors in (2.5) and the zero-order term in the equation satisfied by w(ξ, t):

∂w

∂t
= D

L2
0

L(t)2
∂2w

∂ξ2
+

(
ξ2L̈(t)L(t)

4DL2
0

+
ξÄ(t)L(t)

2DL0

)
w in 0 < ξ < L0. (2.6)

Next, change the time variable from t to s(t) =
∫ t
0

L2
0

L(ζ)2 dζ, and write v(ξ, s) = w(ξ, t).
Then

∂v

∂s
= D

∂2v

∂ξ2
+

(
ξ2L̈(t(s))L(t(s))3

4DL4
0

+
ξÄ(t(s))L(t(s))3

2DL3
0

)
v in 0 < ξ < L0 (2.7)

v = 0 at ξ = 0 and ξ = L0. (2.8)

Notice that the v(ξ, s) equation is separable if and only if L̈L3 = γ0 =constant and ÄL3 =
γ1 = constant. This corresponds to L(t) given by Equation (2.1), with γ0 = aL2

0 − b2, and
A(t) satisfying Equation (2.2) (which can be integrated twice to give A(t)). The v(ξ, s)
equation is then separable, with solutions of the form v(ξ, s) = exp(σs)g(ξ) where g(ξ)
satisfies the related Sturm–Liouville problem:

σg(ξ) = Dg′′(ξ) +
(
γ0ξ

2

4DL4
0

+
γ1ξ

2DL3
0

)
g(ξ) in 0 < ξ < L0 (2.9)

g = 0 at ξ = 0 and ξ = L0. (2.10)

The Sturm–Liouville theory gives that there is a countably infinite set of eigenfunctions
gn with eigenvalues σn, and that v(ξ, s) has an eigenfunction expansion in terms of
vn(ξ, s) := exp(σns)gn(ξ), with coefficients depending only on the initial conditions. Thus,
the solution for u(ξ, t) is given exactly by a sum of

un(ξ, t) = vn(ξ, s(t))
(
L0

L(t)

)1/2

exp

(
f0t−

∫ t

0

Ȧ(ζ)2

4D
dζ − ξ2L̇(t)L(t)

4DL2
0

− ξȦ(t)L(t)
2DL0

)

(2.11)

where s(t) =
∫ t
0

L2
0

L(ζ)2 dζ. Thus, Equation (2.3) is proved.
The required integrals (for A(t), s(t)) depend on the specific form of L(t): namely

whether a is zero or non-zero and on the sign of aL2
0 − b2. They can each be done by

standard calculus, resulting in the expressions for un in Equations (2.17), (2.21), (2.28),
(2.32), (2.33), and (2.34). �
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In the following sections, the long-time behaviour of each solution is extracted based on
the leading order terms. In certain cases, the governing term depends on the eigenvalue σn.
Recall that, by Sturm–Liouville theory, the eigenvalues satisfy σn+1 ≤ σn, and the largest
eigenvalue, σ1, corresponds to an eigenfunction which is positive. We know already that
when γ0 = γ1 = 0 then σ1 = −Dπ2

L2
0

. In cases when γ0 < 0, we need the following lemma

when inferring the asymptotic behaviour.

Lemma 1. If γ0 = −ρ2 < 0, then

σ1 < − |ρ|
2L2

0

+
γ2
1

4Dρ2L2
0

. (2.12)

Proof. Write g1(ξ) = e−
1
2 (η−η0)2h(η), where η =

√
|ρ|
2D

ξ

L0
and η0 =

γ1

|ρ|3/2√2D
. This

puts the equation into self-adjoint form

d

dη

(
h′(η)e−(η−η0)2

)
= λh(η)e−(η−η0)2 in 0 < η <

√
|ρ|
2D

(2.13)

h = 0 at η = 0 and η =

√
|ρ|
2D

(2.14)

where

λ = 1 +
2L2

0

|ρ| σ1 − γ2
1

2D|ρ|3 . (2.15)

Integrate Equation (2.13) over the interval and recall that h is positive, to deduce λ < 0.
This is equivalent to equation (2.12). �

The following sections give the full expressions for un(ξ, t), as well as their long-time
behaviour. An exact formula is obtained for each form of L(t) (depending on a and
aL2

0 − b2). The integrals (for A(t), s(t)) and the expressions occurring in Equation (2.3)
differ between the cases. Thus, the formulae given below are the result of performing
the necessary calculations and integrals and substituting the relevant expressions into
Equation (2.3).

2.1. L(t) = L0

For a fixed domain length L0, we have L̈L3 = γ0 = 0 and the separable cases are those
where

A(t) =
γ1

2L3
0

t2 + ct+ d for some c, d. (2.16)

The separable solutions then have the form

un(ξ, t) = exp(σnt)gn(ξ) exp
(
f0t− 1

4D

(
γ2
1

3L6
0

t3 +
cγ1

L3
0

t2 + c2t

))

× exp
(
− ξ

2DL0

(
γ1

L2
0

t+ cL0

))
. (2.17)
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If γ1 �= 0 then, as t→ ∞, u(ξ, t) → 0 since the behaviour is dominated by the term

exp
(
− γ2

1

12DL6
0

t3
)
. (2.18)

If γ1 = 0 then, as t→ ∞, there is exponential growth or decay in the cases f0 > Dπ2

L2
0

+ c2

4D

or f0 < Dπ2

L2
0

+ c2

4D respectively. Indeed, the long time behaviour of un is governed by

exp
(
σnt+ f0t− 1

4D
c2t

)
(2.19)

where σn = −Dn2π2

L2
0

.

2.2. L(t) = L0 + αt with α �= 0

When L(t) = L0 + αt then again L̈L3 = γ0 = 0, but now the separable cases are those
where

A(t) =
γ1

2α2(L0 + αt)
+ ct+ d for some c, d. (2.20)

The separable solutions then have the form

un(ξ, t) = exp
(
σnL0t

L0 + αt

)
gn(ξ)

(
L0

L0 + αt

)1/2

exp(f0t)

× exp
(
− 1

4D

(
c2t− cγ1t

αL0(L0 + αt)
− γ2

1

12α3

(
1

(L0 + αt)3
− 1
L3

0

)))

× exp
(
−ξ

2α(L0 + αt)
4DL2

0

− ξc(L0 + αt)
2DL0

+
ξγ1

4DL0α(L0 + αt)

)
. (2.21)

If α > 0 then as t→ ∞, the behaviour is asymptotically governed by

exp

(
f0t− 1

4D

(
c+

ξα

L0

)2

t

)
. (2.22)

Recall that we defined

c∗ = 2
√
Df0. (2.23)

Thus, if −α− c∗ < c < c∗, then there is a region of ξ in which there is exponential growth:
namely, where

max
(

0,
L0

α
(−c∗ − c)

)
< ξ < min

(
L0,

L0

α
(c∗ − c)

)
. (2.24)

Otherwise, u(ξ, t) decays to zero everywhere in (0, L0).

https://doi.org/10.1017/S0013091521000754 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000754


62 Jane Allwright

If instead α < 0, then L(t) → 0 as t→ −L0/α, and in this limit, u(ξ, t) → 0. Indeed,
if γ1 �= 0, then the behaviour is governed by

exp
(

γ2
1

48Dα3(L0 + αt)3

)
, (2.25)

which decays exponentially since α < 0. If γ1 = 0 then the governing term is

exp
(
σnL0t

L0 + αt

)
(2.26)

where σn = −Dn2π2

L2
0

< 0 and so, again, u(ξ, t) → 0.

2.3. L(t) =
√

L2
0 + 2ρt with ρ �= 0

If L(t)2 = L2
0 + 2ρt then L̈L3 = γ0 = −ρ2 < 0 and the separable cases are those where

A(t) =
−γ1

√
L2

0 + 2ρt
ρ2

+ ct+ d for some c, d. (2.27)

The separable solutions then have the form

un(ξ, t) =
(
L2

0 + 2ρt
L2

0

)σnL2
0

2ρ − 1
4−

γ2
1

8ρ3D

gn(ξ) exp
(
f0t− c2

4D
t

)

× exp

(
cγ1

2ρ2D

(√
L2

0 + 2ρt− L0

)
− ξ2ρ

4DL2
0

+
ξγ1

2DL0ρ
− ξc

√
L2

0 + 2ρt
2DL0

)
.

(2.28)

Therefore, if ρ > 0 then, as t→ ∞, there is exponential growth or decay in the cases
f0 >

c2

4D or f0 < c2

4D respectively. Indeed, the long-time behaviour in this case is governed
by

exp
(
f0t− c2

4D
t

)
. (2.29)

If instead ρ < 0 then L(t) → 0 as t→ −L2
0/2ρ, and in this limit u(ξ, t) → 0. This follows

because the behaviour of each un is governed by

(
L2

0 + 2ρt
L2

0

)σnL2
0

2ρ − 1
4−

γ2
1

8ρ3D

. (2.30)

This implies that u(ξ, t) → 0, by using the bound in equation (2.12).
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2.4. L(t) =
√

at2 + 2bt + L2
0 with a �= 0 and aL2

0 − b2 �= 0

If L(t)2 = at2 + 2bt+ L2
0 then L̈L3 = γ0 = aL2

0 − b2, and for aL2
0 − b2 �= 0, the separa-

ble cases are those where

A(t) =
−γ1

b2 − aL2
0

√
at2 + 2bt+ L2

0 + ct+ d for some c, d. (2.31)

The separable solutions have the form

un(ξ, t) = Θn(t)gn(ξ)
(

L2
0

at2 + 2bt+ L2
0

)1/4

exp
(
f0t− 1

4D

(
γ2
1a

(b2 − aL2
0)2

+ c2
)
t

)

× exp
(

cγ1

2D(b2 − aL2
0)

(√
at2 + 2bt+ L2

0 − L0

))

× exp
(
−ξ

2(at+ b)
4DL2

0

+
ξγ1(at+ b)

2DL0(b2 − aL2
0)

− ξc

2DL0

√
at2 + 2bt+ L2

0

)
, (2.32)

where if γ0 = aL2
0 − b2 < 0,

Θn(t) =

⎛
⎝
(
at+ b−

√
b2 − aL2

0

)(
b+

√
b2 − aL2

0

)
(
b−

√
b2 − aL2

0

)(
at+ b+

√
b2 − aL2

0

)
⎞
⎠

σnL2
0

2
√

b2−aL2
0

− γ2
1

8D(b2−aL2
0)3/2

, (2.33)

and if γ0 = aL2
0 − b2 > 0 then

Θn(t) = e

(
σnL2

0√
aL2

0−b2
+

γ2
1

4D(aL2
0−b2)3/2

)(
arctan

(
at+b√
aL2

0−b2

)
−arctan

(
b√

aL2
0−b2

))
. (2.34)

If L(t) remains positive for all t > 0, then a > 0 and the behaviour as t→ ∞ is governed
by

exp

(
f0t− 1

4D

(
c− γ1

√
a

(b2 − aL2
0)

+
ξ
√
a

L0

)2

t

)
. (2.35)

So, if −c∗ +
γ1
√
a

(b2 − aL2
0)

−√
a < c < c∗ +

γ1
√
a

(b2 − aL2
0)

, then there is a region of ξ in which

there is exponential growth: namely, where

max
(

0,
L0√
a

(
−c∗ − c+

γ1
√
a

(b2 − aL2
0)

))
< ξ < min

(
L0,

L0√
a

(
c∗ − c+

γ1
√
a

(b2 − aL2
0)

))
.

(2.36)

Otherwise, there is exponential decay everywhere.
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If instead L(t) → 0 in a finite time, then it must be that aL2
0 − b2 < 0 and that L(t) → 0

as

t→ −1
a

√
b2 − aL2

0 −
b

a
. (2.37)

In this limit, u(ξ, t) → 0 since the behaviour is governed by

(
b+

√
b2 − aL2

0

at+ b+
√
b2 − aL2

0

) σnL2
0

2
√

b2−aL2
0

− γ2
1

8D(b2−aL2
0)3/2 + 1

4

. (2.38)

This implies that u(ξ, t) → 0, by using the bound in equation (2.12) with ρ2 = b2 −
aL2

0 = −γ0.

2.5. Observed properties of the solutions

These expressions are very instructive in understanding the effects of a time-dependent
domain on the solution. From them, one can observe the ways in which the exact nature
of the time-dependence influences the solution in both short and long time.

One may choose specific parameter values and, after solving the relevant Sturm–
Liouville problem, plot the solutions. An illustrative example is given in Figure 1, with
D = L0 = 1, f0 = 10, L(t) =

√
1 + 6t and A(t) ≡ 0. Using the notation of Lemma 1,

the principal eigenfunction is proportional to e−
1
2η

2
H3(η) where η =

√
3
2
ξ
L0

and H3

is the third Hermite polynomial. We use a multiple of this for our initial condition:
v(ξ, 0) = g1(ξ) = e−

3
4 ξ

2
(ξ − ξ3). The principal eigenvalue is σ1 = − 21

2 . The solution is
calculated using the exact expression in Equation (2.28) and plotted both on the fixed
domain (as a function of the scaled variable ξ) and on the time-dependent domain (as a
function of the original variable x). It is noted that, at small positive times, the solution
decreases relative to its initial value, before the eventual exponential growth. This can be
inferred from the formula in Equation (2.28) with the chosen parameter values. This is
in contrast to the (more familiar) behaviour on a fixed domain, for which (in a separable
solution) each of the eigenfunctions simply either grows or decays exponentially for t > 0.

Although the formulae in Equations (2.17), (2.21), (2.28), (2.32), (2.33), and (2.34)
differ, we note some common behaviour of these exact solutions in the asymptotic large
time (or finite time) limit.

Firstly, whenever the domain length tends to zero in a finite time, the solution also
tends to zero uniformly in ξ (see § 2.3 and § 2.4). In each case, this follows from an upper
bound on the eigenvalue σ1.

Note, also, that in the separable cases with L(t) → ∞ as t→ ∞, the long-time
behaviour does not depend on the eigenvalue σ1. In these cases, s(t) = o(t) and the
term exp(σ1s(t)) is not of leading order.

Next, note that the separable solutions share the property that there is exponential
growth at any ξ ∈ (0, L0) such that

− c∗ < lim
t→∞

x(ξ, t)
t

< c∗, (2.39)
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Figure 1. Exact solution on a time-dependent interval 0 < x <
√

1 + 6t, calculated using
Equation (2.28). Left: solution u(ξ, t) as a function of the scaled variable ξ. Right: solution
ψ(x, t) on the time-dependent domain.

whereas there is exponential decay if∣∣∣∣ limt→∞
x(ξ, t)
t

∣∣∣∣ > c∗. (2.40)

(Here x(ξ, t) = ξ
L0
L(t) +A(t) is the original variable.) This is, in some sense, similar

to the behaviour of the solution, ψ̃ say, on the whole real line with initial conditions
compactly supported in [a, b]:

ψ̃(x, t) =
1√

4πDt

∫ b

a

ψ̃(y, 0) exp
(
f0t− (x− y)2

4Dt

)
dy. (2.41)

This spreads at the asymptotic speed c∗, in the sense that for |c| < c∗, ψ̃(ct, t) → ∞
whereas sup|x|≥c∗t ψ̃(x, t) → 0 as t→ ∞. It is well known that c∗ is also the minimum
wave speed for travelling wave solutions to the nonlinear FKPP equation and that it
is the asymptotic spreading speed for solutions to the same equation on the real line
with compactly supported initial conditions (see [2, 21]). Much work has been done
on determining the exact behaviour associated with this spreading and especially with
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respect to Bramson’s logarithmic correction term (see [11, 12, 19]). It is natural, therefore,
to be interested in the exact behaviour of our solution ψ(x, t) (in terms of the original
variable x), at this critical interface between growth and decay. This is considered in § 3.

Finally, note that in § 2.1 and the particular sub-case where γ1 = 0, the problem has
become that of an interval of fixed length L0 moving at a constant speed c. Our result
is in agreement with [5, 22] in deriving a critical domain length, which is defined by the
equation f0 = Dπ2

L2
0

+ c2

4D , and represents a threshold between decay and growth.

2.6. Applications to more general A(t), L(t)

The preceding results are relevant not only to those specific forms of A(t), L(t) which
led to the exact solutions. The explicit expressions can also be used to deduce bounds on
the solution for other, more general, forms of A(t) and L(t).

The parabolic comparison principle leads to the following result.

Proposition 1. Let ψ1(x, t) and ψ2(x, t) be the solutions with A1(t), L1(t), and
A2(t), L2(t) respectively. If (for each t) (A1(t), A1(t) + L1(t)) ⊆ (A2(t), A2(t) + L2(t)),
then ψ1(x, t) ≤ ψ2(x, t) for x ∈ (A1(t), A1(t) + L1(t)).

This, therefore, provides an explicit lower [or upper] bound for the solution ψ, whenever
the domain contains [or is contained by] one of the separable cases.

A rather different extension of the method is to consider cases for which L̈L3 and
ÄL3 are each bounded above or bounded below. In this case, we can bound the solu-
tion by expressions involving A(t) and L(t), together with the same Sturm–Liouville
eigenfunctions and eigenvalues that occurred in the preceding sections.

Proposition 2. Suppose that

L̈(t)L(t)3 ≤ γ+
0 and Ä(t)L(t)3 ≤ γ+

1 (2.42)

for some constants γ+
0 , γ

+
1 . Then, for any given initial conditions u(ξ, 0) in L2([0, L0]),

the solution u(ξ, t) can be bounded above by a sum of the un(ξ, t) in equation (2.3),
where now the gn(ξ), σn satisfy the Sturm–Liouville problem in Equations (2.9), (2.10)
with γ0 = γ+

0 and γ1 = γ+
1 . If equation (2.42) holds with both inequalities reversed, then

the solution u(ξ, t) can instead be bounded below by a sum of the un(ξ, t).

Proof. The same changes of variables as in Theorem 1 leads to Equations (2.7), (2.8)
for v(ξ, s). Let v+(ξ, s) satisfy these same equations but with γ+

0 in place of L̈L3, and
γ+
1 in place of ÄL3. (This is the separable problem which has just been considered.)

Now, due to the special form Equation (2.7) and the positivity of the solutions, v+ is
a supersolution for v. The comparison principle can be applied to v, to deduce that if
v(ξ, 0) ≤ v+(ξ, 0), then v(ξ, s) ≤ v+(ξ, s) for all s. On changing variables back, we obtain
the stated upper bound on u(ξ, t).

If the inequalities in Equation (2.42) are reversed, and if v+(ξ, 0) ≤ v(ξ, 0), then v+(ξ, s)
is instead a subsolution, and thus we obtain the lower bound on u(ξ, t). � �

For the sake of completeness, we make the remark that, in the level of generality
considered (i.e. A(t) and L(t) twice continuously differentiable), the domains — and
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consequently the solutions — will be hard to describe in any very general terms. Indeed,
examples can be constructed with alternating growth and decay, such that the solution
becomes both arbitrarily large and arbitrarily small over time. Such examples are not the
focus of this paper.

2.7. Exact solutions on a ball in higher dimension

To conclude this section, we demonstrate that a similar process can lead to exact
solutions to the problem on a ball in R

n with radius R(t) and centre A(t). Consider the
problem

∂ψ

∂t
= D∇2ψ + f0ψ in |x − A(t)| < R(t) (2.43)

ψ = 0 on |x − A(t)| = R(t). (2.44)

A change of variables from x to z = (x−A(t))
R(t) R0, with R0 = R(0), and from ψ(x, t) to

w(z, t) = ψ(x, t)
(
R(t)
R0

)n
2

exp

(
−f0t+

∫ t

0

|Ȧ(ζ)|2
4D

dζ +
Ṙ(t)R(t)
4DR2

0

|z|2 +
R(t)
2DR0

z·Ȧ(t)

)
,

(2.45)

followed by s(t) =
∫ t
0

R2
0

R(ζ)2 dζ, and v(z, s) = w(z, t), leads to the equation

∂v

∂s
= D∇2v +

(
|z|2R̈(t(s))R(t(s))3

4DR4
0

+
(z · Ä(t(s)))R(t(s))3

2DR3
0

)
v for |z| < R0 (2.46)

v = 0 at |z| = R0. (2.47)

This is separable in s, r = |z|, and θ (the angular co-ordinates) if R̈R3 = γ0 =constant
and ÄR3 = 0. This corresponds to R(t)2 = at2 + 2bt+R2

0 for some constants a,b and
γ0 = aR2

0 − b2; and A(t) = A0 + ct for some constant vectors A0 and c. The solutions
can then be expressed in terms of a sum of the eigenfunctions vl(r, θ) = Hl(θ)Xl(r) of

σlvl(r, θ) = D∇2vl +
r2γ0

4DR4
0

vl on r < R0 (2.48)

vl = 0 at r = R0 (2.49)

which satisfy the correct periodicity in θ and which are non-singular at the origin r = 0.
This leads to the following theorem.

Theorem 2. Let ψ(x, t) satisfy Equations (2.43), (2.44) on the ball in R
n with radius

R(t) =
√
at2 + 2bt+R2

0 and centre A(t) = A0 + ct. Then, for any suitable initial condi-
tions ψ(x, 0), the solution for ψ(x, t) can be obtained exactly, as a sum of ψl(x, t) with
coefficients depending only on the initial conditions. The ψl are expressed purely in terms
of c, the constants occurring in R(t), and the eigenfunctions and eigenvalues (vl, σl) of
the eigenvalue problem (2.48), (2.49) with γ0 = aR2

0 − b2.
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The explicit expressions are similar to the one-dimensional case, but note the depen-

dence on n in the factor
(
R(t)
R0

)n
2

in Equation (2.45) as well as, of course, the dependence
on n in the eigenfunctions and eigenvalues. In n dimensions, we have the bound σ1 < − nρ

2R2
0

on the principal eigenvalue when γ0 = −ρ2 < 0.

3. Critical boundary motion

3.1. Behaviour near the critical speed

In this section, we take up the question mentioned in § 2.5, regarding the exact
behaviour of our solution ψ(x, t) at the critical interface between growth and decay.
Recall that we defined

c∗ = 2
√
Df0, (3.1)

and that, in the separable solutions, there was an exponential growth of u(ξ, t) at any
ξ ∈ (0, L0) such that Equation (2.39) held, and exponential decay at any ξ where Equation
(2.40) held (i.e. x(ξ, t) travelling slower or faster than c∗, respectively). It is natural to
seek a more precise description of this changeover between regions of growth and decay.
Given A(t), L(t), are we able to track the position x(t) at which the solution ψ(x, t) is
equal to some a constant, O(1), value? For which choices of A(t), L(t) will the solution
be exactly of order 1 near the boundary (neither growing to ∞ nor decaying to 0)?

Initially, let us make use of an exact solution from § 2. Let ψ̂(x, t) be the solution on
the interval

− c∗t− L0

2
< x <

L0

2
+ c∗t. (3.2)

This is given by Equation (2.21) with c = −c∗, α = 2c∗, γ1 = 0, σn = −Dn2π2

L2
0

and gn(ξ) =

sin
(
nπξ
L0

)
. Without loss of generality (and for simplicity) take the initial conditions to be

sin
(
πξ
L0

)
. Then (recalling that f0 = c2∗

4D ) this exact solution is:

û(ξ, t) = exp
(
− Dπ2t

L0(L0 + 2c∗t)

)
sin
(
πξ

L0

)(
L0

L0 + 2c∗t

)1/2

× exp
(

ξc∗
2DL0

(L0 + 2c∗t)
(

1 − ξ

L0

))
. (3.3)

Therefore at x = −c∗t− L0/2 + y, we have

ψ̂(−c∗t− L0/2 + y, t) = û

(
yL0

L0 + 2c∗t
, t

)

= exp
(
− Dπ2t

L0(L0 + 2c∗t)

)
sin
(

πy

L0 + 2c∗t

)(
L0

L0 + 2c∗t

)1/2

× exp
(
yc∗
2D

(
1 − y

L0 + 2c∗t

))
. (3.4)
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If y = O(1) then as t→ ∞,

ψ̂(−c∗t− L0/2 + y, t) = O

(
y

t
× 1
t1/2

× exp
(yc∗

2D

))
= O(t−3/2) → 0. (3.5)

Observe that the choice y(t) = 3D
c∗

log(t+ 1) in equation (3.3) removes all the powers of
t and gives (as t→ ∞):

ψ̂

(
−c∗t− L0

2
+

3D
c∗

log(t+ 1), t
)

= O

(
log t
t

× 1
t1/2

× (t+ 1)3/2
)

= O(log t) → ∞.

(3.6)

The form of this exact solution for ψ̂ suggests that the critical choices of A(t), L(t)
(where the solution near to the boundary remains exactly of order 1) may occur when
the endpoints move as ±c∗t plus a logarithmic term (plus smaller order corrections).
Furthermore, the fact that the choice y(t) = 3D

c∗
log(t+ 1) removes all the powers of t

suggests the likely coefficient of such a term. The following section will give the precise
statement of the behaviour on an interval which does include a logarithmic adjustment
to the endpoints.

3.2. Precise behaviour in the critical case

From now on, we restrict attention to cases where A(t) = −L(t)
2 . Our change of variables

from Equation (2.5) becomes

w(ξ, t) = u(ξ, t)
(
L(t)
L0

)1/2

exp

(
−f0t+

∫ t

0

L̇(ζ)2

16D
dζ + ξ(ξ − L0)

L̇(t)L(t)
4DL2

0

)
. (3.7)

Let us give a precise definition of the behaviour we are interested in and the notation we
shall use for it.

Definition 1. Given two functions F1, F2, one will be referred to as being exactly of
the order the other (in a given limit), and denoted by F1 = O(F2), when F2 = O(F1)
and F1 = O(F2) (in the limit under consideration). In other words, there are positive
constants 0 < β0 ≤ β1 such that β0|F2| ≤ |F1| ≤ β1|F2|.

The following theorem is the main result which is proved in the remainder of this
section. The proof relies on the construction of a supersolution and a subsolution, both
having the specified behaviour.

Theorem 3. Let

A(t) =
−L(t)

2
= −c∗t+ α log(t+ 1) + η(t), (3.8)

where c∗ = 2
√
Df0, α > 0, and

η(t) = O(1), η̇(t) = o(1/t), η̈(t) = o(1/t2)
...
η (t) = o(1/t3) as t→ ∞. (3.9)

Then

ψ(A(t) + y, t) = O
(
yt−

3
2+ αc∗

2D

)
as t→ ∞, for y = O(1). (3.10)
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Remark 1. Any function η(t) satisfying the assumptions in equation 3.9 will suffice to
give the conclusion of Theorem 3. Note that these conditions on η(t) allow, for example,
η(t) = η0 =constant, or η(t) = (t+ 1)k for k < 0, but not η(t) = log log(t) as t→ ∞.

This theorem gives asymptotic bounds on ψ(x, t) for x within O(1) of the moving
boundary. Hence, it also bounds the asymptotic behaviour of the gradient at the moving
boundary itself:

∂ψ

∂x

(−L(t)
2

, t

)
= O((t+ 1)−

3
2+ αc∗

2D ) as t→ ∞. (3.11)

In particular, at the critical value

α = αcrit =
3D
c∗
, (3.12)

we have that ψ
(

−L(t)
2 + y, t

)
= O(y) as t→ ∞, and that the gradient at the boundary

is bounded above and below independently of time: ∂ψ∂x
(

−L(t)
2 , t

)
= O(1).

The derivation of the 3D
c∗

log(t+ 1) term in this context is completely different from the
proofs in the other settings in which such a term arises. In this case (of a linear equation
on a finite interval with moving boundaries), our derivation of the term is relatively
straightforward, or accessible, being based solely on explicit super- and sub-solutions to
a linear equation. Moreover, the bulk of our proof is in fact taken up in showing that the
function w(ξ, t) is exactly of order ξ (or y/t). The other factor, t−

1
2+ αc∗

2D , in the critical
behaviour comes straight from the change of variables. This observation and the exact
expression used in the change of variables (Equation (3.7)) may therefore help to give
insight into the source of the logarithmic term in other settings.

Recall that the function w now satisfies

∂w

∂t
= D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w

L2
0

)
in 0 < ξ < L0 (3.13)

w = 0 at ξ = 0 and ξ = L0, (3.14)

where

P (t) =
L̈(t)L(t)3

4D2
. (3.15)

The following two propositions give a supersolution and a subsolution for w(ξ, t) under
certain conditions on P (t). It is worth noting that Proposition 3 and Proposition 4 apply
in general whenever w(ξ, t) satisfies Equations (3.13), (3.14) for any function P (t) (sat-
isfying the conditions of the proposition). They do not rely at all on the specific form of
P (t) that we are interested in here, given by Equation (3.15). In the case where P (t) is
given by Equation (3.15), the condition (3.21) in Proposition 4 becomes simply∫ ∞

0

L̈(ζ)2/3dζ <∞. (3.16)
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Proposition 3 (Supersolution). Let w(ξ, t) ≥ 0 satisfy Equations (3.13), (3.14). If
P (t) ≥ 0 then (up to multiplication by a constant) w(ξ, t) ≤ w(ξ, t) where

w(ξ, t) = sin
(
πξ

L0

)
exp

(
−
∫ t

0

Dπ2

L(ζ)2
dζ

)
. (3.17)

Moreover, if ∫ ∞

0

1
L(ζ)2

dζ <∞ (3.18)

then w(ξ, t) = O(ξ) independently of time as t→ ∞, in the sense that given B1 ∈ (0, L0),
there exists β1 such that

w(ξ, t) ≤ β1ξ as t→ ∞, for all 0 ≤ ξ ≤ B1. (3.19)

Proof. The function w(ξ, t) satisfies the boundary conditions and, since P (t) ≥ 0, it
satisfies the inequality

∂w

∂t
= D

L2
0

L(t)2
∂2w

∂ξ2

≥ D
L2

0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w

L2
0

)
, (3.20)

and so it is a supersolution for w(ξ, t). Hence, up to multiplication by a constant, w(ξ, t) ≤
w(ξ, t). Moreover, if equation (3.18) holds, then w(ξ, t) = O(ξ) (independently of time as
t→ ∞) and so equation (3.19) is proved. �

Next, we construct a subsolution using the Airy function Ai and its tangent at the
position Ai(0).

Proposition 4 (Subsolution). Let w(ξ, t) ≥ 0 satisfy Equations (3.13), (3.14). If
P (t) → ∞ as t→ ∞ and Ṗ (t) ≥ 0, then (up to multiplication by a constant) w(ξ, t) ≥
w̃(ξ, t) = w(ξ, t)a(t) where w(ξ, t) and a(t) are given by equations (3.23) and (3.33).
Moreover, if ∫ ∞

0

P (ζ)2/3

L(ζ)2
dζ <∞ (3.21)

then for P (t)1/3 ξ
L0

sufficiently small, w(ξ, t) can be bounded below by a positive multiple
of ξ (independently of t) as t→ ∞. In other words, for B0 > 0 small enough, there exists
β0 > 0 such that

β0ξ ≤ w(ξ, t) as t→ ∞, for all 0 ≤ ξ ≤ B0P (t)−1/3L0. (3.22)
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Proof. Let c1 be the largest real zero of the Airy function Ai. Note, for reference, the
facts that c1 < 0, Ai′(c1) > 0, Ai(0) > 0, Ai′(0) < 0, and Ai′′(0) = 0. Define w(ξ, t) by:

w(ξ, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
P (t)1/3

Ai
(
P (t)1/3

ξ

L0
+ c1

)
for 0 ≤ ξ ≤ −c1P (t)−1/3L0 : Region I

1
P (t)1/3

(
Ai(0) + Ai′(0)

(
P (t)1/3

ξ

L0
+ c1

))

for − c1P (t)−1/3L0 ≤ ξ ≤ −
(

Ai(0)
Ai′(0)

+ c1

)
P (t)−1/3L0 : Region II

0 for −
(

Ai(0)
Ai′(0)

+ c1

)
P (t)−1/3L0 ≤ ξ ≤ L0 : Region III.

(3.23)
Note that w is continuous and non-negative on [0, L0] and satisfies the boundary condi-

tions. Furthermore, both ∂w
∂ξ and ∂2w

∂ξ2 are continuous across Regions I-II, including at the

point where they meet, since at this point, the left and right limits both give ∂w
∂ξ = Ai′(0)

L0

and ∂2w
∂ξ2 = 0. In each Region I and Region II, ∂w∂t satisfies

∂w

∂t
=

Ṗ (t)
3P (t)

(
−w + ξ

∂w

∂ξ

)
, (3.24)

and so it follows from the continuity of each term that ∂w
∂t is also continuous across

Regions I–II.
In Region I:

∂w

∂t
−D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w

L2
0

)

= − Ṗ (t)
3P (t)

w +
Ṗ (t)
3P (t)

ξ

L0
Ai′
(
P (t)1/3

ξ

L0
+ c1

)

− DP (t)1/3

L(t)2
Ai′′

(
P (t)1/3

ξ

L0
+ c1

)
− DP (t)

L(t)2
ξ2

L2
0

w +
DP (t)
L(t)2

ξ

L0
w (3.25)

=
Ṗ (t)
3P (t)

(
−w + ξ

∂w

∂ξ

)
− D

L(t)2
P (t)2/3

(
P (t)1/3

ξ

L0
+ c1

)
w

− DP (t)
L(t)2

ξ2

L2
0

w +
DP (t)
L(t)2

ξ

L0
w (3.26)

=
Ṗ (t)
3P (t)

(
−w + ξ

∂w

∂ξ

)
− DP (t)2/3

L(t)2
c1w − DP (t)

L(t)2
ξ2

L2
0

w. (3.27)
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Note that ∂2w
∂ξ2 ≤ 0 in Region I, since Ai′′(x) = xAi(x) ≤ 0 on [c1, 0]. Therefore, using

w(0, t) = 0, it holds that

ξ
∂w

∂ξ
(ξ, t) ≤ w(ξ, t) in Region I. (3.28)

Thus, Equation (3.27) together with the assumption that P (t) ≥ 0 and Ṗ (t) ≥ 0 implies
that, in Region I,

∂w

∂t
−D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w

L2
0

)
≤ −c1DP (t)2/3

L(t)2
w. (3.29)

In Region II, since P (t) ≥ 0, Ṗ (t) ≥ 0, and Ai′(0) < 0,

∂w

∂t
−D

L2
0

L(t)2

(
∂2w

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w

L2
0

)

= − Ṗ (t)
3P (t)

w +
Ṗ (t)
3P (t)

ξ

L0
Ai′(0) − DP (t)

L(t)2
ξ2

L2
0

w +
DP (t)
L(t)2

ξ

L0
w (3.30)

≤ DP (t)
L(t)2

ξ

L0
w (3.31)

≤
(
− Ai(0)

Ai′(0)
− c1

)
DP (t)2/3

L(t)2
w. (3.32)

This leads us to define w̃(ξ, t) = w(ξ, t)a(t) where

a(t) = exp
((

Ai(0)
Ai′(0)

+ c1

)∫ t

0

DP (ζ)2/3

L(ζ)2
dζ

)
. (3.33)

Then in Regions I–II, the function w̃(ξ, t) is C2 in ξ, C1 in t and it satisfies

∂w̃

∂t
−D

L2
0

L(t)2

(
∂2w̃

∂ξ2
+ P (t)

ξ

L0

(
ξ

L0
− 1
)
w̃

L2
0

)
≤ 0, (3.34)

so it is a classical subsolution for 0 ≤ ξ ≤ −
(

Ai(0)
Ai′(0) + c1

)
P (t)−1/3L0 (Regions I-II).

It is clear that w̃ ≡ 0 is also a classical subsolution in Region III. At the point where
Region II and Region III meet, w̃ is continuous, it is a classical subsolution on either side,
and ∂w̃

∂ξ has a jump discontinuity from a negative value on the left (Region II) to zero
on the right (Region III). It follows that w̃(ξ, t) is a weak subsolution to the parabolic
problem on (0, L0). Therefore, up to multiplication by some constant,

w̃(ξ, t) ≤ w(ξ, t). (3.35)

If Equation (3.21) holds, then a(t) converges to a strictly positive value as t→ ∞.
Then, since

w(ξ, t) ∼ Ai′(c1)
L0

ξ as P (t)1/3
ξ

L0
→ 0, (3.36)

it follows that for P (t)1/3 ξ
L0

sufficiently small, w̃(ξ, t) can be bounded above and below
by positive multiples of ξ (independently of time as t→ ∞). In particular, for B0 > 0
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small enough, there exists β0 > 0 such that

β0ξ ≤ w̃(ξ, t) as t→ ∞, for all 0 ≤ ξ ≤ B0P (t)−1/3L0. (3.37)

Equation (3.22) follows and the proposition is proved. �

Next, we use the super- and sub-solutions for w(ξ, t) to prove Theorem 3:

Proof of Theorem 3. Recall from Equation (3.8) that

L(t) = 2(c∗t− α log(t+ 1) − η(t)). (3.38)

Thus, as t→ ∞ the function P (t) =
L̈(t)L(t)3

4D2
obeys

P (t) ∼ 4αc3∗
D2

t→ ∞ and Ṗ (t) ∼ 4αc3∗
D2

> 0. (3.39)

Moreover, since L(t) ∼ 2c∗t and L̈(t) ∼ 2αt−2 as t→ ∞, it also holds that

∫ ∞

0

1
L(ζ)2

dζ <∞ and
∫ ∞

0

L̈(ζ)2/3dζ <∞. (3.40)

So, both Proposition 3 and 4 apply to this case, giving that (for some positive constants)
C1w(ξ, t)a(t) ≤ w(ξ, t) ≤ C2w(ξ, t), and that for B0 > 0 small enough, there exist 0 <
β0 ≤ β1 such that

β0ξ ≤ w̃(ξ, t) ≤ β1ξ as t→ ∞, for all 0 ≤ ξ ≤ B0P (t)−1/3L0. (3.41)

Hence, we have shown that w(ξ, t) is exactly of order ξ:

w(ξ, t) = O(ξ) as ξ = O(P (t)−1/3) → 0. (3.42)

In terms of the original function ψ(x, t), recall that

ψ(x, t) = u(ξ, t) = w(ξ, t)
(
L0

L(t)

)1/2

exp

(
f0t−

∫ t

0

L̇(ζ)2

16D
dζ − ξ(ξ − L0)

L̇(t)L(t)
4DL2

0

)

(3.43)
and note that with L(t) given by Equation (3.38),

f0t−
∫ t

0

L̇(ζ)2

16D
dζ =

c2∗
4D

t−
∫ t

0

(
c2∗
4D

− αc∗
2D(ζ + 1)

+O

(
1

(ζ + 1)2

)
+O(η̇(ζ))

)
dζ

(3.44)

=
αc∗
2D

log(t+ 1) +O(1) as t→ ∞. (3.45)

https://doi.org/10.1017/S0013091521000754 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000754


Exact solutions and critical behaviour for a linear growth-diffusion 75

Consider x = −L(t)
2 + y with y = O(1). Then ξ = yL0

L(t) = O
(

1
t+1

)
is certainly

O(P (t)−1/3) as t→ ∞, and so

ψ

(−L(t)
2

+ y, t

)
= w

(
y

L(t)
, t

)(
L0

L(t)

)1/2

× exp

(
f0t−

∫ t

0

L̇(ζ)2

16D
dζ − y

L(t)

(
y

L(t)
− 1
)
L̇(t)L(t)

4D

)

= O

(
y

t+ 1

)
× 1

(t+ 1)1/2
× exp

(
αc∗
2D

log(t+ 1) − y2

4D(t+ 1)
+
yc∗
2D

)

= O
(
y(t+ 1)−

3
2+ αc∗

2D exp
(yc∗

2D

))
, (3.46)

which concludes the proof of Theorem 3. �

3.3. Critical case in higher dimensions

To conclude this section, we note that a similar analysis can also be applied to a ball
in R

n.

Theorem 4. Let ψ satisfy

∂ψ

∂t
= D∇2ψ + f0ψ in {|x| < R(t)} ⊂ R

n (3.47)

ψ = 0 on |x| = R(t), (3.48)

where

R(t) = c∗t− α log(t+ 1) − η(t) (3.49)

with α > 0, and η satisfying Equation (3.9), and where n ≤ 3. Then

ψ(x, t) = O(y(t+ 1)−1−n
2 + αc∗

2D ) as t→ ∞, for y = R(t) − |x| = O(1). (3.50)

Remark 2. Hence, the ‘critical value’ of α, for which the solution behaves exactly as
order y, is now

αcrit =
(2 + n)D

c∗
. (3.51)

As in the one-dimensional case, this appears to match the coefficient of the logarithmic
correction term in the nonlinear FKPP problem on R

n, with compactly supported initial
conditions (see [18, 24]).
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Proof. The change of variables z = x
R(t)R0 and

W (z, t) = ψ(x, t)
(
R(t)
R0

)n
2

exp

(
−f0t+

∫ t

0

|Ṙ(ζ)|2
4D

dζ +
Ṙ(t)R(t)
4DR2

0

(r2 −R2
0)

)
(3.52)

leads to the equation

∂W

∂t
= D

R2
0

R(t)2

(
∇2W +Q(t)

(
r2

R2
0

− 1
)
W

R2
0

)
on r < R0 (3.53)

W = 0 at r = R0, (3.54)

where r = |z| and

Q(t) =
R̈(t)R(t)3

4D2
, (3.55)

which satisfies Q(t) > 0, Q(t) → ∞, Q̇ ≥ 0 as t→ ∞.
Let h0(r) be the radially symmetric principal eigenfunction of

λh = −∇2h for r < 1 (3.56)

h = 0 at r = 1 (3.57)

in the n-dimensional ball, with eigenvalue λ0. Then the function

W (r, t) = h0

(
r

R0

)
exp

(∫ t

0

− Dλ0

R(ζ)2
dζ

)
(3.58)

is a supersolution for W . Thus, up to multiplication by a constant, W ≤W .
Next consider the function

w1(r, t) = w̃(R0 − r, t), (3.59)

where w̃(ξ, t) = w(ξ, t)a(t) is given in equations (3.23) and (3.33) with L(t) = 2R(t),
L0 = 2R0, ξ = R0 − r, and P (t) = L̈(t)L(t)3

4D2 . Note that(
r2

R2
0

− 1
)
Q(t)
R2

0

=
(
ξ −R0

R0
+ 1
)(

ξ −R0

R0
− 1
)

1
4R2

0D
2
R̈(t)R(t)3

=
2ξ
L0

(
2ξ
L0

− 2
)

1
L2

0D
2

L̈(t)L(t)3

16

=
ξ

L0

(
ξ

L0
− 1
)

1
L2

0

L̈(t)L(t)3

4D2

=
ξ

L0

(
ξ

L0
− 1
)
P (t)
L2

0

. (3.60)

Therefore (for t large enough), this function w1(r, t) satisfies

∂w1

∂t
≤ D

R2
0

R(t)2

(
∂2w1

∂r2
+Q(t)

(
r2

R2
0

− 1
)
w1

R2
0

)
on r < R0. (3.61)
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Next, using the form of the Laplacian in n dimensions, we claim that the function

ŵ(r, t) =
w1(r, t)

r
n−1

2

(3.62)

is a subsolution in the n-dimensional case when n ≤ 3. Certainly the boundary condition
(at r = R0) and the non-singular condition (at r = 0) will be satisfied, since w1(R0, t) = 0,
and w1(r, t) = 0 on some neighbourhood [0, r0) of r = 0. Moreover,

∂ŵ

∂t
=

1

r
n−1

2

∂w1

∂t
≤ 1

r
n−1

2

D
R2

0

R(t)2

(
∂2w1

∂r2
+Q(t)

(
r2

R2
0

− 1
)
w1

R2
0

)
(3.63)

= D
R2

0

R(t)2

(
1

r
n−1

2

∂2

∂r2

(
r

n−1
2 ŵ

)
+Q(t)

(
r2

R2
0

− 1
)
ŵ

R2
0

)
(3.64)

= D
R2

0

R(t)2

(
∇2ŵ +

(
n− 1

2

)(
n− 3

2

)
ŵ

r2
+Q(t)

(
r2

R2
0

− 1
)
ŵ

R2
0

)
(3.65)

≤ D
R2

0

R(t)2

(
∇2ŵ +Q(t)

(
r2

R2
0

− 1
)
ŵ

R2
0

)
, (3.66)

where the equality follows from the form of the Laplacian in n dimensions and the final
inequality holds for n = 1,2,3. Thus, ŵ is a subsolution and, up to multiplication by a
constant, we obtain ŵ ≤W .

We are interested in y = R(t) − |x| = O(1). This corresponds to |z| = r = R0 − yR0
R(t)

with y = O(1), for which the above supersolution and subsolution (C1ŵ ≤W ≤ C2W )
provide the bounds w(z, t) = O(R0 − |z|) = O

(
yR0
R(t)

)
, independently of t. Therefore, the

same calculations as in the one-dimensional case give:

ψ(x, t) = w(z, t)
(
R0

R(t)

)n/2
exp

(
f0t−

∫ t

0

|Ṙ(ζ)|2
4D

dζ − Ṙ(t)R(t)
4DR2

0

(r2 −R2
0)

)

= O

(
y

t+ 1

)
× 1

(t+ 1)n/2
× exp

(
αc∗
2D

log(t+ 1) − y2

4D(t+ 1)
+
yc∗
2D

)

= O
(
y(t+ 1)−1−n

2 + αc∗
2D exp

(yc∗
2D

))
. (3.67)

�

Remark 3. The proof of Theorem 4 shows that, in any dimension n,

ψ(x, t) = O(y(t+ 1)−1−n
2 + αc∗

2D ) as t→ ∞, for y = R(t) − |x| = O(1). (3.68)

This follows from the supersolution. However, the subsolution ŵ used in the proof only
satisfies the required inequality when n ≤ 3. One may conjecture that the full result of
Theorem 4 actually applies in all dimensions n.
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